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Abstract: Acetate can be efficiently metabolized by the green microalga Chlamydomonas reinhardtii.
The regular concentration is 17 mM, although higher concentrations are reported to increase starch
and fatty acid content. To understand the responses to higher acetate concentrations, Chlamydomonas
cells were cultivated in batch mode in the light at 17, 31, 44, and 57 mM acetate. Metabolic analyses
show that cells grown at 57 mM acetate possess increased contents of all components analyzed
(starch, chlorophylls, fatty acids, and proteins), with a three-fold increased volumetric biomass yield
compared to cells cultivated at 17 mM acetate at the entry of stationary phase. Physiological analyses
highlight the importance of photosynthesis for the low-acetate and exponential-phase samples.
The stationary phase is reached when acetate is depleted, except for the cells grown at 57 mM
acetate, which still divide until ammonium exhaustion. Surprisal analysis of the transcriptomics
data supports the biological significance of our experiments. This allows the establishment of a
model for acetate assimilation, its transcriptional regulation and the identification of candidates
for genetic engineering of this metabolic pathway. Altogether, our analyses suggest that growing
at high-acetate concentrations could increase biomass productivities in low-light and CO2-limiting
air-bubbled medium for biotechnology.
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1. Introduction

Microalgae such as Chlamydomonas are able to store energy in the form of starch and oil
(triacylglycerol or TAG) under certain conditions. The oil has especially drawn interest as a potential
source of renewable fuels. However, the molecular and cellular mechanisms underlying the regulation
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of the two carbon sinks are poorly understood. Identification of pathways and regulatory networks
that underly oil production could guide genetic engineering for increased utilization of the TAG carbon
sink and overproduction of oil.

Oil accumulation can be stimulated under N starvation and can be increased by additional carbon
supply in the form of acetate [1]. Unlike the response to nitrogen deprivation, the response to additional
acetate is not as well understood. The green microalga Chlamydomonas reinhardtii is able to use acetate
for growth in the light (mixotrophy) and in the dark (heterotrophy). After transport into the cell, acetate
is metabolized into acetyl-CoA. Acetyl-CoA enters the glyoxylate cycle which allows the formation of
building blocks such as amino acids and glucose or enters the tricarboxylic acid (TCA) cycle to feed the
respiratory chain with reducing equivalents. Both the glyoxylate cycle and the respiratory chain are
essential for growth in the dark since Chlamydomonas mutants affected in one of the processes cannot
grow in heterotrophy [2,3].

The usual concentration of acetate for Chlamydomonas growth is 17 mM [4], and most of the papers
utilize this concentration for cultivation. Few papers have analyzed cell physiology using other acetate
concentrations. Heifetz et al. (2000) [5] showed that photosynthesis is inhibited when Chlamydomonas
cells are cultivated in the presence of 3.7 to 29.4 mM acetate in saturating light and CO2, showing
that acetate is the preferred carbon source. Growth rate was unaffected despite the large reduction
of photosynthesis. Moreover, cultivating cells for two days with 80 mM acetate in low light and air
increases the starch amount per cell more than the levels of TAG, showing that starch is the main
carbon sink in Chlamydomonas [1]. These facts make the case for an effective acetate assimilation in the
light, but the detailed information explaining how cells adapt to acetate and whether this cultivation
mode could be useful for biotechnological purposes is lacking.

Batch cultures typically comprise an exponential phase when nutrients are in sufficient amounts
to sustain high growth rates, followed by a stationary phase where divisions cease and cell number is
maintained. Subsequently, cells may enter a death phase [6]. Yeast cells cultivated in glucose shift
from a fermentative to a respiratory metabolism upon depletion of the carbon source at the entry in
the stationary phase, which is followed by post-translational modifications and protection against
oxidative stress [7]. In addition, stationary phase is characterized by increased levels of transcripts
encoding enzymes involved in sugar metabolism, the TCA cycle, and amino acid degradation [8].
In Chlamydomonas, entry into the stationary phase is marked by the activation of CrATG8 [9], the main
marker of autophagy. RT-qPCR analyses also showed that cultures in stationary phase present
increased activity and transcripts of some of the enzymes participating in the antioxidant system.
Programmed cell death was detected by an increase of caspase activity [10]. It thus seems that yeast and
Chlamydomonas cells present some common responses, such as the activation of antioxidant systems,
but more details are needed to get a comprehensive view of the process.

With the aim of characterizing the response of Chlamydomonas cells to acetate and to the conditions
of the different growth phases, we grew the cells in the presence of four acetate concentrations, the
usual (17 mM) one and three higher concentrations (31, 44, and 57 mM) in batch cultures bubbled with
air and grown under low light. We sampled the cultures at different time points of the exponential and
stationary phase of growth and analyzed the metabolic, physiological, and transcriptomics responses.
The transcript response to different acetate concentrations was analyzed using surprisal analysis (SA),
a method grounded in thermodynamics [11–16]. Surprisal analysis allows for the determination of the
constraints on the genomic response due to different acetate concentrations. Two different constraints
were identified that led to two different phenotypes. The first one comprises pathways involved in
exponential/stationary phase, and the second comprises pathways involved in the low/high-acetate
growth mode. Combined with oxygen evolution and metabolic measurements, our analysis showed
that cultivation in low light and air supplemented by higher acetate concentrations than usual could be
relevant to biotechnological applications aiming at increasing volumetric biomass yields, for example,
during early stage culture expansion. In addition, acetic acid is a key element for synergetic production
of biohydrogen by both Chlamydomonas and bacteria during cocultivation [17].
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2. Materials and Methods

2.1. Strains and Cultivation Conditions

Strains WT and iclC were described previously ([2,18] and are both derived from the 137 C strain
of C. reinhardtii [19]. They were first adapted for 48 h in Tris-Phosphate medium [4], adjusted to pH 7.0
with HCl, with different acetate concentrations (17, 31, 44, 57, and 87 mM sodium acetate) in flasks or
in small photobioreactors (Multi-Cultivator MC 1000-OD, Photon Systems Instruments). Experimental
cultivations were started with an initial cell concentration around 2 × 105 cells per mL, at 26 ± 1 ◦C,
under moderate light (50 µmol.m−2.s−1), and followed for 145 h. Cells were counted using a Coulter
counter (http://www.beckmancoulter.com). The number of divisions per day was calculated according
to [20]. Cell size (maximal diameter, estimated on 100 cells) was determined under a microscope, using
the Imaging Software, NIS Elements, version 4, for Nikon (Nikon Instruments Inc., Melville, NY, USA).

2.2. Samples and RNA Extraction

Four time points were selected for sampling the transcripts: 12, 28, 50, and 70 h, using the four
acetate concentrations. Three biological replicates were made for each curve and each time point.
Twenty milliliters were sampled at 12 h, corresponding approximately to 1.5 × 107 cells; 15 mL at
28 h and 5 mL at each other time point, corresponding approximately to 5.5 × 107 cells. Cells were
harvested by centrifugation for 10 min at 1500× g. Total RNA extraction was performed according
to [21]. Cells were washed in 500 µL of TEN buffer (10 mM Tris-HCl pH 8.0, 10 mM EDTA, and
150 mM NaCl) and suspended in 150 µL of RNase-free water before being stored at −20 ◦C. After all
samples were collected, total RNA was extracted with 300 µL of SDS-EB buffer (2% SDS, 400 mM
NaCl, 40 mM EDTA, and 100 mM Tris-HCl pH 8.0) and 350 µL of phenol/chloroform/isoamyl alcohol
(25:24:1), and the aqueous phase was collected by centrifugation (5 min at 15,000× g). This aqueous
phase was used for the second extraction, with 300 µL of chloroform/isoamyl alcohol (24:1), followed
by centrifugation (5 min at 15,000× g). The aqueous phase was used to precipitate RNA with 125 µL of
LiCl 8 M at 4 ◦C overnight. Finally, the total RNA pellets were obtained by removing the supernatant
after centrifugation for 5 min, at 15,000× g, and washed with 300 µL of 70% ethanol. After drying, the
total RNA was suspended in 50 µL of RNase-free water and stored at −20 ◦C.

2.3. Sequencing

Library preparation started with 500 ng total RNA per sample. Illumina Sequencing (PE 1 × 75
on a NextSeq500 machine) was performed at the GIGA-R Sequencing platform (University of Liège),
following the manufacturer’s protocol (Illumina Inc, San Diego, CA, USA).

2.4. Read Trimming and Quality Filtering

Read quality was assessed with FastQC v.0.11.5 (www.bioinformatics.babraham.ac.uk/projects/).
No significant problems were observed. Quality filtering of RNA-seq samples was done on single-end
reads, using trimmomatic (v0.36) [22], removing low-quality sequences (average Q20 over a 4-base
sliding window, minimum length = 50 bp, with a leading and trailing quality threshold of Q25).

2.5. Read Mapping

Mapping of the reads to the Chlamydomonas reinhardtii genome v5.5 assembly [23] was done using
STAR [24], with default presets, except for intron size (-alignIntronMin 20 and -alignIntronMax 3000).
The RNA-seq data are available under the project number PRJNA561092.

The unique mapping reads were assigned to the primary transcripts, using cuffquant and cuffdiff
(v2.2.1), with the default fragment size of 200 and standard deviation of 80 [25]. Expression estimates
were normalized to library size and gene length by cufflinks to calculate the FPKM values.

http://www.beckmancoulter.com
www.bioinformatics.babraham.ac.uk/projects/
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2.6. Surprisal Analysis

Surprisal analysis was carried out as described in [11] on 10,923 genes. In surprisal analysis,
the natural logarithm of the gene expression values Xi(s) of gene i in sample s is given as a sum of a
balanced state value, a value common to all the samples and terms representing deviations from the
balanced state. The deviations represent biological constraints particular to sample s:

Yi (s) = ln Xi (s) = ln X0
i +

Nα∑
α=1

Giα λα (s) (1)

Here, α is the index of the deviation terms, the constraints, and Na is the number of constraints.
Each constraint, α, corresponds to a given phenotype, defined by the weights Giα of the different genes i.
The phenotypes, Giα, and Lagrange multipliers, λα(s), are determined via singular value decomposition
(SVD) [12]. For more details, see Appendix A. The first term in Equation (1) is the contribution of
the balanced state, which is common to all the samples. The balanced state can also be written as
ln X0

i = Gi0λ0. Changes in the gene expression levels due to the successive constraints, α = 1, . . . Nα,
are expressed with respect to the balanced state. By plotting the values of the Lagrange multipliers of
the different samples for a given constraint (α), one can identify different groups of samples that differ
by the sign of their Lagrange multiplier, λα(s), within a given phenotype. In particular, we show below
that, for the first constraint, α = 1, samples at stationary phase and those at exponential phase have an
opposite sign of their Lagrange multipliers. For α =2, samples grown in low-acetate concentrations and
samples grown in high-acetate concentrations are characterized by Lagrange multipliers of different
signs. The analysis of the corresponding phenotype allows for the identification of the pathways that
contribute most to the growth in low- and high-acetate concentrations, respectively. Error bars on the
λα(s)’s can be determined from the experimental error (see Appendix A).

2.7. Differential Gene Expression in the Constraint Vector Giα

Genes of the phenotype corresponding to each constraint (α) were ranked according to the value
of the weight (Giα). According to this ranking, 100 smallest and largest values were considered
differentially expressed for each phenotype. In the case of the balanced state, genes that correspond to
a term, Gi0λ0 > 0, are the most stable, and those for which Gi0λ0 < 0 are unstable. The latter are the
genes that will appear with the largest and the smaller weights in the phenotypes associated with the
constraints and therefore will be the most differentially expressed in the constraints, α = 1, . . . , Nα.

2.8. Gene Set Enrichment

Genes were categorized in gene sets, using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (http://www.genome.jp/kegg/), and the functional annotation for C. reinhardtii v5.5 predicted
proteins obtained from the correspondence table downloaded from Phytozome. Transcription
factors, transcriptional regulators, and protein kinases were retrieved from the iTAK database
(http://itak.feilab.net/). KEGG Orthology identifiers were mapped to KEGG pathways, using
KEGGREST package [26]. To assign a weight to pathways in a given phenotype α, we use the
approach proposed in [11], which takes into account the weights of all the genes, Giα, of the phenotype
α. The weight assigned to a pathway therefore does not depend on the number of genes kept in the
differential gene expression analysis.

The weights of the pathways are assigned as follows. For each constraint, α, each subset of NJ
genes corresponding to a pathway, J, was divided in two subsets, according to the sign of their weight

http://www.genome.jp/kegg/
http://itak.feilab.net/
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(Giα). The Giα values for genes that are respectively larger or smaller than zero were summed together
to get respectively the positive (P) and negative (N) weight of the pathway for constraint (α):

PJ
α =

N j∑
i=1

G2
iα i f Giα > 0 (2)

NJ
α =

N j∑
i=1

G2
iα i f Giα < 0 (3)

The set ratio of the pathway (J) is as follows:

SRαJ = PJ
α/ NJ

α (4)

It is a measure for the contribution of the gene set of the pathway (J) to constraint (α). Set ratios,
SRa

J , were ordered according to their value for each phenotype. These gene sets where all values, Giα,

are either positive or negative, were subsequently ranked on PJ
α or NJ

α, respectively. Pathways that
correspond to a gene set with less than 10 genes were omitted from the dataset.

Pathways with both low and high ratios are predicted by surprisal analysis to be important for
the phenotype and to be enriched. In the balanced state, genes that correspond to a term Gi0λ0 > 0
are the most stable, and those for which Gi0 λ0 < 0 are unstable. In the first phenotype, α = 1,
genes which correspond to a term Gi1λ1(s) > 0 are over expressed for samples grown in exponential
phase and under expressed for samples in stationary phase while for the second phenotype, α = 2,
genes for which Gi2λ2(s) > 0 are over expressed in high-acetate conditions and under expressed in
low-acetate conditions. Since the values of the Lagrange multiplier, λ1(s), are positive for the samples
in exponential phase and negative for those in stationary phase, high SR pathway ratios correspond
to gene sets that are over expressed for samples in exponential phase and low SR ratios correspond
to gene sets that are over expressed in stationary phase. For the second constraint, samples grown
in high-acetate concentrations have a positive Lagrange multiplier λ2(s), while samples grown in
low-acetate concentrations have negative λ2(s) values. Therefore, high SR pathway ratios correspond
to gene sets that are over expressed for samples grown in high-acetate conditions, while low SR ratios
values correspond to gene sets that are over expressed in low-acetate concentrations.

2.9. Metabolic Analyses

NH4
+ and acetate concentrations were determined using kits from Megazyme (L-Arginine/urea/

ammonium for NH4
+ and Acetic Acid Assay kit for acetate). Fatty acids were quantified by GC–MS,

as already described in [18]. Starch content and dry weight were measured as also described in [18].

2.10. Oxygen Evolution Measurements

Cells were collected at each time point, and measurements were made directly on 1 mL of the cell
suspensions. Oxygen evolution rates (gross oxygen evolution) were measured using Clark Electrode
(Hansatech Oxygraph). The assayed actinic light steps included 6, 14, 30, 45, 68, 103, 176, 301, 571,
1024, and 1931 µmol.m−2 s−1. Oxygen evolution rates were determined based on the sum of the net
oxygen evolution rates over the last 45 seconds of each light step and the absolute value of the dark
respiration rates.

3. Results

3.1. Growth Curves and Medium Composition of C. Reinhardtii Using Different Acetate Concentrations

The starting growth experiments were conducted on WT (137C), and a complemented icl mutant
strain of 137C (iclC), containing a wild-type version of the isocitrate lyase gene, one of the two unique
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enzymes of the glyoxylate cycle, because of availability of transcriptomic data for the iclC strain [11].
Both strains are equivalent because they both contain the ICL1 gene and are indistinguishable at the level
of their expression and physiology [11,18] (see Table S1). The cells were grown at five concentrations,
17, 31, 44, 57, and 87 mM, in triplicate, using small photobioreactors where light, temperature, and
air bubbling were tightly controlled to obtain the most reproducible growth conditions. The 87 mM
acetate concentration did not give reproducible growth curves and was abandoned. We thus focused
on the four lowest concentrations, 17, 31, 44, and 57 mM, using the iclC strain as a reference. Cells were
adapted to each condition for two days before starting the experiments. Cells were counted at five time
points: 12, 28, 50, 70, and 145 h. The growth curves presented a pattern typical of batch cultures with
an exponential and a stationary phase. Cell death can be observed between 70 and 145 h of growth
at concentrations higher than 17 mM acetate (Figure 1a). A notable difference between the growth
curves is that cells cultivated using 17, 31, and 44 mM as the initial acetate concentrations reached the
stationary phase at time point 50 h while cells cultivated using 57 mM as initial acetate concentration
reached the stationary phase at time point 70 h (Figure 1a).
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In addition, the number of doublings per day is significantly higher for the cells cultivated at
17 mM compared to the three other acetate concentrations in exponential phase (Table 1).
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Table 1. Number of doublings (iclC strain) per 24 h calculated between 12 and 50 h for the cells
cultivated at 17, 31, and 44 mM acetate and between 12 and 70 h for the cells cultivated at 57 mM
acetate. Mean of four biological replicates ± SD. * Significantly different (p < 0.05).

Acetate Concentration Doubling/Day

17 mM 3.0 ± 0.3 *
31 mM 2.2 ± 0.3
44 mM 1.9 ± 0.1
57 mM 2.0 ± 0.1

Since stationary phase will be reached when nutrients are depleted, we measured acetate and
ammonium concentrations in the medium in the four different cultures and at the five time points
mentioned above (Figure 1b,c). As shown in Figure 1b, acetate is consumed at time point 50 h for
all the cultures, whatever the cell concentration reached at this time, meaning that greater uptake of
acetate has occurred in the cells cultivated at 57 mM acetate (Figure S1). The ammonium is also nearly
entirely consumed at time point 70 h, except for the cells cultivated using 17 mM acetate, where around
one-third of the initial ammonium concentration still remains in the medium (Figure 1c). These results
suggest that the stationary phase begins when the carbon source is depleted, except for cells cultivated
at 57 mM acetate, which reach the stationary phase when the ammonium source is consumed and thus
still divide exponentially until 70 h of growth.

3.2. Biomass Composition Analysis

Biomass composition, cell dry weight, biomass volumetric yield, and cell size of cells cultivated at
the extreme acetate concentrations, 17 and 57 mM acetate, were analyzed at the first four time points
(12, 28, 50, and 70 h) (Figure 2). The time point 145 h had to be discarded because of a variability
probably that was too high due to variable cell death. Transesterification and GC analysis were used to
determine fatty acid methyl ester (FAME) content and profile, while the contents of other components
(chlorophyll, proteins, and starch) were determined spectrophotometrically (see Material and Methods).
A general increase of all biomass components per cell is observed when cells are cultivated at 57 mM
acetate, with significant differences present at least for one time point of the growth curves. Cell dry
weight is also significantly higher, leading to a three-fold increase of biomass volumetric yield at the
entry of the stationary phase for cells cultivated at 57 mM acetate. Cell size estimated by the longest
diameter of the cells is not significantly different. The profiles of fatty acids were also examined and
were found to be similar in both types of cultivation conditions: saturated fatty acids are major classes
of the total fatty acids, whatever the concentration and the time point of the growth curve (Table S2
and Figure S2).
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Figure 2. Biomass composition, dry weight, volumetric yield, and cell size (cell diameter) (iclC strain)
during growth, using the two extreme concentrations (17 and 57 mM) of acetate for cultivation. Mean
of at least three independent experiments ± SD. * Significant difference (p < 0.05) between 17 and
57 mM acetate time points.

3.3. O2 Evolution

Since photosynthesis and respiration are the two major processes yielding ATP production, we
measured the oxygen evolution during growth (Figure 3) by determination of photosynthesis–irradiance
curves, using low-acetate (17 mM) and high-acetate (57 mM) growth curves (Figure 3a).

The highest photosynthetic activities (Figure 3a) are found for the cells cultivated in low acetate
(17 mM) and in exponential phase (12 and 28 h), attesting that these cells rely on energy produced by
photosynthesis to divide. Cells in stationary phase show decreased photosynthetic activity compared
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to cells in exponential phase. Cells cultivated at 57 mM acetate demonstrate a lower (12–28 h) or about
equal (50–70 h) oxygen evolution compared to cells at 17 mM acetate. Our results are in agreement
with those of [5,27], which showed that the presence of acetate decreases photosynthetic activity.
Respiration was also recorded (Figure 3b). The cells cultivated at 57 mM acetate present a similar
(12–28 h) or significantly higher (50–70 h) respiration rate than cells cultivated at 17 mM acetate, which
show a negligible respiration rate starting from time point 50 h, when acetate was totally consumed.
Presumably, this is due to the utilization of the internal carbon reserve for biosynthesis and respiration
which is present in cells cultivated at high-acetate concentrations and lacking in cells cultivated in
17 mM acetate.
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independent experiments ± SD. * Significant difference (p < 0.05).
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3.4. Surprisal Analysis of Transcriptomics Data

3.4.1. Constraints 1 and 2 Respectively Allow the Grouping of Samples Based on Their Physiological
State or the Acetate Concentration

In order to understand in detail the changes in gene expression underlying these physiological
adaptations, we performed transcriptomic analyses. For that purpose, RNA was extracted in three
biological replicates at the four time points (12, 28, 50, and 70 h) of the growth curves cultivated at the
four acetate concentrations (17, 31, 44, and 57 mM, Figure 1), and RNA-seq data were obtained. After
quality checks of the reads, one replicate of time point 70 h (31 and 44 mM) had to be discarded due
to too low a fraction of uniquely mapping reads and their position as outliers on a PCA, reflecting
low quality libraries (Table S3 and Figure S3). The raw RNA-seq data of time points 12 and 18 h
were published previously [11] (https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP132684) and are
included in our analysis. The new data generated are available under the project number PRJNA561092.
In the analysis below, the samples are labeled by a concentration and a time index, accordingly, i.e.,
ac1t1 means an acetate concentration of 17 mM at time t1 = 12 h, . . . , ac4t4 means a concentration of
57 mM and a time t4 = 70 h.

The values of the Lagrange multipliers and of the constraints were computed as described
in [11,28] and in the Appendix. The λ0 values for each sample are plotted in Figure 4a. As expected,
for the balanced state [11,28], the values of λ0(s) (where s stands for sample index) are constant within
a range (25 units) smaller than the error bars that reflects small variations from sample to sample.
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Figure 4. Lagrange multipliers values for (a) the balanced state (λ0(s)), (b) the first ((λ1(s))), and (c)
the second (λ2(s)) constraint (iclC strain). The λ0, λ1, and λ2 values and the corresponding error bars
are determined using the 16 samples (see Appendix A). Note that the error bars are upper bound values
(Equation (A7)). The actual error will be ≤ to the error bars shown. Overall, the sign of λ1 and λ2 can
be considered to be reliably determined.

On the other hand, the values of the Lagrange multiplier of the first constraint, λ1(s) (Figure 4b),
have different signs depending on whether the samples come from the two last time points (t3 and t4)
(negative λ1: ac3t4, ac2t4, ac1t4, ac1t3, ac3t3, ac4t4, and ac2t3) or from the two first time points (t1 and
t2) (positive λ1: ac4t1, ac4t3, ac1t1, ac3t1, ac2t2, ac4t2, ac3t2, ac2t1, and ac1t2), except for ac4t3 (see
below). The first constraint therefore allows discrimination between the two stages of the growth curve:
exponential (time points t1 and t2) or stationary (time points t3 and t4). Ac4t3 (57 mM acetate-50 h),
although it is categorized as a ‘late’ sample, is found to belong to the phenotype of the exponential
phase which is in accordance with the growth curve of Figure 1, where the time point 50 h of the 57 mM
acetate growth curve is still in the exponential phase.

The second constraint (Figure 4c) allows the separation between the acetate concentrations of the
samples, since the eight samples with low-acetate concentrations (ac1 and ac2) (ac1t4, ac1t3, ac2t4,
ac2t2, ac1t2, ac2t3, ac2t1, and ac1t1) have negative values of λ2(s), and the eight samples grown on
high-acetate concentrations (ac3 and ac4) (ac3t1, ac3t2, ac4t2, ac4t3, ac4t1, ac3t4, ac3t3, and ac4t4) have
positive values. The stationary/exponential and low/high-acetate phenotypes segregate from each
other with different signs only in the plots of the Lagrange multipliers of the first and the second

https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP132684
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constraint, respectively, indicating that the gene expression profiles (phenotypes) describing these
two conditions are circumscribed by the contribution of the first and the second constraint to the
gene-expression levels (Table S4).

3.4.2. Gene Set Enrichment Analysis Allows for the Description of the Biological Pathways
Contributing to the Balanced State and to the First and Second Constraints

Surprisal analysis (see Methods) determines a gene transcript expression profile (a phenotype)
associated with each constraint. This transcript expression profile is given by a vector (Gα), where
α is the index of the constraint. The components (Giα) of the vector (Gα) determine the weight of
transcript i in the phenotype associated with the constraint (α), whose Lagrange multiplier is λα.
One can therefore rank the contribution of a transcript to a given phenotype according to its weight.
As described in section ‘Gene Set Enrichment’ of Methods, the annotated genes [23] of Chlamydomonas
were categorized in gene sets (KEGG). This categorization therefore allowed the identification of the
gene sets that contribute most to the phenotype associated with a given constraint, α. From the Giα
values computed for each transcript using surprisal analysis, we define weights of the pathways in
each constraint and in the balanced state, Equations (2)–(4) [11,28], that quantifies the contribution
to the phenotype of each gene set that defines a pathway. The pathways with the most negative
weight (N0) dominate the phenotype of the balanced state (see 2.9 above), and those with the 10 most
negative weights are listed in Table 2. These pathways mainly belong to primary carbon metabolism
(oxidative phosphorylation, carbon fixation in photosynthetic organisms, citrate cycle, 2-oxocarboxylic
acid metabolism, and pyruvate metabolism), as expected, since cells in any of the conditions analyzed
need these basic pathways to survive and divide. The complete list of the KEGG pathways ranked
according to the value of N0 is provided (Table S5). 22 pathways with a high negative value of N0 are
added to the first ten of Table 2, which provides the fine-tuning of the balanced state.

Table 2. KEGG pathways contributing most to the balanced state.

KEGG Pathways P0
1 104

× N0
2

Oxidative phosphorylation 0 3.55
Carbon fixation in photosynthetic organisms 0 3.33

Phagosome 0 3.16
Citrate cycle (TCA cycle) 0 3.05

2-Oxocarboxylic acid metabolism 0 2.55
Valine, leucine and isoleucine biosynthesis 0 2.42

alpha-Linolenic acid metabolism 0 2.31
Lysine biosynthesis 0 2.04

Pyruvate metabolism 0 1.96
Fatty acid biosynthesis 0 1.84

1 P0: Positive weight of the gene set in the balanced state (Equation (2) with α = 0). 2 N0: Negative weight of the
gene set in the balanced state (Equation (3) with α = 0).

The same analysis was carried out using the weight of each transcript, Gi1, associated with the
stationary/exponential growth phenotype of the first constraint. For this constraint, gene pathways with
the highest positive weight, SR > 2 (see Equations (2)–(4)) should be considered for the characterization
of the samples in exponential phase (Table S6); the 10 highest SR ratios are shown in Table 3, left.
As expected from the O2 evolution curves, pathways in the exponential phase samples are mainly
related to photosynthesis (photosynthesis, photosynthesis antenna proteins, porphyrin and chlorophyll
metabolism, and carotenoid metabolism). Gene pathways with SR < 0.5 correspond to gene sets
contributing most to the expression level of samples in stationary phase and the 10 lowest SR
ratios are shown in Table 3, right. Pathways related to stress responses (regulation of autophagy,
peroxisome, endocytosis, and selenocompound metabolism) and catabolism (valine, leucine, and
isoleucine degradation) dominate in the stationary phase, which is in accordance with the physiological
state of the cells at these time points of the growth curve, where some of them begin to die.
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Table 3. KEGG pathways contributing most to the first constraint.

Ten Most Positive Pathways (Exponential Phase) Ten Most Negative Pathways (Stationary Phase)

KEGG Pathways 105
× Pα 1 109

× Nα 2 SRα 3 KEGG
Pathways 106

× Pα 1 105
× Nα 2 102

× SRα 3

Porphyrin and chlorophyll metabolism 23.50 9800 24 Regulation of autophagy 0 7.76 0

DNA replication 9.62 3930 24.5 Valine, leucine and isoleucine
degradation 5.54 5.57 9.95

Carotenoid biosynthesis 4.82 1790 26.9 Endocytosis 1.88 1.37 13.7
N-Glycan biosynthesis 10.4 3700 28.2 Plant hormone signal transduction 1.92 1.36 14.1

RNA polymerase 5.85 1780 32.9 Peroxisome 8.78 3.63 24.2
Ubiquinone and other

terpenoid-quinone biosynthesis 18.4 5050 36.4 Propanoate metabolism 14.5 4.61 31.4

Lysine biosynthesis 14.4 3690 38.9 beta-Alanine metabolism 20.9 5.70 36.7

Histidine metabolism 14.6 3330 43.9 SNARE interactions in vesicular
transport 6.5 1.47 44.3

Photosynthesis—antenna proteins 94.2 222 4240 Selenocompound metabolism 20.4 3.74 54.5

Photosynthesis 48.4 9.37 51700 Pentose and glucuronate
interconversions 7.65 1.24 61.6

1 Pα: positive weight of the gene set for constraint α (Equation (2)), 2 Nα: negative weight of the gene set for constraint α (Equation (3)), 3 SR (Equation (4)): set ratios reflecting the
contribution of the gene set to the phenotype. See Methods for more details about the methodology.



Cells 2019, 8, 1367 13 of 21

The second constraint allows for the identification of the gene pathways corresponding to acetate
concentration, based on the Gi2 values computed for each transcript. SR > 2 are those that are important
for the high-acetate phenotype, and SR < 0.5 are those that are important for the low-acetate phenotype
(Table S7).

The left side of Table 4 lists the ten pathways with the highest SR ratios prevailing in high-acetate
concentrations. They are related to division (DNA replication), DNA damage repair, such as
homologous recombination and nucleotide excision repair, and stress-related endogenous processes
(proteasome and ubiquitin mediated proteolysis). The gene sets prevailing in the low-acetate phenotype,
SR < 0.5, comprise pathways related to primary carbon metabolism (carbon fixation in photosynthetic
organisms and pyruvate metabolism) and photosynthesis (photosynthesis, photosynthesis-antenna
proteins, and carotenoid biosynthesis). They are listed in Table 4, to the right, and in Table S5.

Table 4. KEGG pathways contributing most to the second constraint.

Ten Most Positive Pathways—High-Acetate-Grown Samples Ten Most Negative Pathways—Low-Acetate-Grown Samples

KEGG pathways 105
× Pα 1 107

× Nα 2 SRα 3 KEGG pathways 106
× Pα 1 105

× Nα 2 103
× SRα 3

Nucleotide excision
repair 8.52 23.30 36.6 alpha-Linolenic acid

metabolism 0 3.72 0

Sphingolipid
metabolism 6.58 17.80 36.9 Photosynthesis—antenna

proteins 1.30 22.30 5.83

Ubiquitin mediated
proteolysis 5.30 11.80 45 Fatty acid biosynthesis 2.54 8.82 28.80

N-Glycan biosynthesis 10.30 21.90 47.3 Carotenoid biosynthesis 2.07 4.22 49.10
Base excision repair 9.49 8.16 116.0 Photosynthesis 14.9 17.40 85.60

beta-Alanine
metabolism 16.90 9.19 184.0 Ribosome 4.46 3.90 114.00

Homologous
recombination 9.31 2.06 452.0 Pyruvate metabolism 4.53 3.15 144.00

DNA replication 29.90 0 Inf Lysine biosynthesis 5.84 3.25 179.00

Proteasome 7.32 0 Inf Porphyrin and
chlorophyll metabolism 10.3 4.88 211.00

SNARE interactions in
vesicular transport 3.90 0 Inf

Carbon fixation in
photosynthetic

organisms
11.7 5.41 216.00

1 Pα: positive weight of the gene set for constraint α (Equation (2)), 2 Nα: negative weight of the gene set for
constraint α (Equation (3)), 3 SR (Equation (4)): set ratios reflecting the contribution of the gene set to the phenotype.
See Methods for more details about the methodology.

In addition to categorizing KEGG gene sets according to their Gi0, Gi1, and Gi2 values to define
the biological pathways which are the most important for a specific phenotype, it is also possible
to look individually at the genes contributing most to each phenotype. The first hundred genes
contributing most to the balanced state (Table S8), the first phenotype (exponential phenotype or
stationary) (Tables S9 and S10), and the second phenotype (high- or low-acetate phenotype) (Tables
S11 and S12) are listed. Most of these have unknown functions. Those with identified functions are
underlined. For the first phenotype, they mainly encode proteins participating in photosynthesis
and to cell division for the exponential phase, and to transporters, stress, catabolism, and amino
acid degradation for the stationary phase. For the second phenotype, they mainly encode proteins
involved in ammonium starvation, but also gamete- and zygote-specific proteins, and histones for the
high-acetate-phenotype. For the low-acetate phenotype, they are related to photosynthesis, low CO2

availability, and division. The presence of these transcripts in the corresponding phenotypes is expected.
Those with unknown functions or with regulatory/specific functions are worth further investigation.
For example, in the list of the first 100 genes contributing the most to the exponential phase (Table S9),
Cre06.g257601, encoding a chloroplast 2-cys peroxiredoxin (PRX1) is found, which is probably involved
in the redox regulation of chloroplast proteins. This enzyme deserves attention to define its targets
in the regulation of the exponential phase. In the high-acetate phenotype (Table S11), Cre11.g479950,
encoding a triose phosphate transporter (TPT17) is found. Five triose phosphate transporters are
present in the Chlamydomonas genome (Cre06.g263850, TPT2; Cre08.g379350, TPT1; Cre09.g415900,
TPT15; Cre12.g490100, TPT19; Cre12.g501000, TPT20; Cre16.g663800, TPT25). The fact that TPT17 is
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identified here and not the others suggests a role in the export of triose phosphate out of the chloroplast
in the specific conditions of the high-acetate phenotype, which deserves further investigation.

In order to identify the regulatory proteins that contribute the most to the balanced state (G0),
the exponential vs. stationary growth (G1), and low vs. high acetate (G2), the 100 regulatory genes
contributing most to each phenotype according to their Gi values are summarized in Tables S13–S17.
Of particular interest is the fact that, in the exponential (Table S15) and low-acetate (Table S16)
phenotype, NAB1 (Cre06.g268600), which is ranked the first in these lists, was demonstrated to play a
role in the adaptation to low light [29,30], while one transcription factor (Cre06.g278159/CON1) found
in the low-acetate phenotype (Table S16) was recently characterized with respect to its role in the
control of photoprotection during photosynthesis [31,32]. Cre09.g399552 (CCM1), which regulates
CO2-responsive genes [33], is also ranked in the low-acetate phenotype (Table S16). These results
suggest that these lists have biological significance and offer a better understanding of the regulation
of central carbon metabolism. These lists thus provide candidates for genetic engineering, with the
aim of upregulating or downregulating the acetate response, for example, by looking at the regulator
genes in the high-acetate phenotype (Table S17), such as Cre04.g220700 encoding an Aurora like kinase
(ALK2), which is ranked first in this table.

We also performed K-means clustering of expression values by using the same approach as
described in [11]. Results (Figure S4) show that cluster 1 discriminates the stationary-phase samples,
cluster 3 the exponential-phase samples, and cluster 2 the high-acetate samples.

3.5. Analysis of the Transcripts Encoding Components of the Carbon-Concentrating Mechanism (CCM)

Since respiration rates are higher for the cells cultivated in high acetate (Figure 3b), internal
CO2 produced by the TCA cycle could also be increased, which could influence the expression
of genes participating to the carbon-concentrating mechanism (CCM). The presence of CCM
mechanisms in photosynthetic organisms is linked to the properties of the ribulose 1,5-bisphosphate
carboxylase/oxygenase (Rubisco) enzyme, which cannot discriminate completely between CO2 and
O2, making the oxygenation of ribulose bisphosphate competitive with the carboxylation reaction
under atmospheric CO2. Of the eight transcripts encoding putative components of the CCM/Ci
transport [34] found in our transcriptomics analysis, four show a significant decreased expression in
the high-acetate cultivation conditions (ac3-4) compared to low-acetate cultivation (ac1-2) (Figure 5a).
In addition, the transcript levels of CCM1/CIA5, the master regulator controlling the induction of the
CCM mechanism [33] and of RCA1 encoding rubisco activase required for expression of Rubisco in low
CO2 atmosphere [35] are also in significant lower amounts in the high-acetate phenotype (Figure 5b).
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4. Discussion

We have analyzed the growth of Chlamydomonas cells cultivated at different acetate concentrations,
the usual one (17 mM) and three levels above it (31, 44, and 57 mM), at four time points of the growth
curves (12, 28, 50, and 70 h). Surprisal analysis of the transcriptomics data confirms the biological
significance of our results. This confirms the predictive value of RNA-seq data to identify potential
target genes/pathways for genetic engineering. Cells in low acetate rely on both acetate assimilation
and photosynthesis for growth, which is stopped when acetate is consumed. Cells cultivated at 57 mM
acetate accumulate higher amounts of starch and other biomass components (chlorophylls, fatty acids,
and proteins), higher respiration rates, and lower photosynthetic activities. These observations are in
line with those of [5,27], who reported higher respiration rates and decreased photosynthesis activity
in acetate-grown (17 mM) cells under atmospheric CO2 compared to phototrophic cells. Terauchi
et al. (2010) [27] also found higher chlorophyll content on a per cell basis in the acetate-grown cells
compared to phototrophic-grown cells, although photosynthesis activity was decreased. Fan et al.
(2012) [1] found a higher starch content when cells were cultivated with 80 mM acetate. These results
and ours suggest that the excess of acetyl-CoA provided by acetate fuels carbon compound synthesis,
accumulation, and degradation. This leads to an increase in biomass volumetric yields, which could
be useful to boost growth for biotechnological purposes when cells are cultivated in low light and
atmospheric CO2. Cells cultivated in high acetate seem to switch toward a heterotrophic growth
mode, first by using external acetate and then by degrading their internal carbon storage compounds.
Although these cells seem to suffer from stress (see gene pathways retrieved by surprisal analysis),
probably because of ammonium exhaustion, they nevertheless divide using the ATP provided by the
catabolic activities, and, as a consequence, cells in high acetate suffer less from the scarcity of CO2
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due to internal recycling of CO2 supplied by the TCA cycle. CCM is not induced, which would also
contribute to spare ATP for other biochemical pathways, such as cell division. These results corroborate
those of [5,36], showing that inorganic CO2 transport is suppressed when chloroplasts or cells are
cultivated in mixotrophic conditions.

Cells in low-acetate and exponential phase are characterized by gene and gene pathways
associated with photosynthesis. Similar pathways are found in the stationary phase of Chlamydomonas
and yeast cells, since both organisms are characterized by transcripts associated with stress-related
pathways [7,8,37]. Cells enter the stationary phase when the carbon source is depleted, except for
the highest acetate concentration, where the stationary phase is probably reached once ammonium is
totally consumed. We also searched for transcripts involved in regulation of the stationary phase that
would be common to both Chlamydomonas and yeast. We found that Cre08.g377550, which is ranked
in the list of the first 100 genes most relevant to explain the stationary phase (Table S10), encodes
a predicted Yippee-type zinc-binding protein that shares 40% identity and 61% conserved residues
with yeast Moh1p, described as an essential yeast stationary-phase gene [7]. The expression of this
gene is increased between 5 and 15 times at time points 50 and 70 h of the 17, 31, and 44 mM acetate
growth curves compared to time points 12 and 28 h. At the last acetate concentration, only the last
point shows an increase of this transcript, since time point 50 h is still in exponential phase (Figure S5).
This protein is conserved among eukaryotes [38], and the human form has growth-inhibitory effects,
inducing cell senescence in human cells [39]. To our knowledge, few data were reported concerning
Chlamydomonas senescence: CrAPG8, one of the main markers for autophagy in Chlamydomonas
was shown to be involved in the entry into the stationary phase [9], and, in fact, we find the gene
pathway autophagy ranked first to explain this growth phase. Senescence was also shown to be
characterized by variations in the transcript levels of some enzymes involved in the antioxidant
response: Esperanza et al. (2017) [10] detected an increased level of transcripts encoding glutathione
S-transferase (GST8, Cre12.g508850) and ascorbate peroxidase (APX1, Cre02.g087700) and a decreased
level of those encoding catalase (CAT1, Cre09.g417150), glutathione peroxidase (GPX1, Cre02.g078300),
and Mn-superoxide dismutase (SOD1, Cre02.g096150 MSD1). We found no significant variation in our
database, except for APX1, whose transcript levels are decreased at the stationary phase (Figure S5).
Variations in the gene regulation of antioxidant enzymes between the two experiments could be
explained by different cultivation and sampling conditions, since cells in [10] were grown in minimal
medium and analyzed after 96 h of growth.

5. Conclusion

In conclusion, the response of Chlamydomonas cells to an increase of the acetate concentration in
the light includes massive entrance of acetate into the cells, and its metabolization into starch and fatty
acid compounds, responsible for an increase of biomass yield. We also propose that, together with
the stimulation of respiration, internal CO2 increases, which in turn decreases the level of transcripts
encoding components related to the CCM. Our findings concerning the comparison of growth mode in
low and high acetate and the putative transcription factors/genes relevant for these phenotypes are
summarized in Figure 6.



Cells 2019, 8, 1367 17 of 21
Cells 2019, 8, x FOR PEER REVIEW 17 of 22 

 

 

 

Figure 6. Growth mode of Chlamydomonas under low- and high-acetate concentrations. On the figure 
are shown transcripts encoding transcription factors with demonstrated function in photosynthesis 
(NAB1, CON1) and low CO2-regulating function (CCM1), transcripts encoding transcription factors 
ranked first in the list to explain the high-acetate (ALK2) and stationary (Cre12.g537400) phenotypes, 
and Cre08.g377550 encoding a Yippee-type zinc-binding protein implicated in the stationary phase in 
yeast. PRX1 encodes a Cys2 peroxiredoxin, and TPT17 encodes a triose phosphate transporter. 

Supplementary material: Figure S1. Measurement of acetate assimilation. Figure S2. Fatty acid classes. Figure 
S3. Boxplots of standard deviations. Figure S4. Comparison of 250 top-contributing genes according to surprisal 
analysis and K-means clustering of transcripts. Figure S5. FPKM values for transcripts Cre08.g377550 encoding 
a Yippee-type zinc-binding protein and APX1 (Cre02.g087700). Table S1. Growth rates of WT and iclC. Table S2. 
Percentage of the main fatty acids of C. reinhardtii (iclC strain). Table S3. Number of sequenced reads for 4 acetate 
concentrations and 4 time points. Table S4. Variation in λα explained by the variables growth mode 
(stationary/exponential) and acetate. Table S5. KEGG pathways ranked from low SR or high negative sum (more 
stable) to high SR (less stable). Table S6. KEGG pathways ranked from low SR (stationary state) to high SR 
(exponential state) from the first constraint. Table S7. KEGG pathways ranked from low SR (low acetate) to high 
SR (high acetate) from the second constraint. Table S8. The 100 genes contributing most to the stable state 
including annotation. Table S9. The 100 genes contributing the most to the exponential state, including 
annotation. Table S10. The 100 genes contributing the most to the stationary state, including annotation. Table 
S11. The 100 genes contributing the most to the high-acetate state, including annotation. Table S12. The 100 genes 
contributing the most to the low-acetate state, including annotation. Table S13. The 100 most stable regulatory 
genes (Protein Kinase (PPC), transcriptional regulators, and transcription factors from the iTAK database), 
including annotation. Table S14. The 100 regulatory genes (Protein Kinase (PPC), transcriptional regulators, and 
transcription factors from iTAK) contributing the most to the stationary state, including annotation. Table S15. 
The 100 regulatory genes (Protein Kinase (PPC), transcriptional regulators, and transcription factors from the 
iTAK database) contributing the most to the exponential state, including annotation. Table S16. The 100 
regulatory genes (Protein Kinase (PPC), transcriptional regulators, and transcription factors from the iTAK 
database) contributing the most to the low-acetate state, including annotation. Table S17. The 100 regulatory 

Figure 6. Growth mode of Chlamydomonas under low- and high-acetate concentrations. On the figure
are shown transcripts encoding transcription factors with demonstrated function in photosynthesis
(NAB1, CON1) and low CO2-regulating function (CCM1), transcripts encoding transcription factors
ranked first in the list to explain the high-acetate (ALK2) and stationary (Cre12.g537400) phenotypes,
and Cre08.g377550 encoding a Yippee-type zinc-binding protein implicated in the stationary phase in
yeast. PRX1 encodes a Cys2 peroxiredoxin, and TPT17 encodes a triose phosphate transporter.
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Appendix A

In editing the data for surprisal analysis, all transcripts with an average FPKM value, averaged
over all samples, values lower than 1 were removed because most of the noise is due to low expression
values, particularly those below 1 FPKM [40]. In total, 10923 genes were kept in the data set. Values
lower than 0.01 FPKM were substituted with 0.01 FPKM, to allow the computation of logarithms and
expression ratios.

Surprisal analysis [12–16] was carried out on the natural logarithm gene expression value, where
Xi(s) is the expression level of gene i in sample s. For recent applications to the transcriptomics of
C. reinhardtii, see [11,28]. The values Yi(s) are arranged in an N × Ns rectangular matrix Y, where N is
the number of genes and Ns the number of samples, N>>Ns.

Surprisal analysis provides compaction of the data given by Equation (A1):

Yi (s) = ln Xi (s) = ln X0
i +

Nα∑
α=1

Giαλα(s) (A1)

In Equation (1), α is the index of constraints, Na is the number of constraints, and Giα is the weight
of gene i in phenotype α. For a given constraint, α, surprisal analysis allows a factorization between
the weight of the constraint, Giα, and the weight λα(s) (the Lagrange multiplier) of sample s in the
phenotype α. The phenotypes, Giα, and Lagrange multipliers, λα(s), are determined via the singular
value decomposition (SVD) of the matrix Y, as described in reference [12]:

Giα = Uiα and λα(s) = ωαVαs (A2)

where U and V are respectively the left and right eigenvectors of the Y matrix, as determined by
the SVD procedure and ωα the singular values. The eigenvalues of the Y matrix are ordered by
decreasing order. When all the Ns terms are kept in Equation (A1) (Nα = Ns), the surprisal expression
of the transcript levels is an exact representation to the data. Usually, just a few terms in Equation (1)
(Nα < Ns) suffice to describe the data, which provide a determination of the main phenotypes present
in the data.

The error on the Lagrange multipliers are computed as in [41]. The Lagrange multipliers, λα(s),
are the weight of constraints α, α1 = 0, 1, 2, . . ., for each sample s. Equation (1) can also be written as
the following:

ln Xi (s) = ln X0
i (p) +

∑
α=1,2,...

Giα λα(s) =
∑

α=0,1,2,...

Giα λα (s) (A3)

Xi(p) is the level of transcript i in sample s, and α = 0 is the stable state. The different vectors, Gα,
are the left eigenvectors obtained by the SVD decomposition of the matrix Y and are orthogonal for
two different constraints, α and β: ∑

i

GiαGiβ = δα,β (A4)
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It follows from Equation (A4) that an explicit result for the weight λα(s) is the following:

λα(s) =
∑

i

Giα ln Xi(s) (A5)

An uncertainty in the weight due to a measurement error of each transcript is the following:

δ λα (s) =
∑

i

Giαδ (ln Xi (s)) (A6)

The Schwarz inequality of vector algebra yields an upper bound:

δ λα(s) ≤

 N∑
i=1

Giα
2


1
2
 N∑

i=1

(
δ Xs

i
Xs

i

)2
1
2

(A7)

where δ Xs
i is the standard deviation obtained for the replicates of each sample. From Equation (A4),

the first sum in Equation (A7) is unity. We can write the second term as av(δ X/X), and, for N = 10923,
√

N = 30.38. As expected, the upper bound of the error δλα(s) on samples ac2t4 and particularly on
ac3t4 is very large (Table A1).

Table A1. Upper bound of the error on the Lagrange multipliers λα(s).

Sample

ac1t1 0.38910 40.666
ac1t2 0.14485 15.139
ac1t3 0.67040 70.066
ac1t4 0.49241 51.463
ac2t1 0.32035 33.481
ac2t2 0.18783 19.631
ac2t3 0.27087 28.309
ac2t4 0.62907 65.746
ac3t1 0.19546 20.428
ac3t2 0.20691 21.625
ac3t3 0.55731 58.246
ac3t4 0.75679 79.094
ac4t1 0.19919 20.818
ac4t2 0.19710 20.600
ac4t3 0.21022 21.971
ac4t4 0.37858 39.567
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