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Abstract: The formation of cytotoxic intracellular protein aggregates is a pathological signature
of multiple neurodegenerative diseases. The principle aggregating protein in Parkinson’s disease
(PD) and atypical Parkinson’s diseases is a-synuclein (x-syn), which occurs in neural cytoplasmic
inclusions. Several factors have been found to trigger a-syn aggregation, including raised calcium,
iron, and copper. Transcriptional inducers have been explored to upregulate expression of
endogenous metal-binding proteins as a potential neuroprotective strategy. The vitamin-D analogue,
calcipotriol, induced increased expression of the neuronal vitamin D-dependent calcium-binding
protein, calbindin-D28k, and this significantly decreased the occurrence of x-syn aggregates in
cells with transiently raised intracellular free Ca, thereby increasing viability. More recently,
the induction of endogenous expression of the Zn and Cu binding protein, metallothionein, by the
glucocorticoid analogue, dexamethasone, gave a specific reduction in Cu-dependent x-syn aggregates.
Fe accumulation has long been associated with PD. Intracellularly, Fe is regulated by interactions
between the Fe storage protein ferritin and Fe transporters, such as poly(C)-binding protein 1.
Analysis of the transcriptional regulation of Fe binding proteins may reveal potential inducers that
could modulate Fe homoeostasis in disease. The current review highlights recent studies that suggest
that transcriptional inducers may have potential as novel mechanism-based drugs against metal
overload in PD.

Keywords: copper; iron; calcium; alpha-synuclein; Parkinson’s disease; metallothionein; calbindin;
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1. Parkinson’s Disease and Alpha-Synuclein

Parkinson’s disease (PD) is a complex and progressive neurodegenerative disease which affects
>5 million people, with >85% of cases being sporadic with no known cause. It becomes more prevalent
with age, affecting 2% of those over 60 and 3% of those over 80. Debilitating symptoms include tremors,
movement and balance issues, difficulty swallowing and speaking, rigid muscles, depression, anxiety,
cognitive impairment, and dementia [1-3]. These symptoms are largely caused by the progressive loss
of dopamine-secreting neurons in the substantia nigra (Sn). Diagnosis is generally only possible in
the later stages of the disease because symptoms only start to arise after up to 80% of neurons have
already been lost [4]. Existing drugs provide only symptomatic relief of some of these symptoms and
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often have severe side effects (there are no disease-modifying therapies demonstrated to slow/stop
PD progression), while the degenerative nature of the disease continues unchecked with existing
symptoms worsening and new symptoms arising. The accumulation of primarily neuronal protein
inclusion bodies called Lewy bodies (LB) is the main pathological hallmark of PD. The normally
pre-synaptic vesicle-associated protein, «-synuclein (x-syn), is the main protein component of LB, with
a-syn in Lewy bodies being largely in the form of filamentous aggregates and phosphorylated at serine
129 [5]. Some 27 different gene mutations have been linked to familial PD cases, including 6 specific
gene mutations in the gene encoding for «-syn, that have amino acid substitutions, A30P, A53T,
E46K, G51D, H50Q, and AS53E [6], although to date no successful treatments have been developed
by targeting the genes identified. Further, misfolded/aggregated a-syn has also been linked both
immunohistochemically and biochemically to idiopathic PD. Neuron-to-neuron transfer of a-syn
aggregates between neuroanatomically connected areas of the brain is thought to be the mechanism
underlying the pathological progression of PD. Multiple in vitro and in vivo studies indicate a central
role for a-syn-mediated toxicity in PD pathogenesis, where toxic forms of aggregated x-syn are released
from neurons, transfer between cells, and seed/template in a “prion-like” manner the endogenous
a-syn in recipient neurons into a toxic aggregating form [7]. «-Syn misfolding is believed to be the
most important factor driving LB formation in both familial and idiopathic cases, with many agents
promoting «-syn to misfold and aggregate, including reactive oxygen species (ROS) and elevated
concentrations of metals, such as Ca, Cu, or Fe [8]. Indeed, Ca, Fe, and Cu all bind x-syn at distinct
metal-binding sites (Figure 1). This review will focus on the roles of Ca, Cu, and Fe in PD and related
diseases, such as dementia with Lewy bodies and multiple system atrophy, and the potential to tackle
dyshomeostasis of these metal ions by the induction of endogenous metal chelating proteins. Although
metal dysregulation is expected to be detrimental to both neuronal and glial cell types, the discussion
will deal primarily with intraneuronal and extracellular interactions involving x-syn.
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Figure 1. Metal binding to a-synuclein. Cu(I)/(II) binds to high-affinity N-terminal and lower affinity
C-terminal sites. Ca(II) binds with low affinity to acidic residues in the C-terminus, overlapping with
the low affinity Cu(I)/Cu(Il) and Fe(II) binding sites. Mutated residues in familial PD are highlighted
in brown. KTK repeats in the vesicle membrane binding domain are highlighted in yellow. Conserved
residues in the C-terminus thought to mediate Ca binding are highlighted in yellow.

2. Cu Dyshomeostasis in Parkinson’s Disease

There is a substantial body of evidence that Cu is dysregulated in PD [9]. Cu is needed for
a multitude of processes in the healthy body and must be acquired as an essential trace element.
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Processes highly sensitive to adequate Cu levels include synthesis of neurotransmitters, transformation
of energy within the mitochondria, antioxidant defenses, and cell signaling. There is evidence of
Cu transporter-inefficacy that occurs over time that could lead to the accumulation of Cu in aged
individuals [10-12]. This provides a central theory about Cu dyshomeostasis in PD. Cu levels are
increased in PD blood serum, with high serum Cu correlated positively with disease severity [13],
although a more recent study found a reduced Cu status index in PD serum [14]. Cu is also increased
in cerebrospinal fluid of PD cases [15]. Total tissue Cu and neuromelanin-bound Cu, however, is
decreased in the Sn of PD patients, as is expression of the Cu transporter, CTR1 [16-18]. Cu is regulated
by transmembrane transporters, including Cu transporter 1 (CTR1) and ATP7A /B, so it is likely that
decreased expression of CTR1, the main plasma membrane transporter for Cu in the brain, could be
indicative of a faulty Cu transportation system in PD disease cases. Cu in the soluble fraction of brain
tissue homogenate is significantly reduced in PD cases, being almost half the normal level, but Cu is
increased in the insoluble fraction [19]. The varied levels of Cu detected across different tissues and
fluids may be due to the improper functioning or expression of Cu transporting ATPases, which could
result in the metal being unable to leave a particular region and becoming deficient in another. The Cu
ATPase, ATP7A, is a cellular transmembrane Cu pump, which when genetically mutated directly
causes a disease of copper deficiency in the brain (Menkes’ disease). Likewise, genetic mutation to
the ATP7B transporter, which removes the metal from cells and from the body via the bile, causes a
disease of Cu accumulation (Wilson's disease) [18,20,21]. Indeed, a recent proteomics study found
increased expression of ubiquitin C-terminal hydrolase L1 (UCHL-1) in human ATP7A™/Y fibroblasts
providing a potential link between Cu dyshomeostasis and the familial PD PARKS5 mutation [22]).
Labile Cu within certain fluids or regions has a propensity to cause protein aggregation and lead
further toward a disease state. In the brain, ATP7A /B in the trans-Golgi membrane receive Cu from
the Cu chaperone, antioxidant 1 copper chaperone (Atox1), from where it may enter secretory vesicles.
Cu can induce the aggregation of «-syn via high-affinity N-terminal and low-affinity C-terminal
sites [23]. As the N-terminus of a-syn spans the vesicular membrane (Figure 1), this may provide a
mechanism for exposure of the high-affinity Cu-binding site to the intralumenal Cu pool. It is Cu
in the mislocated, or loosely bound form, which potentially causes most harm in PD as it is able to
bind to a-syn and induce protein aggregation [24]. Extracellularly, Cu is present mainly as Cu(II)
but enters cells via the CTR1 transporter as Cu(l), so must be reduced before uptake. It is likely to
be present as Cu(l) intracellularly except when bound in stable coordination environments, such as
in cuproproteins, where the Cu(ll) oxidation state may be stabilized. Cycling between Cu(I) and
Cu(Il), such as under conditions of oxidative stress, may further contribute to the formation of reactive
oxygen species (ROS) (Figure 2). Cu is buffered intracellularly by copper-binding proteins, such as
metallothionein (MT) [9]. Indeed, the binding affinity of Cu(I) to MT is estimated to be approximately
12 orders of magnitude greater than that of o-syn [23,25,26]. Although binding of Cu(I) to MT is
essentially irreversible, an apparent Kd of ~10~!” M has recently be determined [26], compared to
estimates for a-syn: Cu(I) of ~107¢ M, Cu(II) of 10~ M for Cu(II) in site I and 108 M for site I [23].
Binding of Cu(II) to MT involves reduction to Cu(I) with concomitant oxidation of cysteine residues to
form cysteine disulfides. This means that any Cu entering the cytosol not directed to specific partner
proteins is likely to be bound by MT in preference to x-syn. Recent studies have shown that the
Cu-dependent superoxide dismutase, SOD1, may be under-metallated in PD [27]. Cu transfer to SOD1
occurs via the specific Cu transporter, Cu chaperone for superoxide dismutase (CCS), rather than
via Atox1. Indeed, a mutation in CCS that disturbs SOD1 metallation has been linked to familial
forms of amyotrophic lateral sclerosis (ALS) [28], which is characterized by similar SOD1 aggregate
pathology as reported recently in PD [29,30]. Although the different pathway taken by Cu entering
the vesicular system via Atox1 compared to CCS-mediated loading of Cu into SOD1 may account for
potential differences in the interactions of Cu with x-syn and SOD1 in PD, it remains unclear how
MT could potentially intercept Cu as there is evidence that Cu is transferred directly from CTR1 to
membrane-associated CCS (or likely also Atox1) [31]. MT likely only binds Cu when Cu is outside
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these pathways or when Cu enters the cell other than via CTR1. Both MT and «-syn are also secreted
by brain cells by mechanisms that remain unclear. Therefore, a similar competition for Cu between MT
and o-syn will also exist in the extracellular space, although the scope for Cu(I)/Cu(Il) cycling will be
greater and the concentrations of extracellular MTs are not known. Furthermore, extracellular MT can
be taken up via the Lrp1/2 transmembrane transporter [32] and extracellular x-syn has been found to
interact with a variety of cell surface receptors that can mediate endocytosis [7].
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Figure 2. Interactions between metal ion homeostatic mechanisms and «-syn aggregation. (A) Cu
homeostasis, a-syn and metallothionein (MT) induction. Cu enters via CTR1, then transfers to either
Atox1 or CCS transporters that shuttle Cu to either ATP7A /B pumps or SOD1, respectively. MT may
buffer labile Cu that spills over from these pathways. Cu binding to «-syn can induce aggregation.
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Zn-MT can remove Cu from a-syn. MT is also a potent ROS scavenger. Both MT and x-syn can be
secreted by and taken up by cells. MT transcription is induced by MTF1 in response to Zn and by
glucocorticoids via the glucocorticoid receptor. The glucocorticoid analogue, dexamethasone, induces
MT and can block Cu-dependent «-syn aggregation. MTF1, metal-responsive transcription factor-1;
MTox, oxidized MT; Dex, dexamethasone; GR, glucocorticoid receptor; ZnT, zinc transporter; CTR-1,
copper transporter 1; CuMT, copper MT; apoMT, metal-free MT; Lrp1/2, Low density lipoprotein
receptor-related protein 1/2; ZIP, zinc importer protein. (B) Ca homeostasis, x-syn and calbindin-D28k
induction. Ca enters via ligand and voltage-gate channels and is rectified by plasma membrane pumps.
Ca binding to a-syn leads to aggregation and enhances vesicle interactions. Aggregated x-syn can
also allow Ca entry and stimulate Ca release from the ER and mitochondria. CB buffers intraneuronal
Ca and is upregulated by the vitamin D receptor. The vitamin D analogue, calcipotriol, can induce
CB and block Ca-dependent x-syn aggregation. PMCA, plasma membrane calcium channel; NCX,
sodium/calcium exchanger; SOC, store-operated channel; VDCC, voltage-dependent calcium channel;
ROC, receptor-operated channel; VDR, vitamin-D receptor; SERCA, sarco/endoplasmic reticulum
calcium channel. (C) Fe homeostasis, intracellular transporters, and possible x-syn interactions.
Fe enters via transferrin/transferrin receptor or via DMT1 and can leave via ferroportin. Endocytosed
ferritransferrin releases Fe(II) via DMT1. PCBP-1 transports Fe to be stored in ferritin. Fe accumulation
may lead to interactions, such as with «-syn or MT. Fe release from ferritin and/or transferrin may
also be inhibited by a-syn. PCBP-1/2 induction, such as by Meis1l, may combat Fe accumulation.
DMT1, divalent metal-ion transporter 1; PCBP1, poly (rC)-binding protein 1. Dashed arrows indicate
tentative pathways.

3. Induction of Metallothionein as an Anti-Copper Therapeutic

MTs act to regulate levels of metals in the body by efficient binding and sequestration.
MTs function to augment the homeostatic mechanisms of Cu, Zn, and possibly Fe and could also
function as ROS absorbers in the CNS [33]. Evidence is accumulating to support the capacity of
MTs for neuroprotection against proteinopathy-driven neurodegenerative conditions, such as PD and
Alzheimer’s disease. Some studies indicate that MT-3, the brain-specific isoform with higher Cu(I)
affinity than MT1/2, is decreased in disease [34-38]. Recently, studies have shown that MT induction
by the glucocorticoid analogue, dexamethasone, could block Cu-dependent o-syn aggregation [39].
Figure 2A summarizes the regulation of intracellular Cu, interactions between Cu, a-syn, and MT
and the induction of MT by dexamethasone. Although MT binds Cu avidly, increased MT expression
may also exert a neuroprotective action by efficiently scavenging intracellular ROS generated by
Cu(I)/Cu(Il) redox cycling. MT levels also respond to the concentration of intracellular metal ions via
the metal-dependent transcription factor-1 (MTEF-1) [40]. In the brain, MT-1/2 is strongly expressed
by astrocytes and has been shown to be elevated in astrocytes in post-mortem tissue of PD cases [41].
While protoplasmic astrocytes in PD do not show a typical reactive phenotype, they do display
abnormal «-syn accumulation [42]. Astrocytic expression of x-syn is associated with the induction of
neurotoxic microglia, which leads to neurodegeneration [43]. Therefore, elevating the neuroprotective
and anti-oxidant potential of astrocytes via MT induction may hold therapeutic value. MT secretion
may also enable suppression of extracellular ROS production due to raised Cu levels in the extracellular
space. Although chronic administration of dexamethasone or other glucocorticoid analogues may not
be appropriate therapeutically, other MT inducers with less well-defined targets on the MT promoter,
such as the food additive, 3-thujaplicin, and the cGMP-specific phosphodiesterase type 5 inhibitor,
sildenafil, have been described [44,45]. One limitation of this approach may be the possible side effects
of MT induction in unintended cell types. Ideally, it would be desirable to design cell-type specific
targeting of a potentially therapeutic MT inducer for PD treatment.

Increased brain MT expression is also observed in the atypical Parkinson’s disease, multiple
system atrophy, and is associated with pathological a-syn aggregates. The heightened MT levels,
notably MT-3, seen here were theorized to be a result of protective upregulation in the brain [46].
Indeed, MT-3 appears to have particular neuroprotective capacity against Cu-bound amyloid [47].
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Overall, it is clear Cu dysregulation, which is observed in PD, may result in labile Cu in several fluids
and cellular compartments. This may in turn lead to accelerated x-syn aggregation and contribute
to PD disease progression. Cu in the extracellular fluid, being present as Cu(II), may be of particular
importance due to the production of ROS and through interaction with extracellular o-syn (Figure 2A),
although extracellular o-syn may have greater relevance in atypical PD variants, such as multiple
system atrophy and dementia with Lewy bodies [48]. It has also been suggested that the apparent
under-metallation of SOD1 observed in PD may be due to an under-supply of Cu and that this
may be overcome by Cu supplementation therapy [27]. Much as targeting of potentially therapeutic
MT inducers to specific cell types may be required to avoid unwanted side effects, it may also be
advantageous to induce MT biosynthesis in tandem with Cu supplementation to block the damaging
effects of excess Cu supplied via non-cell-type-specific drugs such as CuATSM.

4. Ca Dysregulation in Parkinson’s Disease

Initial studies by Yamada et al. (1990) provided the first indication of a role for Ca in PD
pathogenesis, finding that dopaminergic neurons of the Sn that express detectable levels of the vitamin
D-dependent calcium buffering protein, Calbindin-D28k (CB), were preferentially spared in PD patients
compared to control cases. These data suggested that an important factor in the pathogenesis of
a-synucleinopathies could be the low Ca(Il) buffering capacity of vulnerable neurons [49]. There is no
evidence that resting intracellular Ca levels increase with age. However, in aged neurons, the return
time to resting levels is believed to be significantly increased after a stimulus [50]. Initiating cell death
via the intrinsic pathway, a-syn oligomers have been shown to induce mitochondrial depolarization,
inhibit mitochondrial complex I, and activate Ca signaling [51]. Oligomeric x-syn can also mediate
the influx of Ca(Il) [52]. Furthermore, the Isradipine Ca-channel blocker found to be neuroprotective
in PD models that is now in phase III PD clinical trials (STEADY-PD) abrogated Ca-dependent
mitochondrial oxidative stress [53]. Oligomeric forms of x-syn were found to bind and activate the
endoplasmic reticulum calcium pump (SERCA) in vitro leading to Ca dysregulation [54]. Altered ER
Ca control has also been reported in LRRK252019 pPD jPSC-derived neurons [55]. Moreover, -syn
can interact with Ca(Il) influx to mediate increased oxidative stress [56,57] and raised intracellular
free Ca(Il) and oxidative stress combined synergistically to promote the intracellular aggregation of
a-syn [58]. Indeed, incubation of x-syn with Ca in the presence of hydrogen peroxide induced the
formation of intramolecular dityrosine cross-links [59] and led to the formation of stable tetramers that
surface assemble as annular oligomers [58]. Furthermore, Ca binding to «-syn was found to stimulate
membrane binding and induce vesicle clustering with Ca binding to a-syn with Kd = 21 uM [60].
Indeed, recent pathological studies showed that, in the atypical Parkinsonian syndrome, dementia with
Lewy bodies, a-syn aggregates were almost completely absent from CB-positive neurons in multiple
brain regions. In the same study, analysis of a mouse model of PD that employed unilateral lesion with
the mitochondrial complex I inhibitor, rotenone, demonstrated similar exclusion of x-syn inclusion
bodies from CB-expressing neurons in the lesioned hemisphere [61,62]. Recently, Mosharov and
co-workers found that the increased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) sensitivity
of Sn neurons was related to a-syn-dependent Ca uptake [63]. The mechanism of rotenone-mediated
a-syn aggregation has also recently been linked to its ability to mediate raised intracellular Ca, whereby
the calcium/GSK3beta signaling pathway was implicated in rotenone-induced «-syn aggregation and
intracellular Ca chelation was shown to ameliorate rotenone-induced impairments of autophagy [64].
More recently, Ca was shown to increase the lipid binding of x-syn to isolated synaptic vesicles via its
N terminus and C terminus. Indeed, Ca mediates the localization of «-syn at the pre-synaptic terminal,
and an imbalance in Ca can cause x-syn aggregation ex vivo and in vitro [65].

5. Calbindin D-28k Induction as A Neuroprotective Strategy in Parkinson’s Disease

Ca homeostasis is key to numerous important pathways that maintain healthy cellular function
and is closely regulated by endoplasmic reticulum and mitochondrial stores and via several specific
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proteins that modulate Ca buffering in neurons, including CB, calretinin, and parvalbumin [65].
Work by German and co-workers on idiopathic PD and on MPTP monkey and mouse models illustrated
the vital importance of Ca buffering proteins, showing that, in CB-negative regions, neurons were
lost preferentially compared to neurons that were CB-positive, which were relatively spared [66].
Reduced levels of CB mRNA in the dentate gyrus were found in the post-mortem brain tissues
from patients with dementia with Lewy bodies [67]. Furthermore, relative sparing of Sn dopamine
neurons containing CB was observed in PD patients [49]. Indeed, Yuan and co-workers found that
mice overexpressing CB were characterized by reduced neuronal loss in an oxidative stress PD
mouse model [64]. Recently, it was shown that treatment with the vitamin D analogue, calcipotriol,
resulted in a dose-dependent increase in CB expression in SH-SY5Y neuroblastoma cells. Furthermore,
calcipotriol suppressed cytoplasmic o-syn aggregate formation promoted by raised intracellular Ca(II)
by a CB-dependent mechanism [68]. This indicates that, by promoting the expression of CB at the
transcriptional level, calcipotriol was able to target raised neuronal intracellular free Ca(Il) and inhibit
a-syn aggregation. With a dissociation constant for Ca(Il) ions of 393 nM [69], CB binds calcium
almost two orders of magnitude more avidly than o-syn. The Ca(Il) concentration in resting neurons is
~100 nM, so Kd values of both CB and o-syn are well above the homeostatic level, with both proteins
exhibiting properties of calcium sensors, becoming occupied only during short-lived neuronal calcium
transients [65,70]. Furthermore, recent studies have shown that virus-vector-mediated neuronal
targeting of CB expression could ameliorate neurodegeneration in an MPTP mouse model of PD [71].
Figure 2B summarizes the regulation of intracellular Ca and the interaction with x-syn, highlighting
the potentially therapeutic induction of CB transcription.

6. Fe Accumulation in Parkinson’s Disease

Fe is important for oxygen transport by red blood cells, as a cofactor for enzymes, such as
aconitase and catalase, and in electron transport proteins. Sporadic and familial PD is associated with
Fe dyshomeostasis in the Sn. Fe levels within the midbrain that are abnormally elevated compared
to normal ageing is a pathological feature of PD, and it has been suggested that neurodegenerative
processes observed in PD may be initiated by aberrant reactions between dopamine metabolites
and redox-active Fe(II) /Fe(Ill) as a result of defective regulatory and/or anti-oxidant pathways [72].
Neuronal Fe may overwhelm the mechanisms for Fe storage, thereby releasing it to the cytoplasm,
where it could interact with dopamine oxidation products not contained within secretory vesicles to
form toxic metabolites [73]. Overexpression of a-syn promotes neuronal Fe accumulation, while Fe can
also promote aggregation of this protein in vitro and post-translational modifications of x-syn have also
been found to regulate Fe transport [74]. Indeed, the membrane-bound tetrameric form of x-syn has
been found to show ferrireductase activity that was reduced in PD brain tissue [75]. Both neurons and
microglia are known to accumulate Fe, and the severity of PD symptoms correlates with the extent of
Fe accumulation [76,77]. Recent studies have indicated that microglial Fe accumulation may promote a
senescence-associated secretory phenotype capable of inducing neuronal «-syn aggregation [78].
Ceruloplasmin (Cp) is a multicopper containing ferroxidase involved in multiple physiological
pathways including Cu transport, Fe homeostasis, and anti-inflammatory processes [79]. In the
brain, Cp is produced by astrocytes and intimately linked to Fe efflux [80,81]. The ferroxidase activity
of Cp is dependent upon Cu to catalyze the oxidation of Fe(Il) to Fe(Ill) and subsequent Fe efflux [79].
Additionally, the CSF and Sn of PD patients has decreased ferroxidase activity, which is largely due to
Cp, while also containing Cp that has been oxidatively modified [82-84]. Therefore, decreased Cu and
an increased oxidative environment in the Sn observed in PD could affect the ferroxidase activity of
Cp contributing to Fe accumulation. Moreover, increased neuronal Fe may be related to upregulation
of the Fe uptake protein, divalent metal transporter (DMT-1), and to downregulation of the Fe export
protein, ferroportin. In addition, increased expression of NEDD4 family-interacting protein 1 (Ndfip1),
a protein regulating DMT-1, has been reported in the PD, as well as polymorphisms in the transferrin
gene [85,86].
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The choreographed expression of Fe efflux, uptake and storage proteins that are modulated both
transcriptionally and translationally by a set of Fe regulatory proteins maintain cellular Fe homeostasis.
Under conditions of Fe overload, ferroportin is upregulated and there is a downregulation of Fe uptake
proteins. The principle Fe storage protein, ferritin, maintains homeostatic levels of intracellular Fe by
absorbing excess Fe and by mobilizing stored Fe as needed. Nuclear Receptor Coactivator 4 (NCOA4)
mediates translocation of ferritin to the autophagophore, which subsequently fuses with the lysosome,
wherein the lysosomal cargo, including ferritin, is degraded by lysosomal hydrolases and the liberated
Fe moves to the cytoplasm [87]. As the activity of various rab effector proteins, such as Rabla, are
inhibited by a-syn oligomers, thereby resulting in reduced functioning of the lysosome-autophagy
system, there will also be an abrogation of ferritin turnover. Indeed, recent studies have linked Fe
accumulation to a novel type of cell death pathway distinct from pathways such as apoptosis, named
ferroptosis [72], underlining the importance of Fe dysregulation in neurodegeneration.

The amount of Fe to be stored determines the expression of ferritin via the regulation of ferritin
biosynthesis. This requires the coordinated action of iron responsive elements (IREs) and IRE-binding
proteins (IRPs) that modulate translational efficiency. Indeed, the a-syn gene has been found to
contain an IRE [88]. Ferritin is a large, multisubunit protein that is able to accommodate up to
4000-5000 Fe atoms within its core. Cellular Fe uptake results in the initial binding of Fe atoms to
the cores of ferritin molecules that are not yet fully saturated with Fe. In concert with this filling
up of existing ferritin stores, IRPs are dissociated from ferritin mRNA and that in turn results in
increased translation and synthesis of new ferritin molecules. As Fenton chemistry involving the
redox cycling of free Fe(II) / Fe(I1l) ions would otherwise promote the production of reactive oxygen
species (ROS), the sequestration of Fe by ferritin also effectively detoxifies the metal, suppressing cell
damage. It was shown recently both in the outer retina and using retinal-pigment-epithelial (RPE) cells
in culture that a-syn inhibits the lysosome-mediated degradation of ferritin (ferritinophagy), resulting
in the intracellular build-up of ferritin and consequently of Fe. Rabla over-expression was able to
restore ferritinophagy, indicating that «-syn blockade of lysosomal function by interfering with the
translocation of lysosomal hydrolases via the endomembrane system could cause Fe accumulation as a
consequence of reduced ferritinophagy [89].

7. Could Inducing Endogenous Iron Chelators Be A Therapeutic Option?

As ferritin expression is regulated in response to Fe load, chemicals that target the ferritin gene
promoter could have the potential to chelate excess Fe in PD. However, ferritin is upregulated in
activated microglia, and both activated microglia and increased ferritin expression in microglial
cells has been observed in PD [76,90,91]. Moreover, as the release of Fe from ferritin stores occurs
through the autophagic degradation of ferritin protein, agents that boost biosynthesis of ferritinophagy
components, such as Rabla, could lead to reduced intracellular Fe deposition. In addition to the role of
ferritin in intracellular Fe storage, Fe uptake can be mediated by the extracellular Fe shuttle, transferrin,
and by DMT-1 [92]. Transferrin containing Fe(III) interacts with the cell-surface transferrin receptor
and is endocytosed. Once inside the cell, passage of ferritransferrin through endosome compartments
results in reduction to Fe(Il) by STEAP3 and the acidification of the late endosome causes release of
Fe(II), which is exported to the cytoplasm via DMT1, whereupon apo-transferrin is returned to the
cell surface and released to the extracellular space. Extracellularly, Fe(Il) /Fe(IlI) redox cycling can
efficiently generate ROS by the classical Fenton chemistry.

Interaction between «-syn and components of the endomembrane system could inhibit transferrin
transit, thereby resulting in transferrin accumulation and further increasing the accumulation of
intracellular Fe. Fe(II) can bind to both MT and «-syn in vitro, although with low affinity, and the
redox chemistry of Fe may also contribute to a-syn aggregation via ROS production. Indeed,
recent studies have indicated that Fe can promote x-syn aggregation and transmission by inhibiting
autophagosome-lysosome fusion mediated by transcription factor EB [93]. The passage of Fe to
ferritin after the release by transferrin involves the Fe binding proteins, poly(C)-binding protein 1/2
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(PCBP-1/2) [92,94]. PCBP-2 also promotes Fe efflux via the sole iron export transporter, ferroportin [92].
Meisl, a member of the TALE (three amino acid loop extension) family of homeodomain transcription
factors, was found recently to induce transcription of PCBP-2 [95] and Meis1 overexpression inhibited
angiotensin II activation of the Akt-mTOR pathway. Figure 2C outlines the interactions of Fe(II)/Fe(III)
that may be relevant to PD. It is tempting to speculate that synthetic angiotensin II receptor effectors
or modulators of Meisl may be able to upregulate the expression of PCBP1/2 and influence the
intracellular Fe equilibrium.

8. Potential for Novel Approaches to Metal Dysregulation in Parkinson’s Disease

The role of metal ions in the pathogenesis of PD, in particular those of Cu, Ca, and Fe, has attracted
considerable recent attention. Indeed, Dare et al. (2017) have suggested that excessive juvenile exposure
to dietary Fe could be a major contributor to elevated brain Fe and represent a significant risk factor
for PD [96]. There are currently no mechanism-based neuroprotective drugs to treat PD. We have
highlighted recent studies that suggest that transcriptional inducers, such as vitamin D analogues and
synthetic glucocorticoids, may be novel mechanism-based drugs against metal dysregulation in PD.
Further research is needed to determine suitable candidates where metal chelation therapy for Cu,
Ca, or Fe may be useful. The application of the induction of endogenous metal regulatory proteins,
rather than chemical metal chelators such as deferiprone, may offer a potentially less toxic approach to
treating PD and related diseases.
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a-syn a-synuclein

CNS central nervous system
CSF cerebrospinal fluid

LB Lewy body

PD Parkinson’s disease
DMT1 divalent metal ion transporter 1
MT metallothionein

CB calbindin-D28k

PCBP-1 poly(C)-binding protein 1
CTR1 Cu transporter 1

Sn substantia nigra
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