





Supplementary Figure 1. (A) GLA protein expression level in GLA-null clones #3, 19, 26, 27, 25, and 31 derived CMs Exposure in short time:20 sec and longer time:5 mins. (B) mRNA level in GLA-null clones #3, 19, 26, 27, 25, and 31 derived CMs. (C) GLA enzyme activity in GLA-null clones #3, 19, 26, 27, 25, and 31 derived CMs. (D) Sanger sequencing analysis revealed heterogeneous population in clone #3.



Supplementary Figure 2. T7E1 digestion assay validating the absence of CRSIPR/Cas9induced mutations in the predicted off-target genes. T7E1 cleavage assay showing the absence of mismatch cleavage products.



Supplementary Figure 3. Characterization of CRISPR/Cas9-edited GLA-null hESC clones. (A) RT-PCR analysis of expression of pluripotency-associated genes in CRISPR/Cas9-transfected hESC clones, including GLA-null clones #19 and #27. Untransfected parental hESCs (H9) served as a positive control. (B) Morphology and alkaline phosphatase activity of GLA-null hESC clones #19 and #27.



Supplementary Figure 4. Characterization of CM-derived exosomes. (A) Representative electron microscopy images of isolated exosomes. Scale bar: 100 uM. (B) CD63 PE-conjugated dynabeads isolated and identified distribution of CMs derived exosome sizes though Nanosight tracking system with a diameter range of 50–100 nm. (C) Western blot showing expression of exosomal markers TSG101 and CD63 in cell lysate (CL) and exosome-containing culture medium (Exo) of H9 and GLA-null CMs. Calnexin used as CL positive control.

|    | Gene No.     | Gene<br>Name | Chromosome Site | Primer Sequence                                      | Product<br>Size |
|----|--------------|--------------|-----------------|------------------------------------------------------|-----------------|
| 1  | NM_198992    | SYT10        | chr12:-33559846 | TAGCATGGGCACAGAACCTG<br>TTCAGCATTAGGTGCCTGAATTA      | 684             |
| 2  | NR_103869    | СҮРЗА43      | chr7:+99454520  | CCAGGAAGTTGTGTCCAAAGG<br>CAGTGTGTCTCCTGATTGGATG      | 699             |
| 3  | NM_006346    | PIBF1        | chr13:+73467918 | AGCAAGCTGGGAAACAATGC<br>CCCTCCCAGAAACATGGTGT         | 867             |
| 4  | NM_016078    | TVP23B       | chr17:+18702311 | TCCTTGATCATTGGTAGGAAAGGT<br>TTGTTAGGCAGCAATAGGTTACCA | 739             |
| 5  | NM_144993    | TET3         | chr2:-74328546  | GTCCCCCAAGAGGACTAACG<br>GGGCACACTCGATGAGGAT          | 674             |
| 7  | NM_152348    | WDR81        | chr17:-1639089  | GCGGTGAGTTGGGGGGATTAG<br>AGCACCATGAAGCCTGAGGA        | 660             |
| 8  | NM_017908    | ZNF446       | chr19:-58992296 | ACCGCAAGAGCCACACAG<br>AACTGCCTATTTCCCGACCA           | 679             |
| 9  | NM_014955    | METTL13      | chr1:+171759733 | GCACACTGCTGCCAGTAACC<br>CAGGGACTTCAGGTGAAAACG        | 736             |
| 10 | NM_001166208 | SYNPO        | chr5:-150031531 | CCTGGATTCTAACAGACCAACTGC<br>GAGCAGGCCCACTCCACT       | 699             |

Supplementary Table 1. List of primers used to amplify the predicted off-target gene loci.

Supplementary Table 2. Sequences of the primers used to analyze stemness markers by RT-PCR

| Name  | Sequence                   | Predicted size |
|-------|----------------------------|----------------|
| OCT4  | F_CTTCAGGCACTGTGTTCATTG    | 672 bp         |
|       | R_TTTGGCTGAACACCTTCCCA     |                |
| SOX2  | F_GCCCTGCAGTACAACTCCAT     | 735 bp         |
|       | R_TTCCTGCAAAGCTCCTACCG     |                |
| KLF4  | F_AGTTTCCCGACCAGAGAGA      | 667 bp         |
|       | R_ACGCGAACGTGGAGAAAGAT     |                |
| NANOG | F_GAAGACAAGGTCCCGGTCAA     | 709 bp         |
|       | R_GGATTCAGCCAGTGTCCAGA     |                |
| REX1  | F_GTGGGCCTTATGTGATGGCT     | 759 bp         |
|       | R_TGCGTTAGGATGTGGGCTTT     |                |
| GDF3  | F_GTTTGTGTTGCGGTCAGTCC     | 361 bp         |
|       | R_CTTGGGGGGCAATGATCCACT    |                |
| DPPA2 | F_CCGTCCCCGCAATCTCCTTCCATC | 606 bp         |
|       | R_ATGATGCCAACATGGCTCCCGGTG |                |
| DPPA4 | F_TAGCACAGCAAAAGAGGCCA     | 635 bp         |
|       | R_TGCATGGCCCATAAACAGGT     |                |
| GAPDH | F_AGAAGGCTGGGGGCTCATTTG    | 258 bp         |
|       | R_AGGGGCCATCCACAGTCTTC     |                |

Supplementary Table 3. Antibodies used in this study

| Target | Source                    | Catalog number |
|--------|---------------------------|----------------|
| GLA    | GeneTex                   | GTX101178      |
| NANOG  | Cell Signaling Technology | #4903          |

| OCT4      | Cell Signaling Technology | #2750   |
|-----------|---------------------------|---------|
| TRA-1-81  | Abcam                     | Ab16289 |
| TRA-1-60  | Abcam                     | Ab16288 |
| Nestin    | Cell Signaling Technology | #4760   |
| alpha-SMA | Cell Signaling Technology | #19245  |
| AFP       | Cell Signaling Technology | #4448   |

*Supplementary Table 4.* List of the differentially downregulated proteins involved in regulated exosome release.

| Uniprot       | Protein Name                                                   |          |
|---------------|----------------------------------------------------------------|----------|
| <u>Q13636</u> | Ras-related protein Rab-11                                     | RAB11    |
| <u>Q86VN1</u> | Vacuolar protein-sorting-associated protein 36                 | VPS36    |
| <u>Q13017</u> | Rho GTPase-activating protein 5                                | ARHGAP5  |
| <u>P52566</u> | Rho GDP-dissociation inhibitor 2                               | ARHGDIB  |
| <u>Q9NP61</u> | ADP-ribosylation factor GTPase-activating protein 3            | ARFGAP3  |
| <u>P35475</u> | Alpha-L-iduronidase                                            | IDUA     |
| <u>Q96AJ9</u> | Vesicle transport through interaction with t-SNAREs homolog 1A | VTI1A    |
| <u>Q14894</u> | Ketimine reductase mu-crystallin                               | CRYM     |
| <u>P07996</u> | Thrombospondin-1                                               | THBS1    |
| <u>Q02952</u> | A-kinase anchor protein 12                                     | AKAP12   |
| Q9UJA5        | tRNA-methyltransferase non-catalytic subunit TRM6              | TRMT6    |
| <u>Q96EY4</u> | Translation machinery-associated protein 16                    | TMA16    |
| <u>Q86SZ2</u> | Trafficking protein particle complex subunit 6B                | TRAPPC6B |

## Supplemental Reference

1. Labuhn, M., et al., Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res, 2018. 46(3): p. 1375-1385.