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Abstract: β-site APP-cleaving enzyme 1 (BACE1) initiates amyloid precursor protein (APP) cleavage
and β-amyloid (Aβ) production, a critical step in the pathogenesis of Alzheimer’s disease (AD).
It is thus of considerable interest to investigate how BACE1 activity is regulated. BACE1 has its
maximal activity at acidic pH and GFP variant—pHluorin—displays pH dependence. In light of
these observations, we generated three tandem fluorescence-tagged BACE1 fusion proteins, named
pHluorin-BACE1-mCherry, BACE1-mCherry-pHluorin and BACE1-mCherry-EGFP. Comparing the
fluorescence characteristics of these proteins in response to intracellular pH changes induced by
chloroquine or bafilomycin A1, we found that pHluorin-BACE1-mCherry is a better pH sensor
for BACE1 because its fluorescence intensity responds to pH changes more dramatically and more
quickly. Additionally, we found that (pro)renin receptor (PRR), a subunit of the v-ATPase complex,
which is critical for maintaining vesicular pH, regulates pHluorin’s fluorescence and BACE1 activity
in pHluorin-BACE1-mCherry expressing cells. Finally, we found that the expression of Swedish
mutant APP (APPswe) suppresses pHluorin fluorescence in pHluorin-BACE1-mCherry expressing
cells in culture and in vivo, implicating APPswe not only as a substrate but also as an activator of
BACE1. Taken together, these results suggest that the pHluorin-BACE1-mCherry fusion protein may
serve as a useful tool for visualizing active/inactive BACE1 in culture and in vivo.

Keywords: pHluorin-BACE1-mCherry; BACE1; intracellular trafficking; pH regulation; PRR; APP;
Alzheimer disease

1. Introduction

BACE1 (β-site APP-cleaving enzyme 1), also called β-secretase, initiates amyloid precursor
protein (APP) cleavage, a critical step for β-amyloid (Aβ) production [1–3]. Aβ is believed to be a
critical detrimental factor for the pathogenesis of Alzheimer’s disease (AD), the most common form of
dementia affecting 10% of all people over 65 years of age [4–6]. App is a Mendelian gene for early-onset
AD. App mutations (e.g., Swedish mutations) identified in the early onset AD patients promote the
generation of Aβ by favoring proteolytic processing of APP by β-secretase [7–9]. Overexpression of
BACE1 increases β-secretase cleavage of APP and Aβ generation and BACE1 knock-out prevents
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Aβ production [10–12]. Thus, significant efforts have been made to understand how BACE1 activity
is regulated.

BACE1, a member of the peptidase A1 family of aspartic proteases, contains an N-terminal
signal peptide (SP) (residues 1–21), a pro-peptide (Pro) domain (residues 22–45), a catalytic domain
(residues 46–454), a transmembrane domain (residues 455–478) and a C-terminal tail (residues 479–501).
The signal peptide and Pro domain are removed posttranslationally, resulting in the mature BACE1
enzyme beginning at residue Glu46 [13]. BACE1 has two aspartic protease active site motifs, DTGS
(Asp-Thr-Gly-Ser)(residues 93–96) and DSTG (Asp-Ser-Thr-Gly)(residues 289–292) and mutation of
either aspartic acid renders the enzyme inactive [7,13]. In addition, BACE1′s single transmembrane
domain is near its C terminus, which can be palmitoylated [14–16].

BACE1 is believed to cleave APP primarily in early or late endosomes because BACE1′s protease
activity is optimal in the acidic environment of endosomal compartments [17–21]. The Aβresulting
from β- and γ-secretase cleavage can then be released into the extracellular space, likely by
exosomes [22–24]. Therefore, investigating how BACE1 trafficking is regulated has a significant
impact on our understanding of BACE1 activation/inactivation and Aβ production. BACE1 trafficking
occurs along the constitutive secretory pathway to the cell surface. BACE1 is initially synthesized in
the endoplasmic reticulum (ER) as an immature precursor protein (proBACE1) [25–28]. Short-lived
proBACE1 undergoes rapid maturation in the trans-Golgi network (TGN), where the propeptide
is removed by proteolytic cleavage using furin or furin-like convertases [25,26,29], and complex
carbohydrates are added. The mature form of BACE1 traffics from the TGN to the plasma membrane,
where a small proportion can undergo ectodomain shedding, which is suppressed by palmitoylation [14].
The majority of BACE1 at the plasma membrane undergoes internalization into endosomes, where the
acidic environment provides the optimal conditions for the proteolysis of APP [25,28,30,31]. Endosomal
BACE1 can be recycled back to the cell surface [28,32,33], transit to lysosomes for degradation [34] and
return to the TGN through retrograde transport [32,35–37].

To investigate BACE1 trafficking and activation between intracellular vesicles, fluorescence
imaging of live cells is the most practical approach because it offers adequate spatiotemporal resolution
under physiological conditions. We generated a dual-fluorescence-based BACE1 reporter, in which
BACE1 is fused with the pH-sensitive green fluorescent protein (GFP) variant pHluorin (as a reporter
for inactive BACE1) and the pH-stable red fluorescence protein mCherry (as a marker for BACE1
distribution and expression). It is our hope that this pHluorin-BACE1-mCherry fusion protein can be a
useful tool to visualize active/inactive BACE1 trafficking in cultured cells and in vivo.

2. Materials and Methods

2.1. Animals

Mice were housed in a room with a 12 h light/dark cycle with water and a rodent chow diet.
Females of the indicated mouse strains were bred overnight with males. The noon after breeding
when a vaginal plug was found was considered embryonic day 0.5 (E0.5) and the day of birth was
considered postnatal day 0 (P0). Experiments were replicated at a minimum of three times with mice
derived from independent litters.

The floxed (pro)renin receptor (PRR) mice (PRRf/f) were kindly provided by Dr. Katrina J.
Binger (Experimental and Clinical Research Center, Berlin, Germany) and described previously [38].
The LSL-APPswe mice were also described previously [39]. In this mouse line, APPswe protein
expression is under the control of the cytomegalovirus (CMV) promoter but its protein expression is
blocked by a loxP-stop-loxP and requires Cre mediated recombination.

All animal experiments were approved by the Institutional Animal Care and Use Committee of
Case Western Reserve University, USA, according to the National Institutes of Health (NIH) guidelines.
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2.2. Antibodies

Primary antibodies used in this project and their final concentrations were as follows: anti-GFP
(Life technology, Carlsbad, CA, USA, 1:1000), anti-RFP (Rockland, Limerick, PA, USA, 1:1000),
anti-β-actin (Sigma-Aldrich, St. Louis, MO, USA, 1:5000), anti-GM130 (BD, Franklin Lakes, NJ, USA,
1:500), anti-EEA1 (BD, Franklin Lakes, NJ, USA, 1:500), anti-Rab 7 (Santa Cruz, Santa Cruz, CA, USA,
1:500), anti-LAMP1 (DSHB, Iowa, IA, USA, 1:500), anti-PRR/ATP6AP2 (Sigma-Aldrich, St. Louis, MO,
USA, 1:500), anti-APP (Cell Signaling Technology, Danvers, MA, USA, 1:500), anti-sAPPβ (a gift from
Tae-Wan Kim, 1:500). All the corresponding conjugated secondary antibody (1:1000) were purchased
from Invitrogen (Waltham, MA, USA). Nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI)
(1:1000, Roche, Basel, Switzerland).

2.3. Expression Plasmids

pHluorin was inserted into the end of the BACE1-mCherry pro-peptide by ligation independent
cloning (LIC) with Exonuclease III to generate the pHluorin-BACE1-mCherry plasmid. Then, the ORF
with pHluorin-BACE1-mCherry was inserted into a mammalian expression vector under the control of the
CAG promoter. To generate the BACE1-mCherry-pHluorin plasmid, we first inserted BACE1-mCherry
from BACE1-mCherry-IRES-EGFP into a mammalian expression vector under the control of the CAG
promoter using AscI and ClaI sites. Next, we amplified pHluorin from pCMV-lyso-pHoenix (Addgene,
Catalog #70112) by PCR. Finally, pHluorin was inserted C-terminal of the mCherry using NotI and
XhoI sites. The BACE1-mCherry-EGFP plasmid was generated by amplifying BACE1-mCherry from
BACE1-mCherry-IRES-EGFP by polymerase chain reaction (PCR) and subcloning it into the pEGFP-N1
(Clontech Laboratories, Catalog #6085-1) mammalian expression plasmid using SacI and BamHI sites.

The CAG-BFP plasmid is described previously [40]. The V5-PRR plasmid was purchased
from DNASU (ATP6AP2 in pLX304, HsCD00446844) and the CMV promoter was replaced with
the CAG promoter. The pCAG-cre and pCAX-Flag-APP plasmids were purchased from Addgene.
The authenticity of all constructs was verified by DNA sequencing.

2.4. Western Blot Analysis

HEK293 cells transfected with pHluorin-BACE1-mCherry, BACE1-mCherry-pHluorin or
BACE1-mCherry-EGFP were lysed in lysis buffer (50 mM Tris-HCl (pH ~7.4), 150 mM NaCl, 1% NP-40,
0.5% Triton X-100, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM EDTA, 5 mM sodium fluoride
and 2 mM sodium orthovanadate) containing protease inhibitor cocktail (Roche). Samples were
incubated with lysis buffer for 20 min on ice, the cell suspension was transferred to a microcentrifuge
tube, oscillated every 5 min and then centrifuged at 12,000× g for 15 min. The supernatant was measured
by a BCA (Thermo Fisher, Waltham, MA, USA) assay. A total of 10–20 µg protein was loaded into 10%
SDS-PAGE gels to separate proteins. The proteins in the gels were transferred onto a nitrocellulose
membrane (Bio-Rad, Hercules, CA, USA). After electrotransfer, the nitrocellulose membranes were
blocked in 5% bovine serum albumin (BSA) for 1 h at room temperature. Antigen-specific primary
antibodies were diluted to the proper concentrations and incubated overnight at 4 ◦C. The membranes
were washed 3 times and incubated with a secondary antibody (1:5000, Thermo Fisher) for 1 h at
room temperature. We used a chemiluminescent horseradish peroxidase (HRP) antibody detection kit
(HyGLOTM Quick Spray) for visualization of the signal.

2.5. Cell Culture and Transient Transfection

NLT (a GnRH neuroblastoma cell line) or MC3T3-E1 cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% fetal calf serum (FBS) and 100 units/mL penicillin G
and streptomycin (Gibco, Waltham, MA, USA). Primary dissociated cortical neuronal cultures were
prepared from E18.5 mouse embryos as previously described [41,42]. Briefly, dissociated cortical
neurons were plated on 35 mm poly-d-lysine-coated glass-bottom Microwell dishes (MatTek) at a
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density of 50,000 cells/cm2 and were maintained in Neurobasal medium (Invitrogen) containing B-27
plus (Gibco) and 2 mM GlutaMAX (Gibco).

For transfection, NLT cells were plated at a density of 10,000 cells/cm2 in a 35 mm glass-bottom
Microwell dishes and allowed to grow for 12 h before transfection using polyethylenimine (PEI).
Forty-eight hours after transfection, the cells were subjected to live cell imaging analysis. Neurons were
transfected with various constructs at DIV4 using the calcium phosphate method, followed by live cell
imaging analysis at DIV6 and immunostaining analysis at DIV7, as described previously [41,43].

The PRR-KD cell line was obtained as described previously [44]. In brief, MC3T3-E1 cells were
infected with shRNA-PRR lentiviral particles in medium containing 2 µg/mL polybrene. After 24 h,
the culture medium was removed and replaced with 10% FBS DMEM (without polybrene). Stable
clones expressing shRNA-PRR were selected with 5 µg/mL puromycin dihydrochloride after 5–6 days.

2.6. BACE1 Activity Measurement

BACE1 activity was measured using its detection kit (CS0010; Sigma-Aldrich) according to the
manufacturer’s instructions. In brief, HEK293 cells transfected with indicated plasmids were lysed
in lysis buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 0.1% sodium
deoxycholate) without protease inhibitors and centrifuged at 12,000 rcf for 15 min. The supernatant
was measured by a BCA (Thermo Fisher) assay to determine the protein concentration. A total of
140 µg protein was loaded per well in a white 96-well plate with 50 µM BACE1 substrates. Immediately
after the addition of BACE1 substrates, samples were placed in a fluorescent plate reader (SynergyHTX;
Biotek, Winooski, VT, USA) and maintained at 37 ◦C. Fluorescence was measured every 5 min for
180 min with excitation at 320 nm and emission at 405 nm. The percentage of BACE1 substrate cleavage
was calculated based on a calibration curve with standard samples.

2.7. ELISA Analysis of Aβ (1–40)

Aβ (1–40) levels were measured using a mouse Aβ40 ELISA kit (KMB3481; Invitrogen) according
to the manufacturer’s instructions. In brief, scramble or PRR-KD MC3T3 cell lysate samples were
added to an Aβ40 antibody-coated 96-well plate for 2 h at room temperature. After being washed 4
times with wash buffer, Aβ40 detection antibodies were added to each well for 1h at room temperature
and then washed 4 times. Stabilized chromogens were added into each well and incubated in the dark
for 30 min. After adding the stop solution, their absorbance at 450 nm was measured using a Synergy
Biotek Instrument. Aβ40 levels were calculated based on a calibration curve with standard samples.

2.8. Immunostaining

Cells were fixed with fixing solution (4% paraformaldehyde (PFA)/4% sucrose in 1XPBS) (pH
~7.4) for 20 min at room temperature, permeabilized with 0.2% Triton X-100 for 10 min and blocked in
2% bovine serum albumin (BSA) for 1 h in PBS. Subsequently, the cells were incubated with primary
antibodies overnight at 4 ◦C. After being washed 5 times with 0.1% Tween-20 in PBS, cells were
incubated with Alexa Fluor-conjugated secondary antibodies (Invitrogen or Jackson ImmunoResearch)
for 1–2 h and then washed 5 times. Nuclei were counterstained using DAPI (0.1 µg/mL, Roche)
for 5 min and then washed 5 times. Coverslips were mounted onto glass slides with PVA-DABCO
cover-slipping solution. Images were captured using confocal microscopy.

2.9. Live Cell Imaging and Drug Treatment

All time-lapse images were acquired using a Zeiss LSM 800 (Carl Zeiss, Oberkochen, Germany)
with an incubation system and CO2 and temperature control. NLT cells or cortical neurons were plated
on 35 mm glass-bottom Microwell dishes with 2 mL of the corresponding medium. The glass-bottom
dishes were then fitted into a temperature-controlled chamber on the microscope stage for observation
at 37 ◦C under a 5% CO2 air atmosphere. Images of regions of interest were taken every 1 min and
recorded at the indicated time with 63× objectives.
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For the CQ/BafA1 treatment experiment, 2 µL of the drug was added to 2 mL of medium (1:1000)
during recordings and was maintained for the indicated time. The following treatments were used:
100 mM chloroquine (vehicle: water, Sigma) and 200 µM bafilomycin A1 (vehicle: DMSO, Sigma).

For the BACE1 inhibitor treatment experiment, six hours after transfection, the culture medium
was removed and replaced with 10% FBS DMEM containing 1 µM LY2886721 (vehicle: DMSO, abcam).
After 48 h, the cells were subjected to live cell imaging analysis.

2.10. In Utero Electroporation

In utero electroporation was performed as described previously [37,45,46]. Briefly, pregnant
mice at E15.5 were anesthetized and maintained with 2% isoflurane inhalation and subjected to
an abdominal incision to expose the uterus. Expression plasmids (2 µg/µL) plus 0.01% Fast Green
(Sigma-Aldrich) were injected into the lateral ventricles of the embryonic brain with a glass capillary.
For electroporation, 5 × 50 ms, 36 V square pulses separated by 950 ms intervals were delivered with
forceps-type electrodes connected to an ECM 830 electroporator (BTX). The uterus was then carefully
repositioned into the abdominal cavity and the abdominal wall and skin were sutured using a surgical
needle. The pregnant mouse was warmed in an incubator until it regained consciousness and the
pups were reared to the indicated postnatal stages. Under deep anesthesia, the pups were perfused
transcardially with phosphate-buffered saline (PBS) followed by 4% paraformaldehyde (PFA) (pH ~7.4).
At each time-point, at least six pups (three for each construct mix) were used for data analysis in each set
of experiments. The brains of the pups were cut into 80 µm floating slices immediately after perfusion
using a vibratome (Leica, VT1000s) cutting system. The slices were subjected to confocal microscopy.

2.11. Statistical Analysis

Immunostained cells were imaged under a Zeiss LSM 800 confocal microscope with Zen software.
Cells from the control and experimental groups were directly compared and imaged with the
same acquisition parameters. For fluorescent quantification, intensity analysis and morphometric
measurements of images were performed using ImageJ software. Statistical analysis was performed
using OriginPro8.0 (OriginLab) and GraphPad Prism7 (GraphPad) software and the unpaired 2-tailed
Student’s t-test following a test of the normality of the distribution (p > 0.05). The data are presented
as the mean ± standard error of the mean (SEM). p values less than 0.05 were considered significant.
Numbers, replicates and tests to determine statistical significance are stated in the text and in the figure
legends of individual experiments.

3. Results

3.1. Generation of BACE1 Fusion Proteins

BACE1 consists of an N-terminal signal peptide (SP)(1–21), a pro-peptide domain (Pro)(22–45)
that are removed during BACE1 maturation [13], a catalytic domain (D93TGS D289SGT)(46–454),
a transmembrane domain (TMD)(455–478) and a C terminus (479–501) that is located on the cytosolic
side [7,8] (Figure 1A,B). In light of the structure features of BACE1and literature reports that BACE1
activity requires acidic pH [17–19], we generated three different fluorescence-tagged BACE1 fusion
proteins, named pHluorin-BACE1-mCherry, BACE1-mCherry-pHluorin and BACE1-mCherry-EGFP
(Figure 1A,B). In these fusion proteins, pHluorin is a pH sensor that does not emit obvious fluorescence
at normal vesicle pH (4.5–6) but emits green fluorescence at basic pH (7–7.5) [47] (Figure 1C);
mCherry is a pH-insensitive protein that emits red fluorescence at pH 4.5 to 7.5 and is thus useful
to indicate fusion protein expression and localization; and EGFP emits green fluorescence with less
sensitivity to pH changes (Figure 1C), which is used as a control for pHluorin. As BACE1 undergoes
endocytosis [13], we fused pHluorin with the BACE1 N-terminal (pHluorin-BACE1-mCherry) or
C-terminal (BACE1-mCherry-pHlourin) region, which are expected to report pH changes inside or
outside of vesicles (e.g., endosomes, late endosomes or lysosomes), respectively (Figure 1B).
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Figure 1. Generation of β-site APP cleaving enzyme 1 (BACE1) fusion proteins (A) Schematic of the
linear structure of the three BACE1 expression plasmids. N, N terminal; C, C terminal; SP, BACE1 signal
peptide; TMD, transmembrane domain; pHluorin and enhanced green fluorescent protein (EGFP),
pH-sensitive green fluorescent protein; mCherry, pH-insensitive red fluorescent protein. (B) Schematic
of the three BACE1 fusion proteins in the endosomal lumen. (C) Fluorescence excitation spectra of
ecliptic pHluorin and EGFP (adapted from Gero Miesenbock) [47]. (D) Western blot analysis of HEK293
cells transfected with the indicated plasmids. (E) NLT cells expressing pHluorin-BACE1-mCherry
(red and green) and BFP (blue) were immunostained with the subcellular markers: GM130, EEA1,
Rab7 and LAMP1 (white). Scale bar, 10 µm or 5 µm. (F) BACE1 activity of GFP (Control) and
pHluorin-BACE1-mCherry (BACE1) with or without BACE1 inhibitor (LY2886721) in HEK293 cells.
Data was shown as mean ± SEM (n = 8 from three independent experiments). Significance was
calculated with two-way ANOVA with LSD post hoc test; **** p < 0.0001

We transiently transfected three plasmids into HEK293 cells to test the expression of these
fusion proteins. The resulting lysates were subjected to immunoblotting analysis. As expected,
~113 kDa bands (55 kDa-BACE1 + 29 kDa-EGFP/pHluorin + 29 kDa-mCherry) were detected in
lysates expressing these plasmids using antibodies specific for GFP or RFP (Figure 1D), suggesting
that the three plasmids encoded BACE1 fusion proteins at the right molecular weight. The plasmids
were then transfected into NLT cells, which were fixed (using 4% PFA at pH ~7.4) and subjected to
immunostaining analysis. Cells expressing pHluorin-BACE1-mCherry showed overlapping green
(pHluorin) and red (mCherry) fluorescence, providing additional evidence for in-frame and correct
fusion protein expression (Figure 1E). Moreover, the red or green fluorescence partially colocalized with
immune-fluorescence signals detected by antibodies specific for GM130 (a marker for the trans-Golgi
network), EEA1 (an early endosome marker), Rab7 (a late endosome marker) and LAMP1 (a marker
for late endosomes and early lysosomes), exhibiting a subcellular distribution pattern similar to
that described for BACE1 in the literature [37,48–52] (Figure 1E). A similar distribution pattern was
observed in cells expressing BACE1-mCherry-EGFP or BACE1-mCherry-pHluorin (data not shown).
These results demonstrate that fusing pHlourin or mCherry with BACE1 did not alter BACE1′s
subcellular distribution, suggesting that the plasmids were constructed successfully.
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Furthermore, we examined whether fusing pHluorin or mCherry with BACE1 alters BACE1
activity. HEK293 cells expressing pHluorin-BACE1-mCherry and control plasmid (GFP) were treated
with BACE1 inhibitor, LY2886721 or vehicle control for 48 h. Cell lysates were subjected to BACE1
activity assay as described in Methods. Cells expressing pHluorin-BACE1-mCherry showed much
higher BACE1 activity than that of controls (Figure 1F), demonstrating its activity. Such an increase
of BACE1 activity was abolished in the presence of the BACE1 inhibitor (Figure 1F), suggesting its
sensitivity to the inhibitor. Taken together, these results demonstrate that BACE1 fusing with pHlourin
or mCherry not only has normal BACE1′s subcellular distribution but also remains its activity.

3.2. pHluorin-BACE1-mCherry, a Better pH Sensor for BACE1 in NLT Cells

We next examined the pH sensitivity in NLT cells expressing each of these BACE1 fusion proteins
by time-lapse imaging analysis. NLT was chosen because it has a spread morphology with relatively
large subcellular organelles [50,53]. To detect pH changes in cellular or intracellular compartments,
cells transfected with the indicated BACE1 plasmids were treated with chloroquine (CQ) or bafilomycin
A1 (BafA1) (Figure 2A,E). CQ is a lysosomotropic agent that concentrates in acidic vesicles and raises
their pH, thus inhibiting acidification of these intracellular compartments [54,55]. BafA1 is a macrolide
antibiotic that is a selective inhibitor of the vacuolar-type ATPase (V-ATPase), an essential proton pump
for maintaining the vesicular pH [56,57]. At nanomolar concentrations, BafA1 disrupts the vesicular
proton gradient and ultimately increases the pH of acidic vesicles [58].

NLT cells expressing BACE1-mCherry-pHluorin were first tested as illustrated in Figure 2A.
In the absence of CQ (0 min), the mCherry+ but not pHluorin fluorescence was detected and mCherry
appeared to be distributed in intracellular vesicles, as observed in fixed NLT cells (Figures 1E and
2B). Upon CQ treatment, whereas the mCherry+ puncta remained unchanged (in terms of both
distribution and intensity), time-dependent increases in pHluorin fluorescence intensity were observed
(Figure 2B–D). The pHluorin fluorescence began to increase at ~5 min, was noticeable at ~10 min
and peaked at ~25 min following CQ treatment (Figure 2B–D). The basal every minute was ~0.2
(0.211 ± 0.079) and was elevated to ~0.9 (~4.5-fold-increase) by CQ (Figure 2D and Table 1). Similar to
CQ treatment, BafA1 also increased the pHluorin but not mCherry fluorescence intensity (Figure 2E–H).
However, this change required a longer time (~14 min vs. 5 min) and was less effective (~4.0-fold vs.
4.5-fold) for BafA1 (at a concentration of 200 nM) than for CQ (at a concentration of 100 µM) to increase
pHluorin fluorescence (Figure 2 and Table 1).

Note that after BACE1 endocytosis, the C-terminal-fused pHlourin (in BACE1-mCherry-pHluorin)
may face the cytosol, not the intracellular vesicle lumen, where it is more acidic (Figure 1B) [7,8]. We thus
next characterized pHluorin-BACE1-mCherry, in which the pHluorin is fused to the N-terminus of
BACE1 and points to the lumen side of the vesicles (Figure 1B). NLT cells expressing this BACE1 fusion
protein were examined as illustrated in Figure 3A,E. Indeed, cells expressing this N-terminal pHluorin
fused BACE1 (pHluorin-BACE1-mCherry) showed a quicker response to CQ (~3.1 min vs. ~5.3 min) and
BafA1 (~5.2 min vs. ~14 min) than the cells expressing BACE1-mCherry-pHluorin (Figures 3 and 4 and
Table 1). In addition, the t1/2 (the time needed to reach 50% of the maximal response to CQ/BafA1) was
also faster in pHluorin-BACE1-mCherry-expressing cells than in BACE1-mCherry-pHluorin-expressing
cells (Figure 4G). However, the pHluorin/mCherry ratio changes induced by both CQ and BafA1
were comparable between pHluorin-BACE1-mCherry- and BACE1-mCherry-pHluorin-expressing
cells (Figure 4E, Table 1). These results suggest that pHluorin facing the cytosol or the vesicle
lumen could report pH changes induced by CQ/BafA1 but the pHluorin facing the vesicle lumen
(pHluorin-BACE1-mCherry) responded to the pH changes faster than the pHluorin facing the cytosol
(BACE1-mCherry-pHluorin) (Figure 4 and Table 1).
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Figure 2. Response of NLT cells expressing BACE1-mCherry-pHluorin to chloroquine (CQ) and
bafilomycin A1(BafA1) treatment (A) Schematics of live cell imaging experimental procedures. NLT cells
were plated on Day 0 and co-transfected with BACE1-mCherry-pHluorin and blue fluorescent protein
(BFP) on Day 1. NLT cells expressing BACE1-mCherry-pHluorin were imaged every minute for 30 min
on Day 3 and treated with 100 µM CQ after 5 min. (B) Representative images from live cell imaging
in response to CQ. NLT cells expressing BACE1-mCherry-pHluorin (red and green) were outlined
according to BFP expression. Scale bar, 20 µm. (C) The fluorescence signal intensity of mCherry
(red) and pHluorin (green) in the outlined area was measured using ImageJ and plotted over time in
response to CQ. Data were shown as mean ± SEM (n > 15 cells from three independent experiments).
(D) Quantification analysis of the pHluorin/mCherry ratio from C. Data was shown as mean ± SEM
(n > 15 cells from three independent experiments). (E) Schematics of live cell imaging experimental
procedures. NLT cells were plated on Day 0 and co-transfected with BACE1-mCherry-pHluorin and
BFP on Day 1. NLT cells expressing BACE1-mCherry-pHluorin were imaged every minute for 60 min
on Day 3 and treated with 200 nM BafA1 after 10 min. (F) Representative images from live cell imaging
in response to BafA1. NLT cells expressing BACE1-mCherry-pHluorin (red and green) were outlined
according to BFP expression. Scale bar, 20 µm. (G) The fluorescence signal intensity of mCherry (red)
and pHluorin (green) in the outlined area were measured and plotted over time in response to BafA1.
Data were shown as mean ± SEM (n > 15 cells from three independent experiments). (H) Quantification
analysis of the pHluorin/mCherry ratio from G. Data was shown as mean ± SEM (n > 15 cells from
three independent experiments).
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Figure 3. Response of NLT cells expressing pHluorin-BACE1-mCherry to CQ and BafA1 treatment (A)
Schematics of live cell imaging experimental procedures. NLT cells were plated on Day 0 and co-transfected
with pHluorin-BACE1-mCherry and BFP on Day 1. NLT cells expressing BACE1-mCherry-pHluorin were
imaged every minute for 30 min on Day 3 and treated with 100 µM CQ after 5 min. (B) Representative
images from live cell imaging in response to CQ. NLT cells expressing pHluorin-BACE1-mCherry (red
and green) were outlined according to BFP expression. Scale bar, 20 µm. (C) The fluorescence signal
intensity of mCherry (red) and pHluorin (green) in the outlined area was measured using ImageJ
and plotted along with time in response to CQ. Data were shown as mean ± SEM (n > 15 cells from
three independent experiments). (D) Quantification analysis of the pHluorin/mCherry ratio from (C).
Data was shown as mean ± SEM (n > 15 cells from three independent experiments). (E) Schematics
of live cell imaging experimental procedures. NLT cells were plated on Day 0 and co-transfected with
pHluorin-BACE1-mCherry and BFP on Day 1. NLT cells expressing pHluorin-BACE1-mCherry were
imaged every minute for 60 min on Day 3 and treated with 200 nM BafA1 after 10 min. (F) Representative
images from live cell imaging in response to BafA1. NLT cells expressing pHluorin-BACE1-mCherry
(red and green) were outlined according to BFP expression. Scale bar, 20 µm. (G) The fluorescence
signal intensity of mCherry (red) and pHluorin (green) in the outlined area was measured and plotted
over time in response to BafA1. Data were shown as mean ± SEM (n > 15 cells from three independent
experiments). (H) Quantification analysis of the pHluorin/mCherry ratio from (G). Data was shown as
mean ± SEM (n > 15 cells from three independent experiments).
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outlined area was measured and plotted over time in response to BafA1. Data were shown as mean ± 
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Finally, we examined NLT cells expressing BACE1‐mCherry‐EGFP in response to CQ‐induced 
pH changes. In comparison with BACE1‐mCherry‐pHluorin or pHluorin‐BACE1‐mCherry, although 
EGFP also responded to CQ treatment, its response was much slower (11 min vs. 3–5 min), with a 
smaller fold increase in its fluorescence intensity (2‐fold vs. 5‐fold), than that of pHluorin (Figures S1, 

Figure 4. Summary of BACE1 fusion proteins in response to CQ and BafA1 in NLT cells (A) Quantification
analysis of the green/red ratio of three BACE1 fusion proteins in response to CQ. (B) Quantification
analysis of the green/red ratio of three BACE1 fusion proteins in response to BafA1. (C) Illustration of
the term “Basal ratio,” “Ratio change (fold),” “Response time” and “t1/2.” (D) Quantification analysis
of the “Basal ratio” of three BACE1 fusion proteins in response to CQ and BafA1. Significance was
calculated with one-way ANOVA with LSD post hoc test; n.s. p > 0.05, *** p < 0.001. (E) Quantification
analysis of the “Ratio change (fold)” of three BACE1 fusion proteins in response to CQ and BafA1.
Significance was calculated with one-way ANOVA with LSD post hoc test; n.s. p > 0.05, *** p < 0.001.
(F) Quantification analysis of the “Response time” of three BACE1 fusion proteins in response to CQ
and BafA1. Significance was calculated with one-way ANOVA with LSD post hoc test; n.s. p > 0.05,
*** p < 0.001. (G) Quantification analysis of the “t1/2” of three BACE1 fusion proteins in response to CQ
and BafA1. Significance was calculated with one-way ANOVA with LSD post hoc test; n.s. p > 0.05,
*** p < 0.001.

Table 1. Summary of BACE1 plasmids in response to CQ and BafA1 in NLT cells.

Plasmid Drug
Treatment Basal Ratio Ratio Change

(fold)
Response

Time (min) t1/2 (min)

pHluorin-BACE1-mCherry CQ 0.185 ± 0.059 4.971 ± 1.548 3.067 ± 1.163 14.673 ± 2.038
BACE1-mCherry-pHluorin CQ 0.211 ± 0.079 4.505 ± 1.774 5.333 ± 1.234 20.960 ± 2.681

BACE1-mCherry-EGFP CQ 0.414 ± 0.092 2.031 ± 0.664 11.067 ± 1.223 20.060 ± 1.206
pHluorin-BACE1-mCherry BafA1 0.191 ± 0.050 4.344 ± 1.022 5.200 ± 1.474 24.680 ± 3.153
BACE1-mCherry-pHluorin BafA1 0.203 ± 0.069 4.099 ± 1.436 13.933 ± 2.631 35.640 ± 3.193

BACE1-mCherry-EGFP BafA1 0.385 ± 0.082 1.918 ± 0.592 14.667 ± 1.799 36.153 ± 3.408

Finally, we examined NLT cells expressing BACE1-mCherry-EGFP in response to CQ-induced
pH changes. In comparison with BACE1-mCherry-pHluorin or pHluorin-BACE1-mCherry, although
EGFP also responded to CQ treatment, its response was much slower (11 min vs. 3–5 min), with a
smaller fold increase in its fluorescence intensity (2-fold vs. 5-fold), than that of pHluorin (Figure S1,
Figure 4 and Table 1). Additionally, the basal green fluorescence and the ratio of green/red fluorescence
(without CQ) in cells expressing BACE1-mCherry-EGFP were much higher than those of cells expressing
BACE1-mCherry-pHluorin or pHluorin-BACE1-mCherry (~0.4 vs. ~0.2) (Figure S1, Figure 4 and Table 1).
Taken together, these results suggest that pHluorin-BACE1-mCherry is a better pH sensor for BACE1 in
NLT cells.

We also examined whether the BACE1 inhibitor—LY2886721—suppresses BACE1 activity through
vesicular pH. NLT cells expressing pHluorin-BACE1-mCherry were treated with LY2886721 or vehicle
control for 48 h and subjected to pHluorin fluorescence imaging analysis. The pHluorin fluorescence
was slightly increased but without significant difference (Figure S2). These results suggest that
LY2886721 inhibition of BACE1 may through a mechanism independent on vesicular pH.
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3.3. pHluorin-BACE1-mCherry, a Better pH Sensor for BACE1 in Cultured Neurons

We further investigated whether pHluorin is more sensitive to pH changes when it faces the
vesicle side than when it faces the cytosol side in primary cortical neurons. Primary cortical neurons
(E18.5, DIV 4) were transfected with pHluorin-BACE1-mCherry or BACE1-mCherry-pHluorin and
subjected to time-lapse imaging analyses with CQ or BafA1 treatments as illustrated in Figure 5A,F
and Figure 6A,F. Again, the basal ratios of pHluorin/mCherry and CQ/BafA1-increased ratios of
pHluorin/mCherry in neurons expressing pHluorin-BACE1-mCherry were comparable to those of
neurons expressing BACE1-mCherry-pHluorin (Figure 5, Figure 6, Figure 7D,E and Table 2). However,
the response times to CQ and BafA1 were much faster in neurons expressing pHluorin-BACE1-mCherry
than in neurons expressing BACE1-mCherry-pHluorin (~2.4 min vs. ~5.3 min to CQ; ~9.6 min vs. ~15.3
min to BafA1) (Figure 7F, Table 2). The t1/2 was also faster in pHluorin-BACE1-mCherry-expressing
neurons than in BACE1-mCherry-pHluorin neurons (~11 min vs. ~18.3 min to CQ; ~30 min vs. ~37.2
min to BafA1) (Figure 7G, Table 2). These results, in line with the data from NLT cells, provide
additional evidence that pHluorin-BACE1-mCherry is a better pH sensor for BACE1.

Cells 2019, 8, x 11 of 25 

 

S4 and Table 1). Additionally, the basal green fluorescence and the ratio of green/red fluorescence 
(without CQ) in cells expressing BACE1‐mCherry‐EGFP were much higher than those of cells 
expressing BACE1‐mCherry‐pHluorin or pHluorin‐BACE1‐mCherry (~0.4 vs. ~0.2) (Figure S1, S4 and 
Table 1). Taken together, these results suggest that pHluorin‐BACE1‐mCherry is a better pH sensor 
for BACE1 in NLT cells. 

We also examined whether the BACE1 inhibitor—LY2886721—suppresses BACE1 activity 
through vesicular pH. NLT cells expressing pHluorin‐BACE1‐mCherry were treated with LY2886721 
or vehicle control for 48 h and subjected to pHluorin fluorescence imaging analysis. The pHluorin 
fluorescence was slightly increased but without significant difference (Figure S2). These results 
suggest that LY2886721 inhibition of BACE1 may through a mechanism independent on vesicular 
pH. 

3.3. pHluorin-BACE1-mCherry, a Better pH Sensor for BACE1 in Cultured Neurons 

We further investigated whether pHluorin is more sensitive to pH changes when it faces the 
vesicle side than when it faces the cytosol side in primary cortical neurons. Primary cortical neurons 
(E18.5, DIV 4) were transfected with pHluorin‐BACE1‐mCherry or BACE1‐mCherry‐pHluorin and 
subjected to time‐lapse imaging analyses with CQ or BafA1 treatments as illustrated in Figures 5A,F 
and 6A,F. Again, the basal ratios of pHluorin/mCherry and CQ/BafA1‐increased ratios of 
pHluorin/mCherry in neurons expressing pHluorin‐BACE1‐mCherry were comparable to those of 
neurons expressing BACE1‐mCherry‐pHluorin (Figures 5, 6, 7D,E and Table 2). However, the 
response times to CQ and BafA1 were much faster in neurons expressing pHluorin‐BACE1‐mCherry 
than in neurons expressing BACE1‐mCherry‐pHluorin (~2.4 min vs. ~5.3 min to CQ; ~9.6 min vs. 
~15.3 min to BafA1) (Figure 7F, Table 2). The t1/2 was also faster in pHluorin‐BACE1‐mCherry‐
expressing neurons than in BACE1‐mCherry‐pHluorin neurons (~11 min vs. ~18.3 min to CQ; ~30 
min vs. ~37.2 min to BafA1) (Figure 7G, Table 2). These results, in line with the data from NLT cells, 
provide additional evidence that pHluorin‐BACE1‐mCherry is a better pH sensor for BACE1. 

 
Figure 5. Response of primary cortical neurons expressing BACE1‐mCherry‐pHluorin to CQ and 
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Figure 5. Response of primary cortical neurons expressing BACE1-mCherry-pHluorin to CQ and BafA1
treatment (A) Schematics of live cell imaging experimental procedures. Cortical neurons were dissected
from E18.5 mice and plated on 35 mm glass-bottom culture dishes at DIV0. Neurons were co-transfected
with BACE1-mCherry-pHluorin and BFP at DIV4 and imaged every minute for 30 min at DIV6 and
treated with 100 µM CQ after 5 min or imaged every minute for 60 min at DIV6 and treated with 200
nM BafA1 after 10 min. (B) Representative images from live cell imaging in response to CQ. The soma
expressing BACE1-mCherry-pHluorin (red and green) were outlined according to BFP expression.
Scale bar, 10 µm or 50 µm. (C) The fluorescence signal intensity of mCherry (red) and pHluorin (green)
in the outlined area was measured using ImageJ and plotted over time in response to CQ. Data were
shown as mean ± SEM (n > 15 neurons from three independent experiments). (D) Quantification
analysis of the pHluorin/mCherry ratio from C. Data was shown as mean ± SEM (n > 15 neurons
from three independent experiments). (E) Representative images from live cell imaging in response to
BafA1. The soma expressing BACE1-mCherry-pHluorin (red and green) were outlined according to
BFP expression. Scale bar, 10 µm or 50 µm. (F) The fluorescence signal intensity of mCherry (red) and
pHluorin (green) in the outlined area was measured and plotted over time in response to BafA1. Data
were shown as mean ± SEM (n > 15 neurons from three independent experiments). (G) Quantification
analysis of the pHluorin/mCherry ratio from F. Data was shown as mean ± SEM (n > 15 neurons from
three independent experiments).
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Figure 6. Response of primary cortical neurons expressing pHluorin-BACE1-mCherry to CQ and
BafA1 treatment (A) Schematics of live cell imaging experimental procedures. Cortical neurons were
dissected from E18.5 mice and plated on 35 mm glass-bottom culture dishes at DIV0. Neurons were
co-transfected with pHluorin-BACE1-mCherry and BFP at DIV4 and imaged every minute for 30 min
at DIV6 and treated with 100 µM CQ after 5 min or imaged every minute for 60 min at DIV6 and
treated with 200 nM BafA1 after 10 min. (B) Representative images from live cell imaging in response
to CQ. The soma expressing pHluorin-BACE1-mCherry (red and green) were outlined according to
BFP expression. Scale bar, 10 µm or 50 µm. (C) The fluorescence signal intensity of mCherry (red) and
pHluorin (green) in the outlined area was measured using ImageJ and plotted over time in response
to CQ. Data were shown as mean ± SEM (n > 15 neurons from three independent experiments).
(D) Quantification analysis of the pHluorin/mCherry ratio from C. Data was shown as mean ± SEM
(n > 15 neurons from three independent experiments). (E) Representative images from live cell imaging
in response to BafA1. The soma expressing pHluorin-BACE1-mCherry (red and green) were outlined
according to BFP expression. Scale bar, 10 µm or 50 µm. (F) The fluorescence signal intensity of mCherry
(red) and pHluorin (green) in the outlined area was measured and plotted over time in response
to BafA1. Data were shown as mean ± SEM (n > 15 neurons from three independent experiments).
(G) Quantification analysis of the pHluorin/mCherry ratio from F. Data was shown as mean ± SEM
(n > 15 neurons from three independent experiments).
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“Response time” and “t1/2.” (D) Quantification analysis of the “Basal ratio” of three BACE1 fusion 
proteins in response to CQ and BafA1. Significance was calculated with Student’s t‐test; n.s. p > 0.05. 
(E) Quantification analysis of the “Ratio change (fold)” of three BACE1 fusion proteins in response to 
CQ and BafA1. Significance was calculated with Student’s t‐test; n.s. p > 0.05. (F) Quantification 
analysis of the “Response time” of three BACE1 fusion proteins in response to CQ and BafA1. 
Significance was calculated with Student’s t‐test; *** p < 0.001, ** p < 0.01. (G) Quantification analysis 
of the “t1/2” of three BACE1 fusion proteins in response to CQ and BafA1. Significance was calculated 
with Student’s t‐test; *** p < 0.001. 

Table 2. Summary of BACE1 plasmids in response to CQ and BafA1 in cortical neurons. 

Plasmid 
Drug 

Treatment Basal Ratio 
Ratio Change 

(fold) Response Time (min) t1/2 (min) 

pHluorin‐BACE1‐mCherry CQ 0.192 ± 0.059 3.937 ± 1.455 2.400 ± 0.682 10.953 ± 3.596 

BACE1‐mCherry‐pHluorin CQ 0.172 ± 0.068 4.157 ± 1.443 5.333 ± 1.345 18.267 ± 3.625 

pHluorin‐BACE1‐mCherry BafA1 0.193 ± 0.066 4.570 ± 1.810 9.600 ± 3.334 30.333 ± 3.400 

BACE1‐mCherry‐pHluorin BafA1 0.189 ± 0.070 3.778 ± 1.137 15.267 ± 3.195 37.207 ± 4.881 

3.4. PRR Regulation of phluorin-BACE1-mCherry and BACE1 Activity in Culture and In Vivo 

PRR [(pro)renin receptor]—also identified as adenosine triphosphatase (ATPase), H+‐
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Figure 7. Summary of BACE1 fusion proteins in response to CQ and BafA1 in primary cortical neurons
(A) Quantification analysis of the pHluorin/mCherry ratio of two BACE1 fusion proteins in response
to CQ. (B) Quantification analysis of the pHluorin/mCherry ratio of two BACE1 fusion proteins in
response to BafA1. (C) Illustration of the term “Basal ratio,” “Ratio change (fold),” “Response time” and
“t1/2.” (D) Quantification analysis of the “Basal ratio” of three BACE1 fusion proteins in response to CQ
and BafA1. Significance was calculated with Student’s t-test; n.s. p > 0.05. (E) Quantification analysis
of the “Ratio change (fold)” of three BACE1 fusion proteins in response to CQ and BafA1. Significance
was calculated with Student’s t-test; n.s. p > 0.05. (F) Quantification analysis of the “Response time” of
three BACE1 fusion proteins in response to CQ and BafA1. Significance was calculated with Student’s
t-test; *** p < 0.001, ** p < 0.01. (G) Quantification analysis of the “t1/2” of three BACE1 fusion proteins
in response to CQ and BafA1. Significance was calculated with Student’s t-test; *** p < 0.001.

Table 2. Summary of BACE1 plasmids in response to CQ and BafA1 in cortical neurons.

Plasmid Drug
Treatment Basal Ratio Ratio Change

(fold)
Response

Time (min) t1/2 (min)

pHluorin-BACE1-mCherry CQ 0.192 ± 0.059 3.937 ± 1.455 2.400 ± 0.682 10.953 ± 3.596
BACE1-mCherry-pHluorin CQ 0.172 ± 0.068 4.157 ± 1.443 5.333 ± 1.345 18.267 ± 3.625
pHluorin-BACE1-mCherry BafA1 0.193 ± 0.066 4.570 ± 1.810 9.600 ± 3.334 30.333 ± 3.400
BACE1-mCherry-pHluorin BafA1 0.189 ± 0.070 3.778 ± 1.137 15.267 ± 3.195 37.207 ± 4.881

3.4. PRR Regulation of phluorin-BACE1-mCherry and BACE1 Activity in Culture and In Vivo

PRR [(pro)renin receptor]—also identified as adenosine triphosphatase (ATPase), H+-transporting,
lysosomal accessory protein 2 (ATP6AP2)—is a subunit of the V-ATPase [59–62]. The V-ATPase resides
within many intracellular compartments such as endosomes, lysosomes and secretory vesicles, which are
crucial for maintaining the intracellular vesicular acidic environment [63]. PRR ablation in cultured
cells results in the downregulation of several subunits of the V0 complex of the V-ATPase and impairs
vesicle acidification [44,62,64,65]. BACE1 activity is optimal in acidic environments [17–19]. In light of
these observations, we wondered whether BACE1 activity is regulated by PRR. To further investigate
pHluorin-BACE1-mCherry’s sensitivity to the V-ATPase-driven vesicle pH, we cultured primary
cortical neurons from E18.5 floxed PRR (PRRf/f) mice and transfected pHluorin-BACE1-mCherry
with or without a plasmid encoding Cre into the cultured neurons at DIV4 (Figure 8A). As shown in
Figure 8D, Cre-expressing neurons showed little PRR/ATP6AP2 immunostaining, suggesting that PRR
knock-out (KO) occurred in these neurons. The transfected neurons (at DIV 6) were subjected to live
cell time-lapse imaging analysis. As expected, a much higher ratio of pHluorin/mCherry was detected
in PRR-KO neurons than in control neurons (Figure 8B,C), suggesting that inhibition of the V-ATPase
by PRR-KO, similar to BafA1, impairs vesicular pH and increases pHluorin fluorescence intensity.
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Figure 8. Regulation of pHluorin-BACE1-mCherry and BACE1 activity by (pro)renin receptor (PRR)
in vitro (A) Schematics of live cell imaging experimental procedures. Cortical neurons were dissected from
E18.5 PRRf/f mice and plated on 35 mm glass-bottom culture dishes at DIV0. Neurons were co-transfected
with pHluorin-BACE1-mCherry and BFP without Cre (control) or with Cre (PRR KO) or with PRR
(PRR OE) at DIV4 and underwent live cell imaging at DIV6. Immunostaining of PRR was performed at
DIV7. (B) Confocal live cell imaging of transfected neurons at DIV6 was carried out and representative
images are shown. Scale bar, 10 µm. (C) Quantification analysis of the pHluorin/mCherry ratio from (B).
Data was shown as mean ± SEM (n > 15 neurons from three independent experiments). Significance
was calculated with Student’s t-test; **** p < 0.0001, *** p < 0.001, ** p < 0.01. (D) Immunostaining of
PRR in transfected neurons at DIV7 was carried out and representative images are shown. Scale bar,
10 µm. (E) Western blot analysis of MC3T3 cells infected with control lentivirus or shRNA-PRR lentivirus.
(F) Quantification analysis of relative protein expression from (E). Data was shown as mean ± SEM (n = 4
from three independent experiments). Significance was calculated with Student’s t-test; n.s. p > 0.05,
*** p < 0.001. (G) Aβ40 levels of control or PRR-KD MC3T3 cells. Data was shown as mean ± SEM (n = 6
from three independent experiments). Significance was calculated with Student’s t-test; ** p < 0.01.

We next asked whether overexpression of PRR in pHluorin-BACE1-mCherry+ neurons affects
pHluorin fluorescence. The primary cortical neurons at DIV4 were co-transfected the plasmid of PRR
with pHluorin-BACE1-mCherry. These neurons were subjected to live cell time-lapse imaging analyses
at DIV 6 and subjected to immunostaining at DIV 7 (Figure 8A). Immunostaining analysis using an
antibody specific for PRR/ATP6AP2 verified PRR overexpression (Figure 8D). Time-lapse imaging
analysis showed that the ratio of pHluorin/mCherry in PRR overexpressing neurons was lower than
that in WT control neurons (Figure 8B,C), in contrast to the PRR-KO. These results not only verified
pHluorin-BACE1-mCherry as a pH sensor for BACE1 but also implicated PRR/V-ATPase as a potential
regulator of BACE1 activity.
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We then examined BACE1 activity between control and PRR-KD (knockdown) cells. PRR was
knocked down by infection of MC3T3 cells (an osteoblastic cell line that expresses PRR, APP and
BACE1) with shRNA-PRR lentivirus [44,66] (Figure 8E). Aβ (1–40) levels were measured by ELISA
and used to represent BACE1 activity. The Aβ levels were lower in PRR-KD cells (Figure 8F) than in
the control groups, supporting the view that the PRR/vesicle acidic environment is a positive regulator
of BACE1 activation.

To address whether PRR-KO affects the distribution of active BACE1 in vivo, we took advantage of
the in utero electroporation (IUE) assay and the PRRf/f embryos for the following reasons. First, IUE
is a quick cell based in vivo method for functional analysis of an interest gene. Second, IUE is cost
effective, without large amount of animal breeding. Third, it can be used to co-express or suppress
multiple genes simultaneously in the same neurons, which is not doable by use of recombinant viral
systems. The plasmids encoding pHluorin-BACE1-mCherry and Cre/control were co-electroporated
into the NSCs/NPCs in the ventricular zone of PRRf/f embryos at E15.5. After IUE, neonatal cortical
brain samples at postnatal (P) 14 were collected (Figure 9A). Expression of the Cre plasmid (PRR-KO)
increased the ratio of pHluorin/mCherry compared with that in the control neurons (Figure 9B,C). These
results revealed the potential of pHluorin-BACE1-mCherry as a useful marker for active BACE1 in vivo.
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Figure 9. PRR regulation of pHluorin-BACE1-mCherry and BACE1 activity in vivo (A) Schematics of
in utero electroporation experimental procedures. PRRf/f embryos were in utero electroporated with
plasmids of pHluorin-BACE1-mCherry and BFP (control) or pHluorin-BACE1-mCherry, BFP and Cre
(PRR KO) at E15.5. The neocortical brain sections were collected at P14. (B) Representative Z-stack
projection images from neocortical brain sections was shown. Scale bar, 50 µm/5 µm. (C) Quantification
analysis of the pHluorin/mCherry ratio from (B). Data was shown as mean ± SEM (n > 30 neurons
from three independent experiments. Significance was calculated with Student’s t-test; *** p < 0.001.
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3.5. APPswe Regulation of pHluorin-BACE1-mCherry in Culture and In Vivo

BACE1-mediated cleavage of APP results in the release of a soluble amino-terminal fragment
termed sAPPβ. Mutations in the APP gene linked to familial forms of AD are found very close
to the BACE1 cleavage site and generally increase Aβ generation. The Swedish double mutation,
which was found in an individual member of a Swedish family, is located directly N-terminally to the
β-secretase cleavage site and allows much more efficient β-secretase cleavage of APP and turnover
to Aβ. To further address pHluorin-BACE1-mCherry’s sensitivity to the Swedish mutation of APP,
we first co-transfected pHluorin-BACE1-mCherry with or without Flag-APP in NLT cells (Figure
S3A). We found that the ratio of pHluorin/mCherry in APP overexpressing NLT cells was significantly
decreased compared to that in the control group (Figure S3B,C). Immunostaining analysis using an
antibody against sAPPβ (to label the BACE1 cleavage product of APP) also showed increased sAPPβ
levels on Day 4 in APP-overexpressing NLT cells (Figure S3D).

We then examined whether APPswe overexpression can influence the pHluorin fluorescence
intensity in cortical neurons. We cultured primary cortical neurons from E18.5 LSL-APPswe mice
and transfected pHluorin-BACE1-mCherry with or without a plasmid encoding Cre into the cultured
neurons at DIV4 (Figure 10A). Cre-expressing neurons showed strong sAPPβ immunostaining signal
(Figure 10D), suggesting APPswe overexpression (OE) in these neurons. The transfected neurons
(at DIV 6) were subjected to live cell time-lapse imaging analysis. As expected, a much lower ratio
of pHluorin/mCherry was detected in APPswe-OE neurons than in control neurons (Figure 10B,C),
suggesting that activation of BACE1 by APPswe overexpression, as observed for PRR overexpression,
decreases pHluorin fluorescence intensity.
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Figure 10. Regulation of pHluorin-BACE1-mCherry and BACE1 activity by Swedish mutant amyloid
precursor protein (APPswe) in vitro (A) Schematics of live cell imaging experimental procedures.
Cortical neurons were dissected from E18.5 LSL-APPswe mice and plated on 35 mm glass-bottom
culture dishes at DIV0. Neurons were co-transfected with pHluorin-BACE1-mCherry and BFP
without Cre (control) or with Cre (APPswe OE) at DIV4 and underwent live cell imaging at DIV6.
Immunostaining of sAPPβwas performed at DIV7. (B) Confocal live cell imaging of transfected neurons
at DIV6 was carried out and representative images are shown. Scale bar, 10 µm. (C) Quantification
analysis of the pHluorin/mCherry ratio from (B). Data was shown as mean ± SEM (n > 10 neurons
from three independent experiments). Significance was calculated with Student’s t-test; ** p < 0.01.
(D) Immunostaining of sAPPβ in transfected neurons at DIV7 was carried out and representative
images are shown. Scale bar, 10 µm. (E) Quantification analysis of the pHluorin/mCherry ratio from (D).
Data was shown as mean ± SEM (n > 10 neurons from three independent experiments). Significance
was calculated with Student’s t-test; ** p < 0.01.
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Finally, to address whether APPswe overexpression affects the distribution of active BACE1
in vivo, we took advantage of the in utero electroporation (IUE) assay and the LSL-APPswe embryos.
The plasmids encoding pHluorin-BACE1-mCherry and Cre/control were co-electroporated into the
NSCs/NPCs in the ventricular zone of LSL-APPswe embryos at E15.5. After IUE, neonatal cortical brain
samples at postnatal (P) 21 were collected (Figure 11A). Expression of the Cre plasmid (APPswe-OE)
decreased the ratio of pHluorin/mCherry compared with that of control neurons (Figure 11B,C). These
results revealed the potential of pHluorin-BACE1-mCherry as a useful marker for active BACE1 in vivo.
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Figure 11. APPswe regulation of pHluorin-BACE1-mCherry and BACE1 activity in vivo (A) Schematics
of in utero electroporation experimental procedures. LSL-APPswe embryos were in utero electroporated
with plasmids of pHluorin-BACE1-mCherry and BFP (control) or pHluorin-BACE1-mCherry and Cre
(APPswe OE) at E15.5. The neocortical brain sections were collected at P21. (B) Representative Z-stack
projection images from neocortical brain sections was shown. Scale bar, 50 µm/5 µm. (C) Quantification
analysis of the pHluorin/mCherry ratio from (B). Data was shown as mean ± SEM (n > 30 neurons
from three independent experiments). Significance was calculated with Student’s t-test; *** p < 0.001.

4. Discussion

Here we present evidence for pHluorin-BACE1-mCherry as a BACE1 activity reporter in cultured
cells and in vivo. This BACE1 reporter is sensitive to intracellular vesicular pH changes and the ratio
of pHluorin/mCherry fluorescence in cultured cells correlates with BACE1 activity. Interestingly, using
this reporter and/or biochemical assays to measure BACE1 activity, we found that both PRR and
APPswe are crucial regulators of BACE1 activity. Thus, these studies demonstrate that this BACE1
reporter might be a useful tool not only for the identification of molecular regulators of BACE1 but
also for screening BACE1 inhibitors and drug development.

pHluorin-BACE1-mCherry was designed based on the following observations. First, pHluorin
(a GFP mutant) has been used as a powerful tool to monitor pH changes of individual cellular
organelles and compartments in mammalian cells because it is sensitive to changes in the acidity of



Cells 2019, 8, 474 18 of 25

its environment in the physiological range [47,67,68]. Second, various pH levels exist in different
subcellular organelles. For example, the pH of the cytosol is ~7.2, the pH of the endoplasmic reticulum
(ER) is ~7.2, the pH of the trans-Golgi network from cis (~6.7) to trans (~6) gradually decreases, the pH
of secretory vesicles is ~5.5, the pH of recycling endosome is ~6.5, the pH of early endosomes is
~6.3, the pH of late endosomes is ~5.5 and the pH of lysosomes is ~4.7 [68–70]. Third, genetically
fusing GFP or pHluorin with a specific membrane protein has been proven to be successful in sensing
pH changes in the lumen of different vesicles [71–77]. Many studies have exploited the potential
of GFP and its mutations to sense the pH dynamics of different intracellular organelles, such as
the cytoplasm [78], peroxisomes [71], the trans-Golgi network, endosomes [72] and lysosomes [73].
There are also studies using pHluorin as a dynamic marker of endocytosis [74,75], a marker of
protein surface expression [79–81] or a marker of autophagy [76,77]. Fourth, BACE1 activity requires
an acidic environment [17–19]. In light of these observations, we fused BACE1 to the acid-stable
fluorescent protein mCherry and acid–unstable fluorescent protein pHluorin or EGFP and generated
three different BACE1 fusion proteins named pHluorin-BACE1-mCherry, BACE1-mCherry-pHluorin
and BACE1-mCherry-EGFP (Figure 1). The double tag in these fusion proteins can be used for live cell
imaging analysis, which may reveal information about the dynamic active/inactive state of BACE1.

By comparison of the three BACE1 fusion proteins, we found that the N-terminal-fused pHluorin
is more sensitive to pH changes in response to CQ/BafA1 treatment. Our results are in line with
reports that pHluorin is most sensitive to acidic pH [47,77]. Our results also suggest that the BACE1
N-terminal-fused pHluorin (which faces the vesicle lumen side) responds to pH changes more quickly
than the C-terminal-fused pHluorin (which faces the cytosol). However, the exact mechanisms for
the changes of the pHluorin fluorescence intensity in BACE1-mCherry-pHluorin expressing cells
in response to CQ/BafA1 remain unclear. We speculate that CQ/BafA1 at the concentrations of
100 mM/200 µM may not only affect the pH inside the vesicles but also change the local cytosol
environment. At lower concentrations, CQ/BafA1 may be more specific, only affecting the vesicular
pH, without “side effect.” But this speculation requires additional evidence.

Note that pHluorin-BACE1 has been reported to visualize the surface trafficking of BACE1 in
live cells [82] and that BBS-BACE1-YFP, in which BBS is a short peptide from the α-bungarotoxin
binding site that can bind fluorescently labeled α-bungarotoxin in live transfected cells, has been used
to visualize intracellular/endocytosed BACE1 [83]. Our plasmid, pHluorin-BACE1-mCherry, has the
advantages of both pHluorin-BACE1 and BBS-BACE1-YFP. Also notice a report by Utpal Das et al. [84],
who use a bimolecular fluorescence complementation (BiFC) method to directly visualize APP and
BACE1 interaction. Each method has its advantage and disadvantages. Whereas this BiFC method
provides concrete insights into APP-BACE1 interaction and the amyloidogenic pathway, our BACE1
fusion plasmid may reveal useful information regarding active BACE1′s subcellular distribution in
culture and in vivo. But, our BACE1 fusion plasmid may not necessarily report BACE1 activity towards
Aβ generation. Thus, a combination of both experiments may be necessary for our understanding of
Aβ production.

pHluorin-BACE1-mCherry appears to be a useful tool for identifying BACE1 regulators.
As described above and reported in the literature, acidic environments affect BACE1 activity [17–19]
and the acidification of subcellular compartments along the secretory and endocytic pathways depends
on the V-ATPase [63,69,85,86]. PRR [(pro)renin receptor], also called ATP6AP2, is a critical regulator
of the V-ATPase [59–62]. Interestingly, PRR loss is believed to be a risk factor for the pathogenesis of
Parkinsonism [87–89]. Inhibition of the V-ATPase by BafA1 or PRR-KO increases but overexpression of
PRR decreases pHluorin fluorescence intensity (Figure 3F, Figure 6G, Figure 8B, Figure 9B). In addition,
Aβ level was lower in PRR-KD MC3T3 cells (Figure 8F). These results reconfirmed the requirement of
the acidic environment for BACE1 activation and implicated PRR as a novel regulator of BACE1 activity.

In addition to PRR, we found that APPswe acts not only as a substrate of BACE1 [8,90–93] but
also as a potential regulator/activator of BACE1. Overexpression of APPswe resulted in a reduction in
the pHluorin/mCherry fluorescence ratio in pHluorin-BACE1-mCherry-expressing cells (Figure S3 and
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Figure 10) and in vivo (Figure 11). These results implicate that APPswe may affect the vesicular pH and
thus increases BACE1 activation. However, this view has no literature support and requires additional
evidence and this view does not exclude the current view that the increased availability of APPswe
substrates may lead to the increased APPswe cleavage by BACE1. Both views are not mutually exclusive
and likely to be involved in the increase of Aβ production. If this view is true, it raises another question
as to whether other BACE1 substrates play a regulatory role in BACE1 activation. Several BACE1
substrates have been identified in addition to APP, which include Golgi-localized membrane-bound
α2,6-sialyltransferase [94], P-selectin glycoprotein ligand-1 (PSLG-1) [95], the APP homolog proteins
APLP1 and APLP2 [96–98], low-density lipoprotein receptor-related protein (LRP) [99], voltage-gated
sodium channel (Nav1) β2 subunit (Navβ2) [100,101], neuregulin-1 (NRG1) [102,103] and neuregulin-3
(NRG3) [104]. By using our new tool (pHluorin-BACE1-mCherry) as an active BACE1 reporter, we hope
to address this question in future studies.

pHluorin-BACE1-mCherry may also be useful in screening BACE1 inhibitors and identifying
potential BACE1 substrates. BACE1 is a prime therapeutic target for lowering cerebral Aβ concentrations
in Alzheimer’s disease and the clinical development of BACE1 inhibitors is being intensely investigated.
Using our new tool, pHluorin-BACE1-mCherry, as an active BACE1 reporter, the dynamic BACE1
activity in vitro or in vivo can be visualized to screen the bioavailability of BACE1 inhibitors instead of
measuring BACE1 activity in cultured neurons or CSF (including Aβ40, Aβ42 and sAPPβ). In summary,
it is our hope that pHluorin-BACE1-mCherry may serve as a reporter useful not only for the identification
of molecular regulators of BACE1 but also for the screen of BACE1 inhibitors and drug development.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/5/474/s1,
Figure S1: Response of NLT cells expressing BACE1-mCherry-EGFP to CQ treatment; Figure S2: Response of NLT
cells expressing pHluorin-BACE1-mCherry to LY2886721; Figure S3: Regulation of pHluorin-BACE1-mCherry
and BACE1 activity by APP in NLT cells.
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Aβ β-amyloid
AD Alzheimer’s disease
APP amyloid precursor protein
APPswe Swedish mutant APP
BACE1 β-site APP cleaving enzyme 1
BafA1 bafilomycin A1
BBS α-bungarotoxin binding site
BFP blue fluorescent protein
CMV cytomegalovirus
CQ chloroquine
DABCO 1,4-Diazabicyclo-octane
EGFP enhanced green fluorescent protein
ER Endoplasmic reticulum
FBS fetal bovine serum
GFP green fluorescent protein
HRP horseradish peroxidase
IRES internal ribosome entry site
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IUE in utero electroporation
NPCs neural progenitor cells
NSCs neural stem cells
PCR polymerase chain reaction
PEI polyethylenimine
PFA paraformaldehyde
Pro pro-peptide
proBACE1 immature precursor protein BACE1
PRR/ATP6AP2 (pro)renin receptor
PVA poly(vinyl alcohol)
SP signal peptide
TGN trans-Golgi Networks
TMD transmembrane domain
V-ATPase vacuolar-type ATPase
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