SUPPLEMENTARY DATA 2 - MODELING THE PLASMA PROFILE OF FREE FATTY ACIDS AND HORMONES

Insulin and glucagon
The plasma concentrations of the two hormones insulin and glucagon determine the phosphorylation state of the inter-convertible enzymes. Both hormones are secreted by the pancreas into the portal vein and the secretion rate is mainly controlled by the glucose concentration of the blood. Therefore we used the empirical glucose hormone transfer function (GHT), which describes the relationship between the plasma level of glucose and the plasma levels of insulin and glucagon previously established in [1].
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Fig. S1: The GHT functions describe the dependence of plasma insulin (A) and plasma glucagon (B) on plasma glucose levels. Experimentally determined plasma concentrations of glucose and hormone (grey dots) from various sources (insulin: [2-4], glucagon: [5-9]) were pooled (black lines – mean values, light grey boxes – standard deviations). Periportal hormone concentrations are twice as high as the measured blood plasma concentrations [5]. A Hill-type function was used to fit the data by least-square minimization yielding the GHT function.



The concentration of the hormones determines the phosphorylation state of the interconvertible enzymes [1]
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Fig. S2: Hormone phosphorylation function γ. Bold lines depict the function γ used to relate the level of insulin and glucagon to the phosphorylated form of enzymes regulated by reversible phosphorylation. Experimental data are from various sources [10-17].



Free (non-esterified) fatty acids (FFAs)
The plasma concentration of FFAs is largely determined by the rate of triglyceride lipolysis in the adipose tissue, which is mainly controlled by insulin and glucagon through the activity of ATGL and the hormone sensitive lipases (HSL). Based on measured relations between the plasma levels of plasma and FFA we constructed an empirical glucose-FFA transfer function (GFT) (see Fig. S3). 
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Fig. S3: Glucose-free fatty acids (FFA) transfer (GFT) functions for the dependence of plasma FFA levels from plasma glucose level. Experimentally determined plasma concentration values of glucose and FFAs from various sources: [18-20]. Hill-type transfer functions were fitted to the data by least-square minimization yielding the GFT. 




Fatty acid albumin binding

Plasma fatty acids are largely bound to plasma albumin and only FFAs are taken up by the liver. We calculated the FFA concentration assuming equilibrium between FFAs and albumin-bound fatty acids. The binding of fatty acids to albumin were described by the following set of differential equations.
The model albumin has five different binding sites for fatty acids that can each be occupied independent of the occupation states of the other sites. Albumin has therefore 32 different occupation states. We denote the occupation state as a binary vector (0 – not occupied; 1 – occupied) of length 5. 
Therefore, there are five different reversible elementary processes with rate equations:
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The t denotes the position where a fatty acid is bound or released. The x denotes either bound or unbound fatty acid at this position. Each elementary process represents 16 actual binding processes.
 


Varying the external fatty acids between 0 and 1.2 mM and calculating the equilibrium FFA concentration results in Fig. S4. We use a fourth order polynomial fit function to calculate the free fatty acids (ffa) from the total fatty acids (tfa) in the plasma (r = 1.0).
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Fig. S4: A plasma albumin concentration of 0.5 mM was used according to [22].


Diurnal plasma metabolite concentrations
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Fig S5: Diurnal plasma profile of glucose, free fatty acids, insulin and glucagon. For the construction of the plasma profile see [23].

Table S1: Values normal and high fat conditions.
	Metabolite
	Normal condition
	High fat conditions

	glucose [mM]
	7.637
	3.3

	fatty acids [mM]
	0.48
	1.13

	Insulin [pM]
	1513
	24.5

	Glucagon [pM]
	70.6
	485.5
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