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Abstract: It is known that many diseases are caused by mutations or abnormalities in microRNA
(miRNA). The usual method to predict miRNA disease relationships is to build a high-quality
similarity network of diseases and miRNAs. All unobserved associations are ranked by their
similarity scores, such that a higher score indicates a greater probability of a potential connection.
However, this approach does not utilize information within the network. Therefore, in this study,
we propose a machine learning method, called STIM, which uses network topology information
to predict disease–miRNA associations. In contrast to the conventional approach, STIM constructs
features according to information on similarity and topology in networks and then uses a machine
learning model to predict potential associations. To verify the reliability and accuracy of our method,
we compared STIM to other classical algorithms. The results of fivefold cross validation demonstrated
that STIM outperforms many existing methods, particularly in terms of the area under the curve.
In addition, the top 30 candidate miRNAs recommended by STIM in a case study of lung neoplasm
have been confirmed in previous experiments, which proved the validity of the method.

Keywords: miRNA; network embedding; heterogeneous network; link prediction; topology
information; machine learning

1. Introduction

MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs with a length of
approximately 20–24 nucleotides. miRNAs control the degradation and expression of messenger RNA
through complementary base pairing [1]. Studies have shown that miRNAs play important roles in
many biological activities, such as cell development, differentiation, apoptosis, metabolism, and signal
transmission [2,3]. Furthermore, abnormalities in miRNA mutation and regulation are associated with
many diseases. Therefore, identifying disease–miRNA associations can facilitate the study of disease
pathogenesis and treatment options [4]. However, biological experiments are limited by high cost and
long execution times. So developing a computational approach to identify potential disease–miRNA
connections is imperative. This challenge is known as the link prediction problem in miRNA–disease
networks [5–13].

Research predicting the links between diseases and miRNAs is primarily based on two aspects:
(i) similarity networks, and (ii) machine learning models. Jiang et al. proposed the first calculation
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method for constructing a human disease–miRNA network and calculated the similarity score by
accumulating hypergeometric distributions [14]. To improve their approach, the authors subsequently
used Bayesian models to integrate multiple genomic data; they then calculated the functional
similarity between genes on the basis of the biological knowledge that miRNAs regulate diseases
through their target genes [15]. Bioinformatics researchers have proposed other network based
computing models [16,17] for predicting the associations between miRNAs and diseases. Xuan
et al. have calculated miRNA functional similarity on the basis of disease terms and phenotype
similarity. They have used a weighted k nearest neighbors algorithm to prioritize miRNA–disease
associations, in a method called human disease related miRNA prediction (HDMP) [18]. In [19],
Chen et al. have proposed the random walk with restart for miRNA–disease association (RWRMDA)
model, which identifies potential miRNA–disease pairs through random walks on miRNA functional
similarity networks. Shi et al. have used miRNA–target associations, disease–gene associations, and
protein–protein interaction networks to improve the RWRMDA model [20]. Xuan et al. have proposed
a model for miRNAs associated with disease prediction (MIDP), which uses different node features
based on random walks with restarts [21].

Machine learning methods also have numerous applications for predicting disease associated
miRNAs [22]. In [23], Jiang et al. have proposed using a support vector machine (SVM) to mine
potential miRNA–disease relationships. Their method involves using a feature set consisting of
a miRNA functional similarity score associated with each disease, and a performance similarity
score between a disease and other miRNA associated diseases. On the basis of miRNA expression
information, Xu et al. have trained SVMs on miRNA target gene disorder networks to predict
miRNA–disease associations [24]. Moreover, Chen et al. have proposed a semi supervised method
based on regularized least squares, called regularized least squares for miRNA–disease association
(RLSMDA) [25].

The methods described above integrate known miRNA–disease associations, disease–disease
similarity datasets, and miRNA functional similarity networks to predict diseases without negative
samples. However, methods based on similarity primarily rely on biological knowledge outside
the network to calculate the similarity between nodes. To our knowledge, the extensive topological
information between biological network nodes has not been utilized in similarity-based methods.
Nevertheless, studies have shown that the numerous topological interactions between biological
entities in heterogeneous networks are highly relevant to predicting associations [26,27].

In this study, we propose a prediction method called STIM, which uses information on similarity
and topology. STIM can simultaneously predict the relationship between hundreds of diseases and
hundreds of RNAs, thus serving as a systematic method to analyze correlations. The results of our
evaluation via fivefold cross validation showed that STIM outperforms many previous methods.
Moreover, 95% of the top 30 miRNA molecules predicted by STIM in a case study of lung neoplasm
have been manually confirmed in our experimental studies.

2. Materials and Methods

We propose a novel method, called STIM, to predict disease–miRNA associations. The framework
for STIM is shown in Figure 1 and it contains three steps. First, a bilayer network with abundant
information is constructed with different integrated data sources (Figure 1a). Second, given the bilayer
network, two kinds of feature vectors are generated composed of similarity features and network
embedding features guided by DeepWalk. In the experiment, the Deepwalk algorithm can be obtained
from the deeplearning4j library (http://deeplearning4j.org/) [28]. Subsequently, for the similarity
features, a corresponding feature vector is passed through an auto-encoder to obtain lower-dimensional
features (Figure 1b). Third, given the two types of feature vectors obtained in last step, a prediction
score is calculated based on the deep forest model, to predict the association between diseases and
miRNA (Figure 1c).

http://deeplearning4j.org/
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Figure 1. Workflow of STIM. (a) Network construction based on different resources. (b) Two
kinds of feature extractions, one of which is passed through an auto-encoder. (c) Deep forest-based
association prediction.

2.1. Constructing the Bilayer Network

We first constructed a bilayer network—including a disease–miRNA association network, a disease
similarity network, and a miRNA similarity network—which was integrated with various data sources.
To construct the disease–miRNA association network, we downloaded known disease–miRNA
associations from HMDD v2.0 [29], acquiring 6441 known disease–miRNA associations between
336 diseases and 577 miRNAs after filtering out duplicate records, as shown in Table 1.

Table 1. Disease–miRNA associations network.

Node Type Number

Disease 336
miRNA 577

Disease–miRNA associations 6441

To construct the disease similarity network, we downloaded data from the HumanNet
database [30], which contains an associated log likelihood score (LLS) of each interaction between
two genes or gene sets. As functionally similar genes tend to be associated with similar diseases,
we calculated the disease similarity (DS) score to determine the edges among diseases. The DS score is
calculated as follows:

DS(di, dj) =


∑g1∈S(di)

LLS(g1,S(dj))+∑g2∈S(dj)
LLS(g2,S(di))

|S(di)|+|S(dj)|
, |S(di)|+ |S(dj)| 6= 0

0, otherwise
(1)

where S(di) and S(dj) represent the gene sets related to diseases di and dj, respectively. LLS(g1, S(dj))

is the log likelihood score between gene g1 and gene set S(dj). And LLS(g2, S(di)) is calculated in the
same way. In a word, an edge exists if the DS score is greater than 0. Since there are 336 diseases in
the disease–miRNA association network, we ultimately obtained a disease similarity network with
112,896 weighted edges based on the score calculated above.

To construct the miRNA similarity network, we collected four data sources altogether, including
verified miRNA–target associations, miRNA family information, miRNA cluster information,
and verified miRNA–disease associations. These were downloaded from miRTarBase, miRbase,
miRbase, and MISIM, respectively. Specifically, for the miRNA–target associations, two miRNAs are
connected if they share common targets. The edge weight (defined as RST) is the number of shared
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targets between miRNAs. For the miRNA family information (defined as RSF), if two miRNAs belong
to the same family, their RSF value is 1, and otherwise 0. For the miRNA cluster information (defined as
RSC), if two miRNAs belong to the same cluster, the RSC value of the two miRNAs is 1, and otherwise
0. For the miRNA–disease associations (defined as RSD), we get the RSD from MISIM. Finally, we
combine the RST, RSF, RSC, and RSD to calculate the ultimate similarity score (RS) between miRNAs
as follows:

RS(ri, rj) = α× RST(ri, rj) + β× RSF(ri, rj) + γ× RSC(ri, rj) + δ× RSD(ri, rj) (2)

where α, β, γ, and δ are the corresponding parameters to adjust the weights of the four parts. Various
values for these parameters have a different effect on the final prediction performance. In our
evaluation, the best performance was achieved when α, β, γ, and δ were set to 0.2, 0.1, 0.2, and
0.5, respectively.

2.2. Feature Extraction and Selection

Feature engineering plays an important role in machine learning problems [31]. Feature
engineering refers to the conversion of raw data into data that can be used for training. To obtain a
better set of features, we constructed features based on the similarity information provided by external
databases and the topology information inside the network [32,33]. This included two types of features,
as shown in Figure 1b: (i) similarity features pertaining to disease and miRNA—i.e., the DS matrix and
RS matrix calculated in last section; and (ii) DeepWalk-based features [34].

According to the DS matrix, the similarity feature for a specific disease is the corresponding row
vector of the DS matrix, in which each element represents its similarity to other diseases. The length
of each disease similarity feature vector is 336, corresponding to the number of disease nodes in the
bilayer network. Similarly, according to the RS matrix, we can derive a miRNA similarity feature vector
whose length is 577. In contrast to extracting similarity features from disease or miRNA similarity
networks, DeepWalk-based features are extracted from the disease–miRNA association network using
a network embedding algorithm called DeepWalk. Details for this algorithm can be found in the
following section. In short, DeepWalk uses random walks on the association network to learn the latent
representations of each node. As a result, each disease and miRNA node is represented as an n-dim
feature vector. For each disease–miRNA pair, its feature vector is the concatenation of the disease
vector and miRNA vector. In particular, the length of the feature vector derived from similarity-based
features is the sum of the number of diseases and miRNAs, which is a very large sum. Therefore, an
auto-encoder is used to reduce the dimensions of the features in the feature vector and automatically
identify significant feature combinations for each disease–miRNA pair. Figure 2 shows the feature
extraction process and how disease–miRNA pair feature vectors are generated. The parameters used
in Figure 2 represent that m = 336 diseases; h = 577 miRNA; and n is the dimension of the vector. For
the disease-disease DS,n is 336× 336; while for the miRNA-miRNA RS, n is 577× 577; and for the
disease-miRNA pair, n is 336 + 577 = 913. Since the feature vector dimension of disease-mirna pair
generated based on similarity is 913, which is relatively large, dimensionality reduction processing is
required. After auto-encoder processed, the shape of disease-miRNA pair is reduced to 256. But For
the deepwal-guided feature vector, the disease and miRNA nodes, n = 128; the disease-mirna pair,
n is 128 + 128 = 256 dimensions. The eigenvector dimension of the final disease-mirna pair is 2× n.
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Figure 2. A schematic diagram of generating two kinds of eigenvectors. (a) the upper part: the
similarity based feature vector: a n-dimensional disease-miRNA pair feature vector is obtained by the
auto-encoder processing the dimension reduction of the cascaded m-dimensional disease feature vector
and h-dimensional miRNA feature. (b) the lower part: the feature vector generated based on DeepWalk:
a 2n-dimensional disease-miRNA pair feature vector is obtained by the cascaded n-dimensional disease
feature vector and n-dimensional feature.

2.2.1. Mining Network Topology Information Based on Deepwalk

DeepWalk, a deep learning method, learns latent topology information by randomly “walking”
through the network, and outputs lower-dimensional vectors to represent the each node in the network.
DeepWalk mainly consists of two parts. First, a random walk generator randomly and uniformly
selects nodes and generates a fixed-length random walk sequence. For each node vi, the random
walk generator generates γ sequences of length t. Second, for each walk, the SkipGram algorithm is
used to update the vector representation Φ of the nodes. The SkipGram maximizes the co-occurrence
likelihood of the nodes that come into view within a window w to update the node’s representation
vector Φ using independent assumptions as follows:

Pr({vi−w, ...., vi+w} \ vi | Φ(vi)) = Πi+w
j=i−wPr(vj | Φ(vi)) (3)

where w in Equation (3) is defined as the size of the window, which is set as w = 5. Φ denotes the latent
topological representation vector of the each node vi in the association network. Φ is represented by
the matrix |V| ∗ n, as shown in Figure 2, where |V| is the number of nodes and n is the dimensions of
the representation vector for each node. To speed up training, Pr(vj|Φ(vj)) can be approximated using
Hierarchial Softmax [35] by assigning each node to the leaves of a binary tree. Then, Pr(vj|Φ(vj)) can
be calculated as follows:

Pr(vj | Φ(vj)) = Πlog|V|
l=1 1/(1 + e−Φ(vi)Ψ(bl)) (4)

where Ψ(bl) denotes the parent of tree node bl , bl ∈ (b0, b1, b2, . . . . . . , blog|v|), a sequence of tree vertices
used to identify the vertex vj, where b0 is the root node and blog|v| is node vj.

After properly training, the output of DeepWalk is a latent topological representation vector for
each node in the original network (i.e., an n-dimensional vector) as shown in the bottom of Figure 2.
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2.2.2. Constructing the Sample Space

As is shown in Figure 2, we concatenate the disease feature vector and miRNA feature vector
to obtain the disease–miRNA pair feature vectors, which are fed subsequently into a deep forest
model for link prediction. The number of disease nodes in the disease–miRNA association network
is 336, and the number of miRNA nodes is 577. When constructing samples by splicing, the sample
space capacity is 193,872. There are 6441 known disease–miRNA associations, regarded as positive
samples in the training, whereas there are 187,431 unlabeled samples. The ratio between positive and
unlabeled samples is thus 1:29. Statistically, there are only a small number of potential associations in
unlabeled samples. By constructing samples, those that are potential associations can be diluted, so
it is feasible to select a small number of negative samples from unlabeled samples to ensure that the
ratio between positive and negative samples is 1:1. Here, we’re assuming that the number unknown
positive associations is of the same order as the number of known associations.

2.3. Deep Forest-Based Association Prediction

We obtained the similarity matrix and topological vector matrix based on the disease–miRNA
association network, as described in the previous section, and constructed the sample space by splicing.
In order to combine the similarity information and the internal topology information of the network,
we used the same models for predictions with the two sample sets along with weighted scores to form
the final results [36,37].

In the experiment, by setting the dimension parameter n of the representation feature vector based
on DeepWalk, we can control the dimensions of the samples, such that the generated sample features
are beneficial for training. The dimensions of the sample based on the disease and miRNA similarity
matrix are the sum of the number of network nodes, which is not only too large but too sparse and not
conducive for training. To optimize the features and obtain advanced features, as described above,
we used an auto-encoder [38] to learn the new lower-dimensional features. The self-encoder can be
constructed with a deep neural network, which belongs to the coding. The encoder contains three
layers, with 913, 512, and 256 neurons, and the decoder contains three layers, with 256, 512, and
913 neurons. For predicting associations, we selected the deep forest [39,40] model. This model has the
same effect as a deep neural network, but with fewer parameters, simpler training, and good results
on small samples. The deep forest model consists of two parts: multi-grained scanning, similar to
convolutional neural networks, whereby multiple adjacent features are grouped; and a cascade forest,
which integrates several weak classifiers into the forest and re-integrates them. Each layer is composed
of four forests. Figure 3 shows the structure of the deep forest model.

Figure 3. The schematic diagram of processing predictions. (a) a multi-granularity scanning is used to
preprocess the input features. (b) the obtained eigenvectors are put into the cascaded forest for training.

We constructed two deep forest models with the same parameters to respectively train and
predict two sample sets [41,42], as shown in the lower right corner of Figure 1. The main parameters
include a window size of 100 and a classification category of 2. We relied on different sources of
information to construct these two sample sets. To make full use of the two kinds of information,
we adopted an integrated strategy to consider the prediction effects of the two different sample sets
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comprehensively [43,44]. The two predicted scores were obtained from different perspectives of the
disease–miRNA association network. We assigned weights to the two scores into the final score
as follows:

s = λ ∗ s1 + (1− λ) ∗ s2 (5)

where the parameter λ is used to adjust the proportion of the two part prediction result. It was set to
0.5 in the experiment.

3. Result

3.1. Evaluation Metrics

To illustrate the performance of the method at predicting potential associations between diseases
and miRNA, we used five-fold cross-validation. For a specific disease d, d related miRNAs were
randomly divided into five subsets. Four subsets were used as known information for training, and
the remaining subset was used for testing. In what follows, we introduce three evaluation metrics for
the performance of disease–miRNA association prediction.

The area under the receiver operating characteristic curve (AUC) is a global prediction
performance indicator. We calculate the true positive rate (TPR) and the false positive rate (FPR)
by varying the threshold, to obtain the receiver operating characteristic (ROC) curves:

TPR =
TP

TP + FN

FPR =
FP

TN + FP

where FN and FP are the number of negative and positive samples mistakenly identified, respectively,
and TN and TP are the number of negative and positive samples correctly identified, respectively.

PRE is the accuracy of the positive predictions of the classifier for a specific disease. This concerns
the quality of highly ranked results. It is calculated as follows:

PRE =
TP

TP + FP

where TP and FP are the number of true positive and false positive samples with respect to a
specific disease, respectively. Based on this definition, the larger the PRE value, the better the
prediction accuracy.

REC is the ratio of positive instances that are correctly detected by the classifier for a specific
disease, and concerns the quantity of the ranked results. It is calculated as follows:

REC =
TP

TP + FN

where FN is the number of false negative samples with respect to a specific disease.

3.2. Performance of STIM

To test the effectiveness of the algorithm, we selected diseases with known associations: breast
neoplasm, lung neoplasm, and heart failure. We tested the performance of STIM predictions with
five-fold cross-validation. We found that our method achieves good prediction performance for these
diseases. Figure 4 shows the results in the top 10, 20, ..., 100 candidate miRNAs. The PRE and REC
values of the breast neoplasm reached 90% at the top 10 and 82% at the top 100 with an AUC of 0.91.
This means that 9 of the 10 predicted candidates were correctly identified. The highest PRE and REC
values for lung neoplasm were 50% and 90%, respectively, with an AUC of 0.92. For heart failure the
highest PRE and REC values were 50% and 63%, respectively, with an AUC of 0.84.



Cells 2019, 8, 1405 8 of 12

Disease PRE REC ROC

Breast neoplasm

Lung neoplasm

Heart failure

Figure 4. PRE, REC and ROC of different diseases by five-fold cross-validation.

3.3. Comparison with Other Methods

We compared the proposed STIM with RWRMDA, HDMP, RLSMDA, and MIDP, which
serve as advanced computational prediction models for discovering potential candidate miRNAs.
Since many diseases collected from HMDD v2.0 have associations with only a few miRNAs, five-fold
cross-validation of the performance may be insufficient. Therefore, we selected 15 characteristic
diseases associated with more miRNAs.

As shown in Table 2, STIM achieved the best average AUC value with 0.874 and a maximum
value of 0.913 (for lung neoplasms). This suggests that STIM works best for the lung neoplasms.
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Table 2. AUC comparison of different methods with specific diseases. (The best AUC value is shown
in bold).

Disease STIM RWRMDA HDMP RLSMDA MIDP

Acute myeloid leukemia 0.887 0.839 0.858 0.853 0.913
Breast neoplasm 0.894 0.785 0.801 0.832 0.838
Colorectal neoplasms 0.855 0.793 0.802 0.831 0.845
Glioblastoma 0.857 0.68 0.7 0.714 0.786
Heart failure 0.829 0.722 0.77 0.738 0.821
Hepatocellular carcinoma 0.86 0.749 0.759 0.794 0.807
Lung neoplasms 0.913 0.827 0.835 0.855 0.876
Melanoma 0.857 0.784 0.79 0.807 0.837
Ovarian neoplasms 0.89 0.882 0.884 0.909 0.923
Pancreatic neoplasms 0.909 0.871 0.895 0.887 0.945
Prostatic neoplasms 0.872 0.823 0.854 0.841 0.882
Renal cell carcinoma 0.866 0.815 0.833 0.839 0.862
Squamous cell carcinoma 0.876 0.819 0.82 0.849 0.87
Stomach neoplasms 0.875 0.779 0.787 0.797 0.821
Urinary bladder neoplasms 0.868 0.821 0.85 0.845 0.897
Average AUC 0.874 0.799 0.816 0.826 0.862

3.4. Case Study: Lung Neoplasm

To further demonstrate the reliability of STIM, we analyzed in detail its prediction accuracy for
lung neoplasm, focusing on the top 30 miRNA candidates in Table 3. According to the databases
dbDEMC 2.0 [45], miR2Disease [46], and related literature that is not used in the prediction process,
the miRNAs with a higher score in the prediction results can be verified. dbDEMC is a differentially
expressed miRNA database for human cancer. Using STIM, 23 of the top 30 candidate miRNAs could
be found in dbDEMC. Similarly, miR2Disease is a manually compiled database designed to provide
miRNA regulation abnormalities in human diseases. Using STIM, we found 6 of the 30 candidates in
the miR2Disease database. In addition, we found that five of these miRNAs are associated with lung
neoplasm, according to previous research [47,48]. These results demonstrate that STIM can effectively
predict disease–miRNA associations.

Table 3. Top 30 lung neoplasm-related candidates.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-130a dbDEMC,miR2disease 16 hsa-mir-149 dbDEMC
2 hsa-mir-125b-2 Unconfirm 17 hsa-mir-15a dbDEMC
3 hsa-mir-195 dbDEMC,miR2disease 18 hsa-mir-302a Ref.[43]
4 hsa-mir-451a dbDEMC,miR2disease 19 hsa-mir-99a dbDEMC,miR2disease
5 hsa-mir-128-1 Unconfirm 20 hsa-mir-152 dbDEMC
6 hsa-mir-23b dbDEMC 21 hsa-mir-708 Ref.[43]
7 hsa-mir-151a Ref. [42] 22 hsa-mir-378a Ref.[42]
8 hsa-mir-92a-2 dbDEMC 23 hsa-mir-339 dbDEMC
9 hsa-mir-302b dbDEMC 24 hsa-mir-106b dbDEMC

10 hsa-mir-193b dbDEMC 25 hsa-mir-215 dbDEMC
11 hsa-mir-141 dbDEMC,miR2Disease 26 hsa-mir-130b dbDEMC
12 hsa-mir-196b dbDEMC 27 hsa-mir-302c dbDEMC
13 hsa-mir-10a dbDEMC 28 hsa-mir-296 dbDEMC
14 hsa-mir-429 dbDEMC,miR2disease 29 hsa-mir-320a Ref.[43]
15 hsa-mir-328 dbDEMC 30 hsa-mir-20b dbDEMC

4. Conclusions

We propose a disease–miRNA prediction method, called STIM, which uses machine learning
models to combine similarity network information and network topology information. On the basis
of a bilayer network, we integrated existing disease and miRNA similarity networks to obtain
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a similarity-based feature matrix. We then constructed a sample set via splicing. Further, we
designed a self-encoder to map the original higher-dimensional features onto new lower-dimensional
features to improve the prediction results. DeepWalk was used to mine topological information
regarding the disease–miRNA association network. Then, we constructed a sample set from these
DeepWalk-based features. Finally, the disease–miRNA pair feature vectors generated with two feature
extraction methods were fed into two deep forest models to derive the final weighted predicted
scores. Our evaluation showed that STIM achieved the best average AUC performance for 15 selected
diseases, outperforming RWRMDA, HDMP, RLSMDA, and MIDP. Moreover, we confirmed the miRNA
molecules recommended by MIST in a case study of lung neoplasm. Our evaluation thus confirmed
the effectiveness, superiority, and reliability of the proposed algorithm, demonstrating that STIM is
effective at predicting disease-related miRNA. We expect that this study will be of considerable help to
future research on the pathogenesis of diseases.
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