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Abstract: T-cell mediated immune responses should be regulated to avoid the development of
autoimmune or chronic inflammatory diseases. Several mechanisms have been described to regulate
this process, namely death of overactivated T cells by cytokine deprivation, suppression by T
regulatory cells (Treg), induction of expression of immune checkpoint molecules such as CTLA-4
and PD-1, or activation-induced cell death (AICD). In addition, activated T cells release membrane
microvesicles called exosomes during these regulatory processes. In this review, we revise the
role of exosome secretion in the different pathways of immune regulation described to date and
its importance in the prevention or development of autoimmune disease. The expression of
membrane-bound death ligands on the surface of exosomes during AICD or the more recently
described transfer of miRNA or even DNA inside T-cell exosomes is a molecular mechanism that will
be analyzed.
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1. Mechanisms of Immune T Cell Tolerance

The maintenance of immune homeostasis is dependent on immune tolerance towards self-tissues
and is a complex process, necessary to avoid autoimmunity. In the case of T cells, two types of
tolerance are needed, central and peripheral tolerance. Central tolerance takes place during thymic
maturation, achieving the deletion of autoreactive immature thymocytes, a process also known as
negative selection [1]. Peripheral tolerance comprises several mechanisms acting on mature T cells in
peripheral tissues or circulation [2]. Among the known T-cell peripheral tolerance mechanisms are
the following:

(i) If the antigen is presented by cells that are not professional antigen-presenting cells (APC), or by
immature APC, they do not provide co-stimulation signals and induce T cell anergy [3–5].

(ii) The immunosuppressive activity of regulatory T cells (Treg) [6].
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(iii) The regulated termination of T cell immune responses [7], which, in turn, is dependent on several
complex mechanisms. In fact, other possible mechanisms could still be discovered.

On one hand, T cell activation results in the induction of the expression of negative regulators of
its own activation, the so-called immune checkpoints. The first checkpoint molecule to be described
was CTLA-4 [8]. CLTA-4 competes with CD80/CD86 for the T cell co-stimulator CD28 [9], and, in
addition, transmit inhibitory signals inside T cells [10]. Immune regulation by CTLA-4 is important
since CTLA-4 knockout mice develop fatal lymphoproliferative disorders [11] and mutations in the
CTLA-4 gene have been associated in humans with an increased risk of autoimmune disease [12,13].
Another important checkpoint molecule is PD-1 [14], which is also expressed on the surface of T cells
upon activation, and that, by binding to its ligands PD-L1 and PD-L2, activate tyrosine phosphatase
activities promoting the turning off of tyrosine kinase-mediated activating signals [15]. This mechanism
is important to down-modulate inflammation in peripheral tissues in a physiological manner [16].
The use of blocking anti-CTLA-4 and anti-PD-1 antibodies in the immunotherapy of cancer has given
excellent results, and this has been recognized with the Nobel Prize 2018 granted to the pioneers in
the field, Jim P. Allison and Tasuku Honjo [17]. Other immune checkpoint molecules that regulate
immune function are LAG-2, TIM-3 or TIGIT [18].

On the other hand, the deprivation of immuno-stimulatory cytokines such as IL-7, IL-2 and
IL-15 due to T cell migration to peripheral tissues from spleen or lymph nodes is the main cause of
down-modulation of T cell responses, especially those mediated by CD8+ T cells, unable to produce
their own cytokines [19]. Bim, a BH3-only, pro-apoptotic member of the Bcl-2 family, is the main
regulator of this process, and defects in its expression are associated with autoimmunity [20,21].

Finally, the termination of immune responses is also mediated by activation-induced cell death
(AICD) of T cells. The main regulator of AICD is the Fas/Fas ligand (FasL) system [22,23], and
mutations in Fas or FasL are the cause of the autoimmune lympho-proliferative syndromes (ALPS) [24].
Apo2L/TRAIL (Apo2 Ligand/TNF-related apoptosis-inducing ligand) is another member of the FasL
death ligand family and it has also been implicated in human T cell AICD [25,26]. It rather functions
as a fine-tuning modulator of IL2-dependent CD8+ T cell proliferation [27] or in the elimination of
CD8+ T cells activated in the absence of CD4+ T cell help [28]. No autoimmune disease is known to be
associated with TRAIL mutations, although TRAIL-knockout mice are more sensitive to the induction
of experimental autoimmune diseases [29].

2. Exosomes in Immune Regulation

2.1. Exosomes in Immune Cells

Exosomes are secreted extracellular membrane vesicles, with a particular lipid and protein
composition, and size between 30 and 120 nm [30]. These exosomes are stored in cytoplasmic
multivesicular bodies as intraluminal vesicles before secretion. A wide range of cell types are able to
secrete exosomes such as melanocytes [31], platelets [32], trophoblasts [33], intestinal, prostate and
intraocular epithelial cells [34–36], and, of course, also immune cells such as dendritic cells [37,38],
B lymphocytes [39], T lymphocytes [40,41], neutrophils [42] and mast cells [43]. In addition, exosomes
are present in blood plasma [44], colon mucosa [45], in lactating mammary glands and milk [46,47],
human urine [48] and human bronco alveolar fluid [49]. On the other hand, exosome secretion has
been also described in different types of tumor cells, and it has been proposed to play an important
role in tumorigenesis and metastasis [50,51].

Regarding exosomes produced by activated T cells, proteomic and immunoblot studies [52,53]
have shown the expression of proteins present in most exosomes, such as the membrane tetraspanins
CD63 and CD81, annexins and major luminal proteins such as actin and tubulin isoforms, specific
heat-shock proteins, enolase and GAPDH, but also of proteins related with immune function such
as HLA-I, β2-microglobulin, components of the TCR/CD3 complex and specific integrins, among
others (see Figure 1). Of note, the membrane-associated ATPase VCP has been detected in exosomes
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from leukemic T cells, but not in exosomes of T cells from healthy donors [52]. Other functional
components of exosomes are regulatory miRNA [54], and in T cell exosomes it has been demonstrated
that the enrichment in specific miRNA in T cell exosomes is dependent on the activity of another major
exosomal protein, the heterogeneous nuclear riboprotein A2/B1 [55]. More recently, the presence of
DNA inside T cell exosomes has been described [56].
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Figure 1. Schematic representation of a T cell derived exosome, showing the location of several of the
most important functional proteins expressed, together with miRNA and DNA.

For a complete repository of proteins and miRNA expressed in exosomes see also the Exocarta
and Vesiclepedia websites http://exocarta.org/index.html; http://www.microvesicles.org.

Exosomes produced by immune cells play a role in the activation of immune responses in many
instances. In this line, exosomes secreted by dendritic cells and B cells, which express MHC-I and
MHC-II on their surface, act as antigen-presenting platforms and participate in T cell priming and
activation [39,57]. In addition, the unidirectional transfer of miRNA from T cells to antigen-presenting
cells has been demonstrated, contributing and/or regulating the final outcome of T cell activation [58,59].

2.2. Role of Exosomes in AICD and in Pregnancy and Lactation

Although immune exosomes play a role in T cell activation, as previously mentioned, their
role in immune regulation processes has been more extensively studied, mainly in the context of
death ligand-mediated T cell AICD. Although it was initially reported that the soluble form of FasL,
generated through the metalloproteinase-mediated cleavage of the membrane protein, retained its
cytotoxic potential [60,61], later studies demonstrated that FasL release in its soluble form due to the
action of metalloproteases is a mechanism of functional down-regulation [62–64]. In addition, Fas
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and TRAIL receptors are physiologically expressed in the cell surface as pre-assembled oligomeric
complexes, forming homo-trimers [65–67]. These complexes are formed through interactions of specific
extracellular cysteine-rich domains called PLAD (pre-ligand assembly domain) [67]. Congruent with
this, a potent pro-apoptotic activity of death ligands is dependent on the oligomerization of death
receptor trimers in supramolecular structures [65,68]. Physiologically, this can only be achieved if
death ligands are displayed on membrane structures: on the plasma membrane of effector cells [69], or
on the surface of extracellular vesicles [70].

Our group described that both FasL and Apo2L/TRAIL are stored inside human T cell blasts
in multivesicular bodies [71], being rapidly released to the supernatant in their bioactive form,
associated with exosomes, upon T cell re-activation [70,71]. This observation was confirmed later on
by other groups [72–74]. Death ligands secreted in this membrane-bound form fully conserve their
death receptor cross-linking efficiency, correlating with their pro-apoptotic potential, thus efficiently
participating in the down-modulation of T cell-mediated immune responses. In addition, a similar
immunoregulatory role has been also described for exosomes produced by activated human NK
cells [75].

Data obtained in mice knockout for the Wiskott-Aldrich syndrome (WAS) protein or in cytotoxic
T lymphocyte (CTL) clones derived from Chediak-Higashi syndrome (CHS) patients gave some cues
to demonstrate the physiological relevance of this mechanism. WAS and CHS are both primary
immune-deficiencies, but they usually progress to autoimmunity. In the case of the WAS knockout
mice, it was demonstrated that autoimmunity manifestations were due to the absence of functional
FasL secretion associated with exosomes from T cells [76]. A similar situation was observed in CTL
clones derived from CHS patients, that, although able to express FasL on their plasma membrane,
were unable to secrete FasL associated with exosomes [77].

In other contexts, it has been described that T cell exosomes expressing FasL also down-modulate
dendritic cell activation, leading to the termination of immune responses [78]. In addition, circulating
extracellular vesicles (EVs) have an immunosuppressive activity [79,80] and this activity is also
dependent on the expression of FasL [81]. This mechanism could be important in preventing self and
foreign antigens from causing chronic inflammation and autoimmunity.

Another physiological setting in which exosome-mediated immune regulation is relevant is
during the development of maternal-fetal tolerance. It has been described that FasL is secreted on
the surface of exosomes by trophoblasts, accomplishing an important function in the attenuation of
the immune response against the fetus and preventing spontaneous abortion [33,82]. In fact, it has
been demonstrated that EVs derived from the serum of pregnant mice prevent further central nervous
system injury in established experimental autoimmune encephalomyelitis [83].

Finally, EVs isolated from breast milk promote Treg development and proliferation, favoring
tolerance processes [46,84].

2.3. Exosomes in Other Immune Regulatory Mechanisms

The implication of exosome release in the other immune regulatory mechanisms described in
Section 1 is less studied, but some reports reveal its importance. Noteworthy, it has been demonstrated that
regulatory T cells (Treg) actively release immunosuppressive exosomes that inhibit IFN-γ secretion and
the proliferation of Th1 effector cells [85]. In addition, Treg-derived exosomes induce the differentiation
of other T cells to the Treg phenotype [86]. In this line, tumor exosomes, and probably other immune
cell-derived exosomes, induce the differentiation of monocytes to monocyte-derived suppressor cells
(MDSC), which suppress T cell proliferation and function [87]. Similarly, membrane PD-L1 [88,89] and
the immunosuppressive cytokine TGF-β [90] have been found recently in tumor-derived exosomes, but
their presence in exosomes mediating physiological tolerance processes has not been described yet.

Finally, EVs from endothelial cells also modulate T cell responses and prevent chronic inflammation
in tissues, in this case through the transfer of anti-inflammatory miRNA [91], and mesenchymal stem
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cells secrete immunosuppressive exosomes, which in fact are being used in clinical trials to prevent
autoimmunity [92–94].

3. Exosomes in Autoimmune and Chronic Inflammatory Diseases

3.1. Exosomes in Rheumatoid Arthritis and Joint Diseases

In general, exosomes produced by inflammatory infiltrated cells are pathogenic in rheumatoid
arthritis (RA) and other joint diseases [95,96]. Exosomes produced by synoviocytes in an inflammatory
environment stimulate articular cells to secrete more inflammatory mediators and degradative
enzymes, contributing to cartilage damage [97–99]. In addition, exosomes located in the synovium of
RA patients, probably produced by proliferating synoviocytes, contain citrullinated autoantigens and
promote inflammation [100,101]. On the contrary, however, exosomes from infiltrated neutrophils into
inflamed joints are protective for chondrocytes through a TGF-β1-mediated mechanism [102].

Regulatory FasL- and TRAIL-containing exosomes produced by activated T cells present in the
synovium could be beneficial to prevent autoimmune damage in rheumatoid disease. It Is known that
T cells present in the synovium of RA patients have a chronically activated phenotype, but contrary to
normal T cell blasts, are resistant to Fas-mediated apoptosis or growth inhibition signals [103–105].
However, our group showed that CD8+ T cells infiltrated in the synovium of RA patients were
susceptible to recombinant TRAIL [104]. In addition, very low amounts of bioactive FasL or TRAIL
associated with exosomes were found in the synovial fluids of RA patients, especially in the late stages
of the disease [104]. This observation could account for the persistence of these T cells in spite of
their sensitivity to TRAIL (see Figure 2, left). These data suggested that bioactive, membrane-bound
TRAIL could be beneficial as an RA treatment. To verify this possibility we generated liposomes (large
unilamellar vesicles, LUV) with a similar lipid composition as natural exosomes, to which recombinant
TRAIL was fixed on their surface by using a Ni+2-bound coordination complex, termed LUV-TRAIL.
These TRAIL-coated liposomes were then successfully used as a therapy in a rabbit model of arthritis,
reducing macroscopic knee inflammation by 70%. The main effects of LUV-TRAIL in the inflamed
tissue were the complete elimination of synovial hyperplasia, together with a substantial reduction
of the inflammatory infiltration, both mononuclear and polymorphonuclear (Figure 2, right) [106].
The reduction of mononuclear infiltration could be related with the effect of the liposomes on T
cells, but the impressive effect on synovial hyperplasia could be due to direct effects on synoviocytes
or to indirect effects on cells that produce synoviocyte-stimulating cytokines, but this point was
not addressed in that study. We must consider that TRAIL also induces the proliferation of certain
populations of synoviocytes in RA [107,108], suggesting that it could be a double-edged sword in RA
treatment. However, it should be still studied if proliferative effects are elicited only by soluble TRAIL
and if membrane- or liposome-bound TRAIL, with a higher cross-linking efficiency, would rather
induce apoptosis or cell cycle inhibition, as it has been demonstrated in tumor models [109–111].

In other studies in preclinical models, immunosuppressive exosomes produced by dendritic
cells treated with IL-10, IL-4, or transfected with FasL also showed beneficial effects on rheumatoid
disease [112–114]. In those studies, it was reported that the therapeutic mechanism, although mediated
by death ligands, did not involve apoptosis. This could be probably due to cell cycle inhibition mediated
by the induction of p21 expression in activated T cells by exosome-bound FasL and/or TRAIL [115–117].
This mechanism is also influencing the pathogenesis of autoimmune lymphoproliferative syndromes
due to mutations in Fas or FasL and should be kept in mind for their treatment [115]. In fact, one of the
most effective treatments in these syndromes, especially in severe cases, is rapamycin-based compounds
affecting T cell cycle and proliferation [118,119].
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 Figure 2. Left, schematic description of the situation in an arthritic lesion with the prototypical
pathologic hallmarks: inflammatory infiltrate, blood vessel neo-formation, synovial hyperplasia, and,
as a consequence, bone erosion and cartilage destruction. This situation is associated with a low
concentration of regulatory FasL and/or TRAIL-containing exosomes, probably favoring T cell chronic
infiltration. Right, situation upon intra-articular delivery of large unilamellar vesicles decorated
with recombinant TRAIL (LUV-TRAIL), resulting in the elimination of synovial hyperplasia and in a
reduction of the inflammatory infiltrate (based on data in references [103,105]).

3.2. Exosomes in Other Autoimmune and Chronic Inflammatory Diseases

Less information is available on the role of exosomes in the pathogenesis and their possible use as
a treatment of other autoimmune or chronic inflammatory diseases.

In the case of multiple sclerosis (MS), it is known that exosomes can cross the blood-brain barrier
and could thus contribute to spreading brain antigens to the periphery for their later presentation
by antigen-presenting cells of the immune system [120]. However, it seems that exosomes generated
physiologically in the Central Nervous System have a positive influence in tissue homeostasis,
enhancing myelination and neuroprotection [120,121]. In any case, in an experimental autoimmune
encephalomyelitis (EAE) murine model, it was clearly demonstrated that the injection of vesicles
from microglial cells into the brain of mice developing the disease substantially increased its severity.
In this line, mice deficient in acid sphingomyelinase, that show impaired EV secretion, were protected
from EAE [122]. In addition, it has been shown that EVs derived from human brain microvascular
endothelial cells are able to activate CD4+ and CD8+ T cells, probably contributing to autoantigen
presentation [123]. These data, although limited, point to a pro-inflammatory role of EVs in MS when
pathogenic conditions are favored.

Another pathology in which exosomes have been implicated is in chronic inflammatory lung
disease [124]. In the case of chronic obstructive pulmonary disease (COPD), a very frequent pathology
mainly caused by cigarette smoking, EVs derived from human lung tissue contain miR-210, which blocks
Atg7 expression, preventing autophagy and causing myofibroblast differentiation and fibrosis [125].
In asthma, the expression levels of CD81, CD36 and HLA-DR in airway exosomes are increased [126].
The transfer of CD36+ exosomes would favor asthma progression by promoting inflammation through
TLR4 and TLR6 complex formation [127]. Exosomes from bronco alveolar fluid of asthmatics contain
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functional leukotriene-producing enzymes, causing inflammatory mediator secretion by bronchial
epithelial cells [128]. In this illness, exosomes produced by activated neutrophils or eosinophils
infiltrated in the airway-surrounding tissue are also proinflammatory and supports the pathology [129].

In another allergic condition, contact hypersensitivity, it has been shown that tolerance induction
to hapten-conjugated self-antigens was due to the secretion of exosome-like nanovesicles by T CD8+

suppressor cells, which contained miRNA-150 and inhibited the activation of effector T cells [130]. Later
on, it was demonstrated the role of macrophages in this T CD8+ suppressor-mediated mechanism [131].

In type I diabetes, β pancreatic cells produce exosomes that contain autoantigens, favoring
autoreactive T cell activation and disease [132–134]. Recently, a new mechanism of pathogenesis
involving T-cell derived exosomes has been described [135]. In this study, the presence of specific
miRNA and its transfer to pancreatic β cells led to β-cell death and expression of chemokine genes,
that would increase in turn further infiltration of activated T cells.

The implication of exosomes in the pathogenesis of ulcerative colitis has been also suggested [136],
but experimental data supporting this notion are scarce. The proteomic analysis of serum from dextran
sulfate-induced acute ulcerative colitis in mice has given, however, some clues that point to this
direction [137]. In this study, it has been shown that exosomes derived from these mice can induce
activation of p38 and ERK in macrophages, leading to the active secretion of the pro-inflammatory
cytokine TNF-α. In addition, the mentioned proteomic study demonstrated an increase in acute-phase
proteins and in immunoglobulins able to activate complement in those exosomes with respect to those
of normal mice.

Finally, the presence of pro-inflammatory exosomes has been shown in the sera of systemic
lupus erythematosus patients. These exosomes induce the secretion of TNF-α and IFN-α in PBMC
through a TLR-mediated mechanism [138]. In addition, several studies suggest a pathogenic role for
renal-derived exosomes in lupus nephritis [139].

The role of exosomes in the pathologies indicated above is summarized in Table 1.

Table 1. Summary of the role of exosomes, depending on their procedence, on the development of the
pathology indicated. +, exosomes favor pathology development; −, exosomes alleviate the pathology;
?, not known.

Exosomes Produced by Role in Pathology

Rheumatoid arthritis Inflammatory infiltrate +
Synoviocytes +
Neutrophils −

T cells (death ligand containing; defective expression) −
Multiple sclerosis Physiological CNS tissue −

Activated microglia +
Brain microvascular endothelium +

T cells ?

Lung disease: COPD Lung tissue from patients +

Asthma Airway tissue from patients +
Bronco alveolar fluid from patients +

Neutrophils/Eosinophils +
T cells ?

Contact hypersensitivity T CD8+ suppressors −
Type 1 diabetes β pancreatic cells +

T cells +

Ulcerative colitis Inflamed intestinal tissue +
T cells ?

SLE Sera

Lupus nephritis Renal tissue (urine) +
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It should be noted that most of the immunosuppressive mechanisms present in exosomes and
that normally regulate tolerance induction are used by tumors to evade immune surveillance and are
susceptible to therapeutic intervention. However, this extensively studied topic exceeds the purpose
of this review.
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