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Abstract: Injured blood vessel repair and blood circulation re-establishment are crucial events for 
tissue repair. We investigated in primary cultures of human umbilical vein endothelial cells 
(HUVEC), the effects of platelet lysate (PL), a cocktail of factors released by activated platelets 
following blood vessel disruption and involved in the wound-healing process triggering. PL exerted 
a protective effect on HUVEC in an inflammatory milieu by inhibiting IL-1α-activated NF-κB 
pathway and by inducing the secretion of PGE2, a pro-resolving molecule in the wound 
microenvironment. Moreover, PL enhanced HUVEC proliferation, without affecting their capability 
of forming tube-like structures on matrigel, and activated resting quiescent cells to re-enter cell 
cycle. In agreement with these findings, proliferation-related pathways Akt and ERK1/2 were 
activated. The expression of the cell-cycle activator Cyclin D1 was also enhanced, as well as the 
expression of the High Mobility Group Box-1 (HMGB1), a protein of the alarmin group involved in 
tissue homeostasis, repair, and remodeling. These in vitro data suggest a possible in vivo 
contribution of PL to new vessel formation after a wound by activation of cells resident in vessel 
walls. Our biochemical study provides a rationale for the clinical use of PL in the treatment of 
wound healing-related pathologies. 

Keywords: endothelial cells; human umbilical vein endothelial cells (HUVEC), platelet lysate (PL), 
platelet factors; angiogenesis; ERK; AKT; HMGB-1 

 

1. Introduction 

Wound healing is the body’s physiological response to an injury or a disease in order to restore 
tissue or organ integrity and homeostasis. Adult mammals, including humans, have a limited 
regenerative potential and tend to repair wounds by fibrosis and scarring. Moreover, fibrotic repair, 
as result of a chronic inflammation or a prolonged insult, may determine a complex medical case 
with severe clinical complications [1]. On the contrary, an early and transient inflammatory response 
represents the critical step for a successful regeneration process [2]. 

The new frontier of regenerative medicine aims at the development and characterization of 
advanced therapy medicinal products able to re-activate and to enhance endogenous regeneration 
pathways, which were lost during evolution and human ontogenesis. In this scenario, platelet-
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derived products are a promising perspective because they are based on a well-balanced cocktail of 
more than 300 bioactive factors released by activated platelets following clot formation and platelet 
degranulation. Physiologically, these factors trigger the tissue regeneration/repair process and are 
involved in all subsequent steps of the wound healing [3,4]. Therefore, they could be used as a 
powerful therapeutic tool to trigger and enhance the healing process. Encouraging results were 
already achieved by the use of different platelet by-products in dental and maxillofacial surgery [5], 
in orthopedics [6,7], and in ophthalmology [8,9]. Clinical trials, demonstrating beneficial effects for 
the treatment of degenerative cartilage diseases, were conducted with platelet-rich plasma (PRP) [10] 
and also with autologous platelet lysate (PL) [11]. 

In the recent years, we evaluated the activity of PRP and PL on cells potentially involved in the 
repair/regeneration of several tissues in order to identify the activated pathways leading to tissue 
healing. We demonstrated an increased proliferation, consequent to a stimulation by platelet-derived 
factors, in different types of human tissue-resident cells, such as keratinocytes [12], osteoblasts [13], 
articular chondrocytes [14], and adipose-derived stromal cells [15]. In the investigated cell systems, 
we observed a strong initial and transient pro-inflammatory activity of PL resulting in NF-κB 
activation and secretion of pro-inflammatory cytokines [12–15], the closure of an in vitro scratch 
wound [12], and a strong activation of quiescent cells, which resumed proliferation keeping the 
ability to differentiate in permissive conditions [13,16]. However, not only tissue-specific progenitors 
are activated and take part in the wound-healing process, but also circulating cells, possibly from 
bone marrow, could be recruited in the wound site [17,18]. 

In this study, we evaluated the in vitro effects of PL on primary human umbilical vein 
endothelial cells (HUVEC) because the endothelial cells represent the first cell population responding 
to blood extravasation and coagulation, platelet activation and degranulation, and the resulting 
inflammatory milieu. Several studies have reported the effects on endothelial cells of different platelet 
derivatives, such as PRP [19–21], platelet-released supernatant [22,23], or PL [24,25]. We choose to 
focus our attention on the activity of PL obtained by the lysis of platelets not contaminated by 
plasmatic molecules in order to specifically investigate the effects of human platelet content on 
HUVEC and to distinguish between the effects of platelet content and the effects of plasma or serum 
molecules. To mimic as much as possible the wound microenvironment, as an inflammatory 
stimulus, we included in our in vitro system, IL-1α, an emerging important factor in the initiation 
and maintenance of inflammation [26]. The adopted in vitro system allowed examination of the 
induced endothelial cell responses during the early stages of the wound-healing process. In particular, 
we investigated the role played by PL on the modulation of the inflammation-related NF-κB pathway 
in inflammatory conditions induced by IL-1α and on the secretion of cytokines and factors under 
both physiological and inflammatory conditions. We monitored the proliferation of HUVEC in the 
presence of PL and we verified the in vitro angiogenic capability of the cells expanded in PL. Finally, 
we focused on the effect of PL on quiescent HUVEC and we observed the induction of cell 
proliferation and of proliferation-related pathways, as well as the expression of the High Mobility 
Group Box-1 (HMGB-1), a protein of the alarmin group involved in homeostasis, repair, and 
remodeling of tissues. This in vitro biochemical study is aimed at giving a rationale for the current 
therapeutic use of PL in the treatment of difficult-to-heal wounds. 

2. Materials and Methods 

2.1. Materials 

Medium 199 with Earle’s Salts, fetal bovine serum (FBS), L-glutamine, penicillin G-streptomycin 
sulfate and trypsin-EDTA were obtained from Euroclone Life Sciences Division (Milan, Italy). 
Culture Petri dishes and plates were from Eppendorf S.r.l. (Milan, Italy). Recombinant human FGF-
acidic, human FGF-basic, human EGF, and interleukin-1α (IL-1α) were purchased from Peprotech 
(London, UK). PHAREPA 25000 U.I./5 mL heparin sodium-salt was obtained from PharmaTex Italia 
(Milan, Italy). Hydrocortisone-water soluble, Bright-LineTM hemacytometer and protease inhibitor 
cocktail were purchased from Sigma-Aldrich (St. Louis, MO, USA). Corning® Matrigel® Growth 
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Factor Reduced Basement Membrane Matrix was acquired from Corning (Bedford, MA, USA). 
TransAMTM NF-κB p65 kit was purchased from Active Motif (La Hulpe, Belgium). Human IL-6 
Quantikine ELISA Kit and Human IL-8/CXCL8 Quantikine ELISA Kit were from R&D Systems 
(Minneapolis, MN, USA). Prostaglandin E2 ELISA kit was from Cayman Chemical (Ann Arbor, MI, 
USA). FITC Annexin V Apoptosis Detection Kit I was from BD Biosciences Pharmingen (San Diego, 
CA, USA). 

NuPAGETM 4–12% Bis-Tris gels were from Invitrogen (Milano, Italy). AmershamTM ProtranTM 
0.45 µm NC, AmershamTM ECLTM western blotting detection reagents and AmershamTM hyperfilmTM 
ECL were obtained from GE Healthcare (Buckinghamshire, UK). Antibodies anti-interleukin-8 (IL-
8), anti-interleukin-6 (IL-6), anti-Cyclin D1, and anti-Actin were purchased from Santa Cruz 
Biotechnology Inc. (Dallas, TX, USA). Antibodies anti-phospho-Akt, anti-Akt, anti-phospho-ERK1/2, 
anti-ERK1/2, anti-phospho-STAT3 and anti-STAT3 were acquired from Cell Signaling Technology 
(Danvers, MA, USA). Antibody anti-HMGB1 was from ProteinTech Group Inc. (Chicago, IL, USA). 

2.2. HUVEC Harvest and Culture 

Primary Human Umbilical Vein Endothelial Cells (HUVEC) were obtained from “Centro di 
Risorse Biologiche” (CRB) of IRCCS Ospedale Policlinico San Martino (Genova, Italy) after obtaining 
the approval of this study by the institutional ethics committee. The CRB required the written 
informed consent by every umbilical cord donor. The HUVEC were guaranteed by CRB to be CD31- 
and CD106-positive (endothelial cell-specific markers) and CD90- and CD45-negative (fibroblast-
specific and leukocyte-specific markers, respectively). The cells were seeded at the density of 6.0 × 103 

cells/cm2 on gelatin-coated 10 cm Petri dishes and cultured in Medium 199 with Earle’s Salts 
supplemented with 10% (v/v) FBS, 2 mM L-glutamine, 100 U/mL penicillin G, 100 µg/mL 
streptomycin sulfate, 100 mg/L heparin, 10 µg/L FGF-acidic, 10 µg/L FGF-basic, 10 µg/L EGF, 1 mg/L 
hydrocortisone (complete culture medium). Cells were incubated at 37 °C in a humidified 
atmosphere with 5% CO2. Medium was changed 3 times per week and at 80% confluence cells were 
split 1:2 by treatment with trypsin-EDTA. For the described experiments, HUVEC were used at 
passages 3 to 6. 

2.3. Platelet Lysate Preparation 

Platelet lysate was produced starting from buffy coat samples derived from the whole blood of 
healthy donors and considered a waste by Blood Transfusion Centre of IRCCS Ospedale Policlinico 
San Martino (Genova, Italy). Buffy coats were obtained within the frame of an agreement between 
Biorigen Srl and IRCCS Ospedale Policlinico San Martino signed on September 2012 and renewed on 
2nd February 2017 (“Deliberazione” n.0084). At the time of blood donation, all donors provided a 
written informed consent for the use of the donated blood for clinical and scientific applications. The 
buffy coats of 5 to 10 made anonymous donors were pooled for minimizing the variations among 
donors and centrifuged at low speed. Platelet-rich plasma (PRP) was separated and centrifuged at 
high speed in order to sediment the platelets. The pellet was washed 3 times with physiological saline 
(0.9% w/v NaCl), in order to eliminate possible contaminants from plasma. Platelets were suspended 
in physiological saline at a concentration of 10 × 106 platelets/µL and the suspension was subjected to 
3 freeze/thaw cycles followed by high-speed centrifugation. The supernatant, containing the cocktail 
of factors released by the platelets (Platelet Lysate, PL), was collected and stored in aliquots at –20 °C 
until use. Platelet lysate was supplemented to complete culture medium at a final concentration of 
5% (v/v), approximately corresponding to the highest physiological concentration of platelets in the 
human blood, without addition of heparin. Three different preparations from different pools of buffy 
coats were used in the study. 

2.4. Proliferation Assays 

(1) Crystal violet assay: HUVEC were seeded at the density of 6.5 × 103 cells/cm2 on gelatin-
coated 96-well plate and incubated in complete culture medium for 24 h to enable cell adhesion. The 



Cells 2019, 8, 331 4 of 17 

 

next day, the medium was replaced with complete medium not supplemented (control cells) or 
supplemented with 5% PL (treated cells). The assay was performed in quintuplicate for each culture 
condition after 0, 2, 4, and 6 days of PL stimulation, following the protocol described by Nguyen et 
al. [16]. Three independent experiments were performed on different single-donor HUVEC cultures. 
The final results are expressed as mean ± SD. 

(2) Cell count: HUVEC were seeded on gelatin-coated 24-well plate and cultured in complete 
culture medium until reaching confluence. The medium was then replaced with complete medium 
supplemented with 5% PL (treated culture) or not supplemented (control culture). At 0, 3, 6, and 10 
days of PL stimulation, cell density was monitored by cell counting using a Bright-Line™ 
Hemacytometer with an improved Neubauer chamber. For each culture condition, the final result is 
the n-fold increase of cell density with respect to day 0, expressed as mean ± SD of 3 independent 
experiments performed in triplicate on different single-donor HUVEC cultures. 

2.5. Apoptosis Assay 

To evaluate the cell apoptotic status after PL treatment, the FITC Annexin V Apoptosis Detection 
Kit I (BD Biosciences) was used. HUVEC were seeded in complete culture medium at a density of 6.5 
× 103 cells/cm2 on gelatin-coated 60 mm Petri dish. The next day, the medium was replaced with 
complete medium not supplemented (control cells) or supplemented with 5% PL (treated cells). After 
6 days of treatment, the cells were detached and assayed according to the manufacturer’s instructions. 
Samples were run on CyAN ADP flow cytometer (Beckman-Coulter, Pasadena, CA, USA) and 
analyzed with FlowJo 10.0.7 software (FlowJo, LCC, Ashland, OR, USA). For each culture condition, 
3 independent experiments were performed. 

2.6. Tube-Like Structure Formation Assay 

Proliferating HUVEC were cultured in complete culture medium un-supplemented (control) or 
supplemented with 5% PL for a week. The cells were then trypsinized, re-suspended in serum-free 
medium (no supplements), and seeded at the density of 7 × 104 cells/well on matrigel-coated 24-well 
plate. Images were taken after 6 h incubation at 37 °C in a humidified atmosphere with 5% CO2. Two 
experiments in duplicate were performed. 

2.7. Western Blot 

To analyze the cytokine production in cell culture media, sub-confluent HUVEC were treated 
for 1 or 24 h with complete culture medium supplemented with: (i) 5% PL; (ii) 100 U/mL IL-1α; (iii) 
5% PL + 100 U/mL IL-1α; and (iv) without any supplement. Cells were then extensively washed with 
PBS to remove residual factors and incubated in serum-free medium (medium 199 with Earle’s Salts 
only supplemented with 2 mM L-glutamine, 100 U/mL penicillin G and 100 µg/mL streptomycin 
sulfate) for 24 h. The different media were collected, clarified at 2000 rpm for 10 min at room 
temperature and stored at −20 °C. To investigate the PL effect on proliferation-related pathways and 
on cell-cycle activation, sub-confluent HUVEC were treated with complete culture medium 
supplemented with 5% PL for multiple time intervals, washed with PBS and lysed by incubating the 
cell layers on ice for 5 min with an ice-cold buffer containing 50 mM Tris HCl pH 7.5, 150 mM NaCl, 
1% (w/v) sodium deoxycholate, 1% (v/v) Triton X-100, 0.1% (w/v) sodium dodecyl sulfate, 0.2% (w/v) 
sodium azide and protease inhibitor cocktail. Cell lysates were harvested with cell scrapers, clarified 
at 10,000 rpm for 15 min at 4 °C and stored at –20 °C. The protein content of both conditioned media 
and cell lysates was quantified by Bradford protein assay [27]. 

Electrophoresis was performed in reducing conditions using 25–60 μg of protein loaded on a 
NuPAGETM 4–12% Bis-Tris gel and blot was performed as described by Ulivi et al. [28] For each 
considered marker, a western blot was performed for at least 3 independent experiments 
corresponding to different single-donor primary HUVEC cultures. Densitometric absorbance was 
determined by scanning the film and quantifying the band densities using ImageJ software 
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(https://imagej.nih.gov/ij/download.html). The reported results are the average of at least 3 
independent experiments ± SD values. 

2.8. NF-κB Activity Assay 

To evaluate the nuclear factor-κB (NF-κB) activity, the TransAMTM NF-κB p65 kit was used. Sub-
confluent HUVEC were treated for 1h or 16h with complete culture medium supplemented with: (i) 
5% PL; (ii) 100 U/mL IL-1α; (iii) 5% PL + 100 U/mL IL-1α; and (iv) without any supplement (control). 
Media were removed and cells washed with PBS. Whole-cell extracts were prepared and assayed 
following manufacturer’s instructions. Specificity of the assay was checked by adding soluble wild-
type and mutated consensus oligonucleotides acting as competitors for NF-κB binding. For the 
reported representative experiment, results are expressed as the absorbance values measured in the 
presence of the mutated oligonucleotide minus those measured in the presence of the wild-type 
oligonucleotide. This assay was performed in triplicate on 3 independent experiments corresponding 
to different single-donor primary HUVEC cultures. For each stimulation time, the n-fold increase 
over control of NF-κB activity induced by IL-1α stimulation and the percentage value of NF-κB 
activity induced by PL + IL-1α treatment with respect to IL-1α net increase are reported (means ± SD). 

2.9. IL-8 and IL-6 Quantification 

To quantify the IL-8 and IL-6 secretion, the Human IL-8/CXCL8 Quantikine ELISA Kit and the 
Human IL-6 Quantikine ELISA Kit (R&D systems) were used, respectively. HUVEC were treated for 
24h with complete culture medium supplemented with: (i) 5% PL; (ii) 100 U/mL IL-1α; (iii) 5% PL + 
100 U/mL IL-1α; and (iv) without any supplement (control). Cells were then extensively washed with 
PBS and incubated in serum-free medium for 24 h. The different conditioned media were collected 
and assayed following manufacturer’s instructions. For each conditioned medium, the cytokine 
secretion is expressed as total protein-normalized mean ± SD of 4 independent experiments 
performed in duplicate on different single-donor HUVEC cultures. 

2.10. PGE2 Quantification 

To quantify the PGE2 production, the Prostaglandin E2 ELISA kit was used. HUVEC were treated 
for 24 h with complete culture medium supplemented with: (i) 5% PL; (ii) 100 U/mL IL-1α; (iii) 5% 
PL + 100 U/mL IL-1α; (iv) without any supplement (control). Cells were then extensively washed with 
PBS for removing residual factors and incubated in serum-free medium for 24 h. The different 
conditioned media were collected and assayed following manufacturer’s instructions. Results are 
expressed as fold change with respect to control. Four determinations were performed in duplicate 
on 3 different single-donor primary HUVEC cultures. 

2.11. Statistical Analysis 

All data are presented as means and standard deviations based on independent experiments 
performed on at least three different primary HUVEC cultures, each of them derived from a single 
donor. The statistical analysis was performed using the paired t-Test for NF-κB activity and 
proliferation assays or using the ordinary one-way ANOVA for IL-8, IL-6, HMGB1, Cyclin D1 and 
phospho-STAT3 densitometric analysis and PGE2 quantification. If ANOVA detected statistically 
significant differences within the data set, Tukey’s or Dunnett’s multiple comparison tests were used 
to calculate the significant differences for IL-8 and IL-6 densitometric analysis and PGE2 
quantification or for HMGB1, Cyclin D1, and phospho-STAT3 densitometric analysis, respectively. 
All tests were run setting a confidence interval of 95%.  

3. Results 

3.1. PL Down-Regulated NF-κB Pathway in IL-1α-Stimulated Cells 
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Having in mind that bioactive molecules released by platelets trigger the wound healing and 
that this process takes place in an inflammatory microenvironment, we focused our attention on the 
response of endothelial cells to PL in both normal conditions and in the presence of an inflammatory 
stimulus. In our in vitro system, among the possible pro-inflammatory molecules we tested (i.e., 
TNFα and IL-1α), we chose IL-1α because in preliminary experiments it showed the best 
inflammatory response and it is considered an emerging important factor in the initiation and 
maintenance of inflammation. 

In particular, we evaluated the activation of NF-κB pathway, a key player in the inflammatory 
phase response [29], in sub-confluent HUVEC maintained for 1h or 16h in complete culture medium 
supplemented with: (i) 5% PL; (ii) 100 U/mL IL-1α; and (iii) 5% PL+100 U/mL IL-1α or maintained in 
un-supplemented control medium (CTR). NF-κB activity determined in a representative experiment 
where cells were exposed to different culture conditions is presented in Figure 1, Panel A. Panels B 
shows the fold increase over control when the cells were induced by 1h stimulation with IL-1α and 
the percentage reduction in the IL-1α-induced NF-κB activity when the culture was supplemented 
also with PL. Panel C shows the fold increase and the percentage reduction after 16h stimulation of 
the cells. Values are reported as average values ± SD values of 3 independent experiments. The NF-
κB-activity was significantly enhanced by the exposure to IL-1α with respect to control after both 1h 
and 16h cell stimulation (p = 0.03 and p = 0.01, respectively) while significantly decreased in cells 
treated with PL + IL-1α with respect to the IL-1α-treated cells after both 1 h and 16 h stimulation (p = 
0.009 and p = 0.03, respectively). These results indicate an anti-inflammatory activity of PL on HUVEC 
both at early and late times.  

 

Figure 1. Modulation of NF-κB pathway in human umbilical vein endothelial cells (HUVEC) treated 
with platelet lysate (PL) under physiological and inflammatory conditions. Sub-confluent HUVEC 
were treated for 1 h or 16 h with complete medium supplemented with: (i) 5% PL; (ii) 100 U/mL IL-
1α; (iii) 5% PL+100 U/mL IL-1α; (iv) without any supplement (control medium, CTR). Whole-cell 
extracts were analyzed by ELISA-based TransAMTM NF-κB p65 kit. (A) Absorbance values of NF-κB 
activity after 1 h and 16 h stimulation in a representative experiment. (B–C) NF-κB activity after 1 h 
(B) and 16 h (C) exposure to IL-1α, expressed as fold increase over control (left columns), and 
percentage of activity measured after PL + IL-1α stimulation (right columns) with respect to the IL-
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1α-induced net increase (100%, correspond to the measured increase of activity due to the IL-1α 
stimulation i.e., difference between values of stimulated and un-stimulated control cells). For each 
condition, the average of 3 independent experiments (mean ± SD) assayed in triplicate on different 
single-donor primary cultures is reported. For 1h stimulation, * and ** symbols refer to p = 0.03 and p 
= 0.009, respectively. For 16 h stimulation, * refers to p ≤. 0.03. 

Considering the negative regulation of NF-κB pathway by PL in an inflammatory milieu, we 
evaluated the production of two pro-inflammatory cytokines, IL-8 and IL-6, following 1 h and 24 h 
stimulations with PL under both physiological and inflammatory conditions. By western blot 
analysis of conditioned media, in PL + IL-1α-treated cells we observed a trend, but we could not 
detect a significant decrease in the secretion of the pro-inflammatory cytokines induced by IL-1α 
(Figure 2A,B). Similarly, the ELISA quantification of IL-8 and IL-6 in the 24 h-conditioned media 
could not reveal any significant difference in the secretion by PL + IL-1α- and IL-1α-treated cells of 
both IL-8 and IL-6 (data not shown). 

 

Figure 2. Pro-inflammatory cytokine secretion by HUVEC upon PL stimulation under physiological 
and inflammatory conditions. HUVEC were treated for 1 h or 24 h with complete medium 
supplemented with: (i) 5% PL; (ii) 100 U/mL IL-1α; (iii) 5% PL + 100 U/mL IL-1α; and (iv) without any 
supplement (control medium, CTR). At the end of the stimulation, the media were removed and 
replaced with serum-free medium. After an additional 24 h incubation, the conditioned media were 
collected. A western blot analysis of conditioned media was performed to determine the amount of 
secreted IL-8 (A) and IL-6 (B). The densitometric analysis of western blots was performed on 3 and 4 
independent single-donor primary cultures (means ± SD) for 1 h or 24 h treatment, respectively. The 
* symbol represents significant differences with p ≤ 0.05. Representative western blots are shown 
under the densitometric analysis. 

3.2. PL Increased PGE2 Secretion by HUVEC in IL-1α Stimulated Cells 
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In a previous publication, we demonstrated a pro-resolving activity of Platelet Rich Plasma on 
cells of the immune system to create an anti-inflammatory microenvironment consequent to a PGE2 
production [30]. A quantitation of PGE2 released by HUVEC in the presence of PL under 
physiological and inflammatory conditions was performed in order to detect a possible protective 
activity by stimulated endothelial cells at the wound site. We observed a significant increase of PGE2 
secretion in PL + IL-1α-treated cells with respect to the control (p = 0.02; Figure 3), indicating that PL-
activated HUVEC could contribute to the resolution of tissue inflammation also by a paracrine 
mechanism. 

 
Figure 3. PGE2 secretion by HUVEC upon PL stimulation under physiological and inflammatory 
conditions. HUVEC were treated for 24 h with complete medium supplemented with: (i) 5% PL; (ii) 
100 U/mL IL-1α; (iii) 5% PL + 100 U/mL IL-1α; and (iv) without any supplement (control medium, 
CTR). At the end of the stimulation, the media were removed and replaced with serum-free medium. 
After additional 24 h incubation, the conditioned media were collected and analyzed by 
Prostaglandin E2 ELISA kit. For each condition, PGE2 production is expressed as fold increase with 
respect to CTR. The average values and relative standard deviation values of 4 determinations 
performed in duplicate on 3 different single-donor primary cultures are presented. The * symbol 
represents a significant difference with p = 0.02. 

3.3. PL Enhanced Proliferation of HUVEC Retaining Their Differentiation Capability 

The PL effect on HUVEC viability and proliferation was evaluated at different times from the 
PL addition on 3 independent primary cultures. Cells treated with the complete culture medium 
supplemented with 5% PL had a higher proliferation rate with respect to control cells maintained in 
complete medium with no supplement, with a significant (1.8 ± 0.3)-fold increase induced by PL at 
day 6 with respect to the control (p = 0.01; Figure 4A). It is important to note that cells grown in the 
presence of PL maintained an almost 100% viability without any difference with respect to control 
cells (Figure 4B). We did not observe any major change in the cell morphology between PL-treated 
cells and control cells (Figure 4C). Moreover, cells grown in PL for 1 week kept the ability to form 
capillary-like structures when seeded on matrigel and we did not observe qualitative differences 
between cells expanded in PL and control cells grown in the absence of PL (Figure 4D). 
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Figure 4. PL effect on proliferation, morphology and angiogenic potential of HUVEC. (A) 
Proliferation of HUVEC, treated with 5% PL supplemented or un-supplemented (control, CTR) 
complete medium, evaluated at different times by crystal violet staining assay. The average values ± 
SD of 3 independent experiments performed in quintuplicate on different single-donor primary 
cultures are reported (insert) Fold increase after 6 days of PL treatment over control (CTR) expressed 
as mean ± SD of 3 independent experiments. The * symbol refers to p = 0.01; (B) Percentage of viable, 
apoptotic and dead cells after 6 days culture in the same condition as in panel A. Apoptosis assay was 
performed taking advantage of the FITC Annexin V Apoptosis Detection Kit I; (C) Morphology of 
HUVEC cultured in complete medium un-supplemented (control cells, CTR) or supplemented with 
5% PL for 6 days. Scale bar = 150 μm; (D) Tube-like structure formation assay performed on matrigel 
using HUVEC grown in complete medium un-supplemented (CTR) or supplemented with 5% PL for 
7 days. The assay was performed in the absence of PL. Two pictures related to different positions in 
the well are reported for each condition. Scale bar = 250 μm. 

3.4. PL Induced Proliferation and an Alert State in Quiescent HUVEC 

Considering the enhancement of proliferation observed in HUVEC cultures in response to the 
PL stimulation and our previous studies demonstrating a PL-induced activation of quiescent human 
osteoblasts and articular chondrocytes [13,16], we cultured HUVEC in complete culture medium to 
confluence and we treated the confluent growth-arrested cells with complete medium supplemented 
with 5% PL or not supplemented (control) for 10 days. We monitored cell growth by cell counting. 
The PL induced a proliferation resumption by confluent HUVEC that reached a higher (1.7 ± 0.3)-fold 
cell density than control cells at day 10th (p = 0.05, Figure 5A). For each experimental condition, we 
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report values expressed as fold increase with respect to the initial time (day 0). Moreover, we 
investigated the modulation of proliferation-related Akt and ERK1/2 pathways [31,32] and the 
expression of the cell-cycle associated Cyclin D1. Cell lysates were collected at different times from 
the PL addition and analyzed by western blot. In agreement with the observed resumption of cell 
proliferation, the activation of both Akt and ERK1/2 pathways was observed already 10 min after the 
exposure to PL followed by a progressive decrease, more rapid for Akt than for ERK (Figure 5B). 
Three independent experiments performed on different primary HUVEC cultures yielded the same 
results. The Cyclin D1 expression was enhanced already after 1 h of PL treatment reaching its 
maximum level at 4 h (p = 0.002 for 0 h versus 4 h) and decreasing at later times (Figure 5D).  

We also considered the possible effect of PL in inducing the synthesis of HMGB1, one of the best 
characterized members of the alarmin family which are produced by injured, or activated cells, and 
make cells at the lesion site more susceptible to factors released in wound thus promoting their 
proliferation [33,34]. Interestingly, HMGB1 was significantly increased after 1-hour stimulation (p = 
0.01 for 0 h versus 1 h), decreasing at later times (Figure 5C). In agreement with a possible implication 
of PL in restoring blood vasculature in wounded tissues, we also found a very rapid and transient 
activation of STAT3 (p = 0.02 for 0 h versus 10’, Figure 5E), which is a critical transcription factor in 
angiogenesis [35].  
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Figure 5. Proliferation of quiescent confluent HUVEC in the presence of PL, modulation of Akt and 
ERK1/2 pathways and activation of HMGB1, cell cycle and STAT3 by PL. (A) Proliferation of confluent 
HUVEC maintained in complete medium (CTR) or treated with complete medium supplemented 
with 5% PL monitored by cell counting. The values are expressed as fold increase related to the initial 
time (day 0). The average values ± SD of 3 determinations performed in triplicate on 3 different single-
donor primary HUVEC cultures are shown. In the insert, the cell density ratio between PL-treated 
and control cells (CTR) at day 10th of PL treatment is reported. Ratio was separately calculated in 3 
independent experiments and expressed as mean ± SD. The * symbol refers to p = 0.05. (B) Western 
blot analysis of HUVEC treated with complete medium supplemented with 5% PL for different times. 
Cell lysates were analyzed by western blot with antibodies raised against phospho-Akt, Akt, 
phospho-ERK1/2, ERK1/2 and Actin. The Akt, ERK1/2, and Actin were used as internal controls. Three 
independent experiments performed on different primary HUVEC cultures yielded the same results. 
(C) Western blot analysis of cells treated with complete medium supplemented with 5% PL for 
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different times using antibody raised against HMGB1. In the upper panel, the densitometric analysis 
of HMGB1-probed blots performed on 3 independent single-donor primary cultures is reported as 
fold increase referred to 0h (means ± SD). The * symbol represents significant difference with p = 0.01. 
Under the column panel, a representative western blot for HMGB1 is shown. Actin was blotted as 
internal control. (D) The PL effect on cell cycle of cells treated with 5% PL in complete medium for 
different times. A western blot analysis of the cell lysates was performed to evaluate the Cyclin D1 
expression. In the upper panel, the densitometric analysis of Cyclin D1-probed blots performed on 3 
independent single-donor primary cultures is reported as fold increase referred to 0 hours (means ± 
SD). The ** symbol represents a significant difference with p = 0.002. Under the column panel, a 
representative western blot for Cyclin D1 is shown. Actin was blotted as internal control. (E) Western 
blot analysis for the activation of angiogenesis-related STAT3 by PL in cells treated with complete 
medium supplemented with 5% PL for different times. Cell lysates were analyzed using antibody 
raised against phospho-STAT3. In the upper panel, the densitometric analysis of pospho-STAT3-
probed blots performed on 3 independent single-donor primary cultures is reported as fold increase 
referred to 0h (means ± SD Each phospho-STAT value was related to and corrected for STAT value. 
The significant difference 0h versus 10’ corresponds to p = 0.02 (*). 

4. Discussion 

Injured blood vessel restoration and blood circulation re-establishment are crucial events for 
tissue repair. Our work focused on the behavior of endothelial cells in a wound-like 
microenvironment characterized by the presence of an inflammatory stimulus and by the transition 
from plasma to serum, i.e., from plasma to a mixture of plasma proteins depleted of coagulation 
factors and also including growth factors released by activated platelets. The new microenvironment 
plays a major role in restoring tissue function, but, at the end of the healing process, when the blood 
circulation is re-established in the newly formed tissue, cells are again exposed to plasma. Indeed, in 
vivo, the plasma to serum transition is needed for initiating proper healing, but, in the newly formed 
tissue, serum must be replaced by plasma for the reactivation of tissue functions [36].  

By using an in vitro model, in this paper, we showed how platelet lysate (PL), used at a 
concentration approximately corresponding to the highest physiological concentration of platelets in 
the human blood, could modify the behavior of endothelial cells and, hence, play a significant 
regulatory role in the different phases of tissue healing: 

4.1. PL Favored the Resolution of Inflammation in Endothelial Cells by Inhibiting IL-1α-Activated NF-κB 
Pathway. 

Physiologically, after an injury, platelets leak from damaged blood vessels and the inflammatory 
phase is initiated by the platelet degranulation leading to the release of growth factors acting as key 
players in the tissue healing process. The inflammatory phase is characterized by the clearance of 
microbial contamination and the removal of devitalized tissue by migrating macrophages. We 
previously investigated the effect of PL in an inflammatory milieu in several cell systems and we 
demonstrated an early and transiently enhanced activation of the pro-inflammatory NF-κB pathway 
induced by IL-1α in human keratinocytes, osteoblasts, articular chondrocytes, and murine bone 
marrow-derived stromal cells [12–14,37]. This early activation was paralleled by an early increased 
secretion of pro-inflammatory cytokines IL-6 and IL-8 and, in keratinocytes and chondrocytes, also 
by an increased production of the antimicrobial lipocalin NGAL. In human articular chondrocytes, 
this effect was transient because, after the early inflammatory burst, PL inhibited the activation of 
NF-κB, induced by IL-1α [14]. This finding was in agreement with other reports that showed a pro-
resolving activity of PL and/or PRP [10]. We believe that platelet-released factors exerts an immediate 
pro-inflammatory effect causing an immediate antimicrobial response by the tissue that releases 
antimicrobial proteins such as NGAL [12,14], and the migration of neutrophils and macrophages [38] 
that engulf contaminant microorganisms and remove the devitalized tissue. At later time, these 
factors exert an opposite effect by inhibiting NF-κB activation and promoting resolution of the 
inflammatory phase.  
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Given that endothelial cells are the first cells in contact with PL after vessel injury, we treated 
HUVEC with PL for different times both in the presence and in the absence of IL-1α. IL-1α is not the 
only pro-inflammatory factor present at the wound site because also other cytokines are locally 
increased. However, after we performed some preliminary experiments also with TNFα, we selected 
IL-1α as the best pro-inflammatory agent for our purpose. 

The PL inhibited the activation of NF-κB induced by IL-1α already after 1-hour treatment as well 
as after 16-hours treatment showing an anti-inflammatory activity at both the early and the late 
considered times. This finding is in agreement with the anti-inflammatory activity of PRP described 
in literature [39] and provides a possible rationale to this effect. We also observed that, at variance 
with the other so far investigated cell systems, PL did not significantly enhance the production of IL-
6 and IL-8 induced by IL-1α, nor induced a significant repression of these two cytokines. The response 
of the different assayed primary cultures was quite variable as demonstrated by the standard 
deviation. and a slight decrease in their secretion could possibly be observed as a trend only in the 
western blot analysis. Taken together, these data suggest that, already immediately after the injury, 
endothelial cells are protected by PL in the inflammatory milieu of the wound.  

4.2. PL Increased PGE2 Secretion by IL-1α Treated Endothelial Cells 

A significant increase of PGE2 secretion by HUVEC was observed following PL addition in 
inflammatory conditions indicating that PL-activated HUVEC could possibly contribute to the 
resolution of tissue inflammation in the wound microenvironment by acting on inflammatory cells. 
Indeed, an anti-inflammatory activity of PGE2 was demonstrated toward macrophages, inducing the 
functional switch from M1 inflammatory phenotype to M2 pro-resolving phenotype [40]. In a 
previous publication from our laboratory, it was already demonstrated a pro-resolving activity of 
platelet rich plasma on cells of the immune system to create an anti-inflammatory microenvironment 
related to PGE2 production [30]. The presented results provide an indication of an anti-inflammatory 
activity within the wound microenvironment, driven by PGE2 produced by endothelial cells in 
response to PL at an early time. 

4.3. PL Enhanced Proliferation of Endothelial Cells without Affecting Their Differentiation Capability 

Our goal was to dissect the system and to specifically investigate the effect of human platelet-
contained molecules on endothelial cells maintained in standard culture conditions, i.e., in the 
presence of fetal bovine serum. PL enhanced the proliferation of HUVEC, without affecting their 
viability and capability of forming tube-like structures on matrigel. Our findings are in agreement 
with already published data showing that platelet-released molecules support proliferation of cells 
from different tissues, including endothelial cells, which present a significantly lower percent of 
apoptotic cells and increased proliferation rates [41]. The maintained capacity of HUVEC expanded 
in PL to form tube-like structures on matrigel is in agreement with Tasev et al. [42], although, in that 
study, the platelet lysate used as serum substitute was made in human plasma.  

4.4. PL Induced Proliferation of Quiescent HUVEC 

Cellular quiescence is a non-proliferating condition of the cells at a stage of basic metabolism. 
Indeed, the cells of the body are mainly non-dividing cells and can be schematically classified in 
irreversibly arrested cells (senescent or terminally differentiated) and quiescent cells, able to re-enter 
the proliferative cell cycle in response to physiological growth signals. Quiescent cells include many 
adult stem cells, tissue progenitor cells, and possibly differentiated cells. The reactivation of quiescent 
cells leading to their proliferation is the crucial event triggering tissue repair and regeneration (for a 
review see [43]). We previously reported that quiescent cultured osteoblasts exposed to PL resumed 
proliferation and retain their differentiation capability [13]. We also recently reported that human 
chondrocytes exposed to PL in a quiescent stage re-enter the cell cycle and proliferate [16]. In the 
present study, we observed that resting confluent HUVEC in complete culture medium, a condition 
mimicking the physiological quiescence, were activated by PL and resumed cell proliferation up to a 



Cells 2019, 8, 331 14 of 17 

 

cell concentration approximately double than the one of not PL-stimulated, control cells. We believe 
that this is an important novel finding not reported in previous publications reporting PL induction 
of endothelial cell proliferation [24,25]. 

Pathways involved in cell activation and proliferation of quiescent cells were also investigated. 
The role of ERKs was described in PL driven endothelial cell repair in a model of scratch wound [23]. 
Moreover, in a previous publication, we demonstrated that ERKs and AKT were activated by PL in 
quiescent osteoblasts and that these factors were responsible for the cell proliferation since specific 
inhibitors of the two pathways suppressed proliferation [13]. Here we report that, also in quiescent 
endothelial cells the proliferation related ERKs and AKT were phosphorylated and the expression of 
the cell-cycle activator Cyclin D1 was enhanced following the cell treatment with PL 

An early enhancement of HMGB1 was also observed. HMGB1 is the best characterized factor of 
the alarmin family, a group of endogenous molecules released from injured or activated cells first 
described as molecules inducing immune/inflammatory response at the site of injury, but 
subsequently shown to be also involved in tissue homeostasis including repair and remodeling of 
different tissues [44,45]. A recent extensive study described how the molecule could induce 
inflammation and/or regeneration of the wounded tissue according to the different redox forms that 
act on distinct receptors [44]. Our finding that PL timely induces HMGB1 in endothelial cells provides 
an additional information on PL activity and opens a field of further investigation about the possible 
secretion and autocrine activity of HMGB1 in endothelial cells activation and proliferation.  

HUVEC and HAEC (human aortic endothelial cells) derived from vessel walls, are considered 
differentiated endothelial cells, also containing a complete hierarchy of endothelial progenitor cells 
(EPCs). Indeed, a diversity of EPCs exists in human vessel playing an important role in maintaining 
vessel integrity [46,47]. We demonstrated that resting cultured confluent HUVEC are activated and 
resume proliferation following a PL treatment suggesting that an activation of the resident cell 
population, possibly progenitors and differentiated cells, could occur also in vivo after an injury. 

Several studies reported that EPCs could be isolated also from adult peripheral and umbilical 
cord blood. These progenitors are thought to originate from bone marrow, to circulate in the 
peripheral blood and to be involved in neovascularization and wound healing [48,49]. However, 
mechanisms for vessel repair in wound are not currently well defined. Cells from bone marrow are 
recruited to the site of injury by migration trough the blood circulation, whereas cell activation and 
recruitment from vessel walls occurs via direct activation of local cells. We believe that, in the process 
of injury repair, cells recruited from bone marrow and resident cells contribute to new vessel 
formation in an extent that may vary depending on the type of injury and possibly on the tissue type 
involved.  

In this scenario, we observed that PL was also able to induce an early and transient activation of 
the STAT3 pathway in agreement with reports indicating that STAT3 signaling is important and 
necessary for endothelial cell proliferation, migration, and microvascular tube formation [35] and 
also for in vivo angiogenesis induction [50].  

5. Conclusions 

In this paper, we demonstrated a beneficial activity of PL treatment on HUVEC resulting in the 
inhibition of the inflammatory response, the enhancement or the resumption of proliferation of 
endothelial cells, all retaining the differentiation capability, concomitant with the activation of 
proliferation-related pathways, the induction of the synthesis of the alarmin HMGB1, and the 
activation of angiogenesis-related STAT3 pathway, thus providing a biochemical approach aimed at 
giving a rationale for the current therapeutic use of PL in the treatment of wound healing-related 
pathologies. 
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