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Abstract: Acetate can be efficiently metabolized by the green microalga Chlamydomonas reinhardtii. 
The regular concentration is 17 mM, although higher concentrations are reported to increase starch 
and fatty acid content. To understand the responses to higher acetate concentrations, Chlamydomonas 
cells were cultivated in batch mode in the light at 17, 31, 44, and 57 mM acetate. Metabolic analyses 
show that cells grown at 57 mM acetate possess increased contents of all components analyzed 
(starch, chlorophylls, fatty acids, and proteins), with a three-fold increased volumetric biomass yield 
compared to cells cultivated at 17 mM acetate at the entry of stationary phase. Physiological analyses 
highlight the importance of photosynthesis for the low-acetate and exponential-phase samples. The 
stationary phase is reached when acetate is depleted, except for the cells grown at 57 mM acetate, 
which still divide until ammonium exhaustion. Surprisal analysis of the transcriptomics data 
supports the biological significance of our experiments. This allows the establishment of a model 
for acetate assimilation, its transcriptional regulation and the identification of candidates for genetic 
engineering of this metabolic pathway. Altogether, our analyses suggest that growing at high-
acetate concentrations could increase biomass productivities in low-light and CO2-limiting air-
bubbled medium for biotechnology. 

Keywords: Chlamydomonas; growth; acetate concentration; transcriptomics; surprisal analysis  
 

1. Introduction 

Microalgae such as Chlamydomonas are able to store energy in the form of starch and oil 
(triacylglycerol or TAG) under certain conditions. The oil has especially drawn interest as a potential 
source of renewable fuels. However, the molecular and cellular mechanisms underlying the 
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regulation of the two carbon sinks are poorly understood. Identification of pathways and regulatory 
networks that underly oil production could guide genetic engineering for increased utilization of the 
TAG carbon sink and overproduction of oil.  

Oil accumulation can be stimulated under N starvation and can be increased by additional 
carbon supply in the form of acetate [1]. Unlike the response to nitrogen deprivation, the response to 
additional acetate is not as well understood. The green microalga Chlamydomonas reinhardtii is able to 
use acetate for growth in the light (mixotrophy) and in the dark (heterotrophy). After transport into 
the cell, acetate is metabolized into acetyl-CoA. Acetyl-CoA enters the glyoxylate cycle which allows 
the formation of building blocks such as amino acids and glucose or enters the tricarboxylic acid 
(TCA) cycle to feed the respiratory chain with reducing equivalents. Both the glyoxylate cycle and 
the respiratory chain are essential for growth in the dark since Chlamydomonas mutants affected in 
one of the processes cannot grow in heterotrophy [2,3]. 

The usual concentration of acetate for Chlamydomonas growth is 17 mM [4], and most of the 
papers utilize this concentration for cultivation. Few papers have analyzed cell physiology using 
other acetate concentrations. Heifetz et al. (2000) [5] showed that photosynthesis is inhibited when 
Chlamydomonas cells are cultivated in the presence of 3.7 to 29.4 mM acetate in saturating light and 
CO2, showing that acetate is the preferred carbon source. Growth rate was unaffected despite the 
large reduction of photosynthesis. Moreover, cultivating cells for two days with 80 mM acetate in 
low light and air increases the starch amount per cell more than the levels of TAG, showing that 
starch is the main carbon sink in Chlamydomonas [1]. These facts make the case for an effective acetate 
assimilation in the light, but the detailed information explaining how cells adapt to acetate and 
whether this cultivation mode could be useful for biotechnological purposes is lacking. 

Batch cultures typically comprise an exponential phase when nutrients are in sufficient amounts 
to sustain high growth rates, followed by a stationary phase where divisions cease and cell number 
is maintained. Subsequently, cells may enter a death phase [6]. Yeast cells cultivated in glucose shift 
from a fermentative to a respiratory metabolism upon depletion of the carbon source at the entry in 
the stationary phase, which is followed by post-translational modifications and protection against 
oxidative stress [7]. In addition, stationary phase is characterized by increased levels of transcripts 
encoding enzymes involved in sugar metabolism, the TCA cycle, and amino acid degradation [8]. In 
Chlamydomonas, entry into the stationary phase is marked by the activation of CrATG8 [9], the main 
marker of autophagy. RT-qPCR analyses also showed that cultures in stationary phase present 
increased activity and transcripts of some of the enzymes participating in the antioxidant system. 
Programmed cell death was detected by an increase of caspase activity [10]. It thus seems that yeast 
and Chlamydomonas cells present some common responses, such as the activation of antioxidant 
systems, but more details are needed to get a comprehensive view of the process.  

With the aim of characterizing the response of Chlamydomonas cells to acetate and to the 
conditions of the different growth phases, we grew the cells in the presence of four acetate 
concentrations, the usual (17 mM) one and three higher concentrations (31, 44, and 57 mM) in batch 
cultures bubbled with air and grown under low light. We sampled the cultures at different time 
points of the exponential and stationary phase of growth and analyzed the metabolic, physiological, 
and transcriptomics responses. The transcript response to different acetate concentrations was 
analyzed using surprisal analysis (SA), a method grounded in thermodynamics [11–16]. Surprisal 
analysis allows for the determination of the constraints on the genomic response due to different 
acetate concentrations. Two different constraints were identified that led to two different phenotypes. 
The first one comprises pathways involved in exponential/stationary phase, and the second 
comprises pathways involved in the low/high-acetate growth mode. Combined with oxygen 
evolution and metabolic measurements, our analysis showed that cultivation in low light and air 
supplemented by higher acetate concentrations than usual could be relevant to biotechnological 
applications aiming at increasing volumetric biomass yields, for example, during early stage culture 
expansion. In addition, acetic acid is a key element for synergetic production of biohydrogen by both 
Chlamydomonas and bacteria during cocultivation [17]. 

2. Materials and Methods 
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2.1. Strains and Cultivation Conditions 

Strains WT and iclC were described previously ([2,18] and are both derived from the 137 C strain 
of C. reinhardtii [19]. They were first adapted for 48 h in Tris-Phosphate medium [4], adjusted to pH 
7.0 with HCl, with different acetate concentrations (17, 31, 44, 57, and 87 mM sodium acetate) in flasks 
or in small photobioreactors (Multi-Cultivator MC 1000-OD, Photon Systems Instruments). 
Experimental cultivations were started with an initial cell concentration around 2 × 105 cells per mL, 
at 26±1 °C, under moderate light (50 µmol.m–2.s–1), and followed for 145 h. Cells were counted using 
a Coulter counter (http://www.beckmancoulter.com). The number of divisions per day was 
calculated according to [20]. Cell size (maximal diameter, estimated on 100 cells) was determined 
under a microscope, using the Imaging Software, NIS Elements, version 4, for Nikon (Nikon 
Instruments Inc., Melville, NY, USA). 

2.2. Samples and RNA Extraction 

Four time points were selected for sampling the transcripts: 12, 28, 50, and 70 h, using the four 
acetate concentrations. Three biological replicates were made for each curve and each time point. 
Twenty milliliters were sampled at 12 h, corresponding approximately to 1.5 × 107 cells; 15 mL at 28 
h and 5 mL at each other time point, corresponding approximately to 5.5 × 107 cells. Cells were 
harvested by centrifugation for 10 min at 1500 g. Total RNA extraction was performed according to 
[21]. Cells were washed in 500 µL of TEN buffer (10 mM Tris-HCl pH 8.0, 10 mM EDTA, and 150 mM 
NaCl) and suspended in 150 µL of RNase-free water before being stored at –20 °C. After all samples 
were collected, total RNA was extracted with 300 µL of SDS-EB buffer (2% SDS, 400 mM NaCl, 40 
mM EDTA, and 100 mM Tris-HCl pH 8.0) and 350 µL of phenol/chloroform/isoamyl alcohol (25:24:1), 
and the aqueous phase was collected by centrifugation (5 min at 15,000 g). This aqueous phase was 
used for the second extraction, with 300 µL of chloroform/isoamyl alcohol (24:1), followed by 
centrifugation (5 min at 15,000 g). The aqueous phase was used to precipitate RNA with 125 µL of 
LiCl 8 M at 4 °C overnight. Finally, the total RNA pellets were obtained by removing the supernatant 
after centrifugation for 5 min, at 15,000 g, and washed with 300 µL of 70% ethanol. After drying, the 
total RNA was suspended in 50 µL of RNase-free water and stored at –20 °C. 

2.3. Sequencing  

Library preparation started with 500 ng total RNA per sample. Illumina Sequencing (PE 1 × 75 
on a NextSeq500 machine) was performed at the GIGA-R Sequencing platform (University of Liège), 
following the manufacturer’s protocol (Illumina Inc, San Diego, CA, USA).  

2.4. Read Trimming and Quality Filtering 

Read quality was assessed with FastQC v.0.11.5 
(www.bioinformatics.babraham.ac.uk/projects/). No significant problems were observed. Quality 
filtering of RNA-seq samples was done on single-end reads, using trimmomatic (v0.36) [22], 
removing low-quality sequences (average Q20 over a 4-base sliding window, minimum length = 50 
bp, with a leading and trailing quality threshold of Q25). 

2.5. Read Mapping 

Mapping of the reads to the Chlamydomonas reinhardtii genome v5.5 assembly [23] was done 
using STAR [24], with default presets, except for intron size (-alignIntronMin 20 and -alignIntronMax 
3000). The RNA-seq data are available under the project number PRJNA561092. 

The unique mapping reads were assigned to the primary transcripts, using cuffquant and 
cuffdiff (v2.2.1), with the default fragment size of 200 and standard deviation of 80 [25]. Expression 
estimates were normalized to library size and gene length by cufflinks to calculate the FPKM values.  

2.6. Surprisal Analysis 
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Surprisal analysis was carried out as described in [11] on 10,923 genes. In surprisal analysis, the 
natural logarithm of the gene expression values Xi(s) of gene i in sample s is given as a sum of a 
balanced state value, a value common to all the samples and terms representing deviations from the 
balanced state. The deviations represent biological constraints particular to sample s: 

𝑌௜ ሺ𝑠ሻ =  ln𝑋௜  ሺ𝑠ሻ =  ln𝑋௜଴ + ෍  𝐺௜ఈ 𝜆ఈ ሺ𝑠ሻ                           ேഀ
ఈୀଵ  (1) 

Here, α is the index of the deviation terms, the constraints, and 𝑁௔ is the number of constraints. 
Each constraint, α, corresponds to a given phenotype, defined by the weights 𝐺௜ఈ of the different 
genes i. The phenotypes, 𝐺௜ఈ, and Lagrange multipliers, 𝜆ఈሺ𝑠ሻ, are determined via singular value 
decomposition (SVD) [12]. For more details, see Appendix A. The first term in Equation (1) is the 
contribution of the balanced state, which is common to all the samples. The balanced state can also 
be written as ln𝑋௜଴ =  𝐺௜଴𝜆଴. Changes in the gene expression levels due to the successive constraints, 
α =1, … 𝑁ఈ, are expressed with respect to the balanced state. By plotting the values of the Lagrange 
multipliers of the different samples for a given constraint (α), one can identify different groups of 
samples that differ by the sign of their Lagrange multiplier, 𝜆ఈሺ𝑠ሻ, within a given phenotype. In 
particular, we show below that, for the first constraint, α = 1, samples at stationary phase and those 
at exponential phase have an opposite sign of their Lagrange multipliers. For α =2, samples grown in 
low-acetate concentrations and samples grown in high-acetate concentrations are characterized by 
Lagrange multipliers of different signs. The analysis of the corresponding phenotype allows for the 
identification of the pathways that contribute most to the growth in low- and high-acetate 
concentrations, respectively. Error bars on the 𝜆ఈሺ𝑠ሻ’s can be determined from the experimental error 
(see Appendix A). 

2.7. Differential Gene Expression in the Constraint Vector Giα 

Genes of the phenotype corresponding to each constraint (α) were ranked according to the value 
of the weight (Giα). According to this ranking, 100 smallest and largest values were considered 
differentially expressed for each phenotype. In the case of the balanced state, genes that correspond 
to a term, 𝐺௜଴𝜆଴ > 0 , are the most stable, and those for which 𝐺௜଴𝜆଴ < 0 are unstable. The latter are 
the genes that will appear with the largest and the smaller weights in the phenotypes associated with 
the constraints and therefore will be the most differentially expressed in the constraints, α =1, …, 𝑁ఈ.  

2.8. Gene Set Enrichment 

Genes were categorized in gene sets, using the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (http://www.genome.jp/kegg/), and the functional annotation for C. reinhardtii v5.5 predicted 
proteins obtained from the correspondence table downloaded from Phytozome. Transcription 
factors, transcriptional regulators, and protein kinases were retrieved from the iTAK database 
(http://itak.feilab.net/). KEGG Orthology identifiers were mapped to KEGG pathways, using 
KEGGREST package [26]. To assign a weight to pathways in a given phenotype α, we use the 
approach proposed in [11], which takes into account the weights of all the genes, Giα, of the phenotype 
α. The weight assigned to a pathway therefore does not depend on the number of genes kept in the 
differential gene expression analysis.  

The weights of the pathways are assigned as follows. For each constraint, α, each subset of NJ 
genes corresponding to a pathway, J, was divided in two subsets, according to the sign of their weight 
(Giα). The Giα values for genes that are respectively larger or smaller than zero were summed together 
to get respectively the positive (P) and negative (N) weight of the pathway for constraint (α): 

𝑃ఈ௃ =  ෍𝐺௜ఈଶேೕ
௜ୀଵ   𝑖𝑓   𝐺௜ఈ  > 0                  (2) 
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𝑁ఈ௃ =  ෍𝐺௜ఈଶ     𝑖𝑓  𝐺௜ఈ   < 0ேೕ
௜ୀଵ                  (3) 

The set ratio of the pathway (J) is as follows:  𝑆𝑅௃ఈ =  𝑃ఈ௃/ 𝑁ఈ௃                                         (4) 

It is a measure for the contribution of the gene set of the pathway (J) to constraint (α). Set ratios, 𝑆𝑅௃௔, were ordered according to their value for each phenotype. These gene sets where all values, Giα, 
are either positive or negative, were subsequently ranked on 𝑃ఈ௃ or 𝑁ఈ௃, respectively. Pathways that 
correspond to a gene set with less than 10 genes were omitted from the dataset. 

Pathways with both low and high ratios are predicted by surprisal analysis to be important for 
the phenotype and to be enriched. In the balanced state, genes that correspond to a term 𝐺௜଴𝜆଴  > 0   
are the most stable, and those for which 𝐺௜଴ 𝜆଴ < 0 are unstable. In the first phenotype, 𝛼 = 1, genes 
which correspond to a term 𝐺௜ଵ𝜆ଵሺ𝑠ሻ  > 0 are over expressed for samples grown in exponential phase 
and under expressed for samples in stationary phase while for the second phenotype, 𝛼 = 2, genes 
for which 𝐺௜ଶ𝜆ଶሺ𝑠ሻ  > 0 are over expressed in high-acetate conditions and under expressed in low-
acetate conditions. Since the values of the Lagrange multiplier, 𝜆ଵሺ𝑠ሻ, are positive for the samples in 
exponential phase and negative for those in stationary phase, high SR pathway ratios correspond to 
gene sets that are over expressed for samples in exponential phase and low SR ratios correspond to 
gene sets that are over expressed in stationary phase. For the second constraint, samples grown in 
high-acetate concentrations have a positive Lagrange multiplier 𝜆ଶሺ𝑠ሻ, while samples grown in low-
acetate concentrations have negative 𝜆ଶሺ𝑠ሻ values. Therefore, high SR pathway ratios correspond to 
gene sets that are over expressed for samples grown in high-acetate conditions, while low SR ratios 
values correspond to gene sets that are over expressed in low-acetate concentrations. 

2.9. Metabolic Analyses 

NH4+ and acetate concentrations were determined using kits from Megazyme (L-
Arginine/urea/ammonium for NH4+ and Acetic Acid Assay kit for acetate). Fatty acids were 
quantified by GC–MS, as already described in [18]. Starch content and dry weight were measured as 
also described in [18]. 

2.10. Oxygen Evolution Measurements 

Cells were collected at each time point, and measurements were made directly on 1 mL of the 
cell suspensions. Oxygen evolution rates (gross oxygen evolution) were measured using Clark 
Electrode (Hansatech Oxygraph). The assayed actinic light steps included 6, 14, 30, 45, 68, 103, 176, 
301, 571, 1024, and 1931 µmol.m–2 s–1. Oxygen evolution rates were determined based on the sum of 
the net oxygen evolution rates over the last 45 seconds of each light step and the absolute value of 
the dark respiration rates.  

3. Results 

3.1. Growth Curves and Medium Composition of C. Reinhardtii Using Different Acetate Concentrations 

The starting growth experiments were conducted on WT (137C), and a complemented icl mutant 
strain of 137C (iclC), containing a wild-type version of the isocitrate lyase gene, one of the two unique 
enzymes of the glyoxylate cycle, because of availability of transcriptomic data for the iclC strain [11]. 
Both strains are equivalent because they both contain the ICL1 gene and are indistinguishable at the 
level of their expression and physiology [11,18] (see Table S1). The cells were grown at five 
concentrations, 17, 31, 44, 57, and 87 mM, in triplicate, using small photobioreactors where light, 
temperature, and air bubbling were tightly controlled to obtain the most reproducible growth 
conditions. The 87 mM acetate concentration did not give reproducible growth curves and was 
abandoned. We thus focused on the four lowest concentrations, 17, 31, 44, and 57 mM, using the iclC 
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strain as a reference. Cells were adapted to each condition for two days before starting the 
experiments. Cells were counted at five time points: 12, 28, 50, 70, and 145 h. The growth curves 
presented a pattern typical of batch cultures with an exponential and a stationary phase. Cell death 
can be observed between 70 and 145 h of growth at concentrations higher than 17 mM acetate (Figure 
1a). A notable difference between the growth curves is that cells cultivated using 17, 31, and 44 mM 
as the initial acetate concentrations reached the stationary phase at time point 50 h while cells 
cultivated using 57 mM as initial acetate concentration reached the stationary phase at time point 70 
h (Figure 1a).  

  

Figure 1. Growth curves of Chlamydomonas (iclC strain) and medium composition analysis at four 
acetate concentrations (17, 31, 44, and 57 mM) under continuous light (50 �mol. m–2.s–1) at 26±1 °C. (a) 
Cell concentration (cells/mL), (b) acetate concentration (mM), and (c) ammonium concentration 
(NH4+) (mM). Mean of 3-4 biological replicates ± SD. 

In addition, the number of doublings per day is significantly higher for the cells cultivated at 17 
mM compared to the three other acetate concentrations in exponential phase (Table 1).  

Table 1. Number of doublings (iclC strain) per 24 h calculated between 12 and 50 h for the cells 
cultivated at 17, 31, and 44 mM acetate and between 12 and 70 h for the cells cultivated at 57 mM 
acetate. Mean of four biological replicates ± SD. * Significantly different (p < 0.05). 

Acetate Concentration Doubling/Day 
17 mM 3.0 ± 0.3 * 
31 mM 2.2 ± 0.3 
44 mM 1.9 ± 0.1 
57 mM 2.0 ± 0.1 
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Since stationary phase will be reached when nutrients are depleted, we measured acetate and 
ammonium concentrations in the medium in the four different cultures and at the five time points 
mentioned above (Figure 1b,c). As shown in Figure 1b, acetate is consumed at time point 50 h for all 
the cultures, whatever the cell concentration reached at this time, meaning that greater uptake of 
acetate has occurred in the cells cultivated at 57 mM acetate (Figure S1). The ammonium is also nearly 
entirely consumed at time point 70 h, except for the cells cultivated using 17 mM acetate, where 
around one-third of the initial ammonium concentration still remains in the medium (Figure 1c). 
These results suggest that the stationary phase begins when the carbon source is depleted, except for 
cells cultivated at 57 mM acetate, which reach the stationary phase when the ammonium source is 
consumed and thus still divide exponentially until 70 h of growth. 

3.2. Biomass Composition Analysis 

Biomass composition, cell dry weight, biomass volumetric yield, and cell size of cells cultivated 
at the extreme acetate concentrations, 17 and 57 mM acetate, were analyzed at the first four time 
points (12, 28, 50, and 70 h) (Figure 2). The time point 145 h had to be discarded because of a variability 
probably that was too high due to variable cell death. Transesterification and GC analysis were used 
to determine fatty acid methyl ester (FAME) content and profile, while the contents of other 
components (chlorophyll, proteins, and starch) were determined spectrophotometrically (see 
Material and Methods). A general increase of all biomass components per cell is observed when cells 
are cultivated at 57 mM acetate, with significant differences present at least for one time point of the 
growth curves. Cell dry weight is also significantly higher, leading to a three-fold increase of biomass 
volumetric yield at the entry of the stationary phase for cells cultivated at 57 mM acetate. Cell size 
estimated by the longest diameter of the cells is not significantly different. The profiles of fatty acids 
were also examined and were found to be similar in both types of cultivation conditions: saturated 
fatty acids are major classes of the total fatty acids, whatever the concentration and the time point of 
the growth curve (Table S2 and Figure S2).  
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Figure 2. Biomass composition, dry weight, volumetric yield, and cell size (cell diameter) (iclC strain) 
during growth, using the two extreme concentrations (17 and 57 mM) of acetate for cultivation. Mean 
of at least three independent experiments ± SD. * Significant difference (p < 0.05) between 17 and 57 
mM acetate time points. 

3.3. O2 Evolution 

Since photosynthesis and respiration are the two major processes yielding ATP production, we 
measured the oxygen evolution during growth (Figure 3) by determination of photosynthesis–
irradiance curves, using low-acetate (17 mM) and high-acetate (57 mM) growth curves (Figure 3a). 

The highest photosynthetic activities (Figure 3a) are found for the cells cultivated in low acetate 
(17 mM) and in exponential phase (12 and 28 h), attesting that these cells rely on energy produced by 
photosynthesis to divide. Cells in stationary phase show decreased photosynthetic activity compared 
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to cells in exponential phase. Cells cultivated at 57 mM acetate demonstrate a lower (12–28 h) or about 
equal (50–70 h) oxygen evolution compared to cells at 17 mM acetate. Our results are in agreement 
with those of [5,27], which showed that the presence of acetate decreases photosynthetic activity. 
Respiration was also recorded (Figure 3b). The cells cultivated at 57 mM acetate present a similar (12–
28 h) or significantly higher (50–70 h) respiration rate than cells cultivated at 17 mM acetate, which 
show a negligible respiration rate starting from time point 50 h, when acetate was totally consumed. 
Presumably, this is due to the utilization of the internal carbon reserve for biosynthesis and 
respiration which is present in cells cultivated at high-acetate concentrations and lacking in cells 
cultivated in 17 mM acetate.  

 

Figure 3. Oxygen evolution curves and respiration rates during growth using the two extreme acetate 
concentrations (17 and 57 mM) for the iclC strain. (a) Oxygen evolution at different light intensities 
for, respectively, 12, 28, 50, and 70 h after inoculation. (b) Respiration rates. Mean of at least three 
independent experiments ± SD. * Significant difference (p < 0.05). 

3.4. Surprisal Analysis of Transcriptomics Data  

3.4.1. Constraints 1 and 2 Respectively Allow the Grouping of Samples Based on Their 
Physiological State or the Acetate Concentration  
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In order to understand in detail the changes in gene expression underlying these physiological 
adaptations, we performed transcriptomic analyses. For that purpose, RNA was extracted in three 
biological replicates at the four time points (12, 28, 50, and 70 h) of the growth curves cultivated at 
the four acetate concentrations (17, 31, 44, and 57 mM, Figure 1), and RNA-seq data were obtained. 
After quality checks of the reads, one replicate of time point 70 h (31 and 44 mM) had to be discarded 
due to too low a fraction of uniquely mapping reads and their position as outliers on a PCA, reflecting 
low quality libraries (Table S3 and Figure S3). The raw RNA-seq data of time points 12 and 18 h were 
published previously [11] (https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP132684) and are 
included in our analysis. The new data generated are available under the project number 
PRJNA561092. In the analysis below, the samples are labeled by a concentration and a time index, 
accordingly, i.e., ac1t1 means an acetate concentration of 17 mM at time t1 = 12 h, ..., ac4t4 means a 
concentration of 57 mM and a time t4 = 70 h. 

The values of the Lagrange multipliers and of the constraints were computed as described in 
[11,28] and in the Appendix. The λ0 values for each sample are plotted in Figure 4a. As expected, for 
the balanced state [11,28], the values of λ0(s) (where s stands for sample index) are constant within a 
range (25 units) smaller than the error bars that reflects small variations from sample to sample. 

  
Figure 4. Lagrange multipliers values for (a) the balanced state ൫𝜆଴ሺ𝑠ሻ൯, (b) the first (൫𝜆ଵሺ𝑠ሻ൯), and (c) 
the second ൫𝜆ଶሺ𝑠ሻ൯constraint (iclC strain). The 𝜆଴, 𝜆ଵ, and 𝜆ଶvalues and the corresponding error bars 
are determined using the 16 samples (see Appendix A). Note that the error bars are upper bound 
values (Equation (A7)). The actual error will be ≤ to the error bars shown. Overall, the sign of 𝜆ଵ and 𝜆ଶ can be considered to be reliably determined. 

On the other hand, the values of the Lagrange multiplier of the first constraint, λ1(s) (Figure 4b), 
have different signs depending on whether the samples come from the two last time points (t3 and 
t4) (negative λ1: ac3t4, ac2t4, ac1t4, ac1t3, ac3t3, ac4t4, and ac2t3) or from the two first time points (t1 
and t2) (positive λ1: ac4t1, ac4t3, ac1t1, ac3t1, ac2t2, ac4t2, ac3t2, ac2t1, and ac1t2), except for ac4t3 
(see below). The first constraint therefore allows discrimination between the two stages of the growth 
curve: exponential (time points t1 and t2) or stationary (time points t3 and t4). Ac4t3 (57 mM acetate-
50 h), although it is categorized as a ‘late’ sample, is found to belong to the phenotype of the 
exponential phase which is in accordance with the growth curve of Figure 1, where the time point 50 
h of the 57 mM acetate growth curve is still in the exponential phase.  

The second constraint (Figure 4c) allows the separation between the acetate concentrations of 
the samples, since the eight samples with low-acetate concentrations (ac1 and ac2) (ac1t4, ac1t3, ac2t4, 
ac2t2, ac1t2, ac2t3, ac2t1, and ac1t1) have negative values of λ2(s), and the eight samples grown on 
high-acetate concentrations (ac3 and ac4) (ac3t1, ac3t2, ac4t2, ac4t3, ac4t1, ac3t4, ac3t3, and ac4t4) have 
positive values. The stationary/exponential and low/high-acetate phenotypes segregate from each 
other with different signs only in the plots of the Lagrange multipliers of the first and the second 
constraint, respectively, indicating that the gene expression profiles (phenotypes) describing these 
two conditions are circumscribed by the contribution of the first and the second constraint to the 
gene-expression levels (Table S4). 



Cells 2019, 8, 1367 11 of 21 

 

3.2.2. Gene Set Enrichment Analysis Allows for the Description of the Biological Pathways 
Contributing to the Balanced State and to the First and Second Constraints 

Surprisal analysis (see Methods) determines a gene transcript expression profile (a phenotype) 
associated with each constraint. This transcript expression profile is given by a vector (Gα), where α 
is the index of the constraint. The components (Giα) of the vector (Gα) determine the weight of 
transcript i in the phenotype associated with the constraint (α), whose Lagrange multiplier is λα. One 
can therefore rank the contribution of a transcript to a given phenotype according to its weight. As 
described in section ‘Gene Set Enrichment’ of Methods, the annotated genes [23] of Chlamydomonas 
were categorized in gene sets (KEGG). This categorization therefore allowed the identification of the 
gene sets that contribute most to the phenotype associated with a given constraint, α. From the Giα 
values computed for each transcript using surprisal analysis, we define weights of the pathways in 
each constraint and in the balanced state, Equations (2)–(4) [11,28], that quantifies the contribution to 
the phenotype of each gene set that defines a pathway. The pathways with the most negative weight 
(N0) dominate the phenotype of the balanced state (see 2.9 above), and those with the 10 most 
negative weights are listed in Table 2. These pathways mainly belong to primary carbon metabolism 
(oxidative phosphorylation, carbon fixation in photosynthetic organisms, citrate cycle, 2-
oxocarboxylic acid metabolism, and pyruvate metabolism), as expected, since cells in any of the 
conditions analyzed need these basic pathways to survive and divide. The complete list of the KEGG 
pathways ranked according to the value of N0 is provided (Table S5). 22 pathways with a high 
negative value of N0 are added to the first ten of Table 2, which provides the fine-tuning of the 
balanced state. 

Table 2. KEGG pathways contributing most to the balanced state. 

KEGG Pathways P0 1 104 × N0 2 
Oxidative phosphorylation 0 3.55 

Carbon fixation in photosynthetic organisms 0 3.33 
Phagosome 0 3.16 

Citrate cycle (TCA cycle) 0 3.05 
2-Oxocarboxylic acid metabolism 0 2.55 

Valine, leucine and isoleucine biosynthesis 0 2.42 
alpha-Linolenic acid metabolism 0 2.31 

Lysine biosynthesis 0 2.04 
Pyruvate metabolism 0 1.96 

Fatty acid biosynthesis 0 1.84 
1 P0: Positive weight of the gene set in the balanced state (Equation (2) with �����).2 N0: Negative 
weight of the gene set in the balanced state (Equation (3) with �����). 

The same analysis was carried out using the weight of each transcript, Gi1, associated with the 
stationary/exponential growth phenotype of the first constraint. For this constraint, gene pathways 
with the highest positive weight, SR > 2 (see Equations (2)–(4)) should be considered for the 
characterization of the samples in exponential phase (Table S6); the 10 highest SR ratios are shown in 
Table 3, left. As expected from the O2 evolution curves, pathways in the exponential phase samples 
are mainly related to photosynthesis (photosynthesis, photosynthesis antenna proteins, porphyrin 
and chlorophyll metabolism, and carotenoid metabolism). Gene pathways with SR < 0.5 correspond 
to gene sets contributing most to the expression level of samples in stationary phase and the 10 lowest 
SR ratios are shown in Table 3, right. Pathways related to stress responses (regulation of autophagy, 
peroxisome, endocytosis, and selenocompound metabolism) and catabolism (valine, leucine, and 
isoleucine degradation) dominate in the stationary phase, which is in accordance with the 
physiological state of the cells at these time points of the growth curve, where some of them begin to 
die.  
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Table 3. KEGG pathways contributing most to the first constraint. 

Ten Most Positive Pathways (Exponential Phase) Ten Most Negative Pathways (Stationary Phase) 
KEGG Pathways 105 × Pα

1 

109 × Nα
2 

SRα
3 

KEGG  
Pathways 

106 × Pα
1 

105 × Nα
2 

102 × SRα
3 

Porphyrin and chlorophyll metabolism 23.50 9800 24 Regulation of autophagy 0 7.76 0 

DNA replication 9.62 3930 24.5 Valine, leucine and isoleucine 
degradation 

5.54 5.57 9.95 

Carotenoid biosynthesis 4.82 1790 26.9 Endocytosis 1.88 1.37 13.7 
N-Glycan biosynthesis 10.4 3700 28.2 Plant hormone signal transduction 1.92 1.36 14.1 

RNA polymerase 5.85 1780 32.9 Peroxisome 8.78 3.63 24.2 
Ubiquinone and other terpenoid-quinone 

biosynthesis 
18.4 5050 36.4 Propanoate metabolism 14.5 4.61 31.4 

Lysine biosynthesis 14.4 3690 38.9 beta-Alanine metabolism 20.9 5.70 36.7 
Histidine metabolism 14.6 3330 43.9 SNARE interactions in vesicular transport 6.5 1.47 44.3 

Photosynthesis—antenna proteins 94.2 222 4240 Selenocompound metabolism 20.4 3.74 54.5 

Photosynthesis 48.4 9.37 51700 Pentose and glucuronate interconversions 7.65 1.24 61.6 

1 Pα: positive weight of the gene set for constraint α (Equation (2)), 2 Nα: negative weight of the gene set for constraint α (Equation (3)), 3 SR (Equation (4)): set ratios 
reflecting the contribution of the gene set to the phenotype. See Methods for more details about the methodology. 
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The second constraint allows for the identification of the gene pathways corresponding to 
acetate concentration, based on the Gi2 values computed for each transcript. SR > 2 are those that are 
important for the high-acetate phenotype, and SR < 0.5 are those that are important for the low-acetate 
phenotype (Table S7).  

The left side of Table 4 lists the ten pathways with the highest SR ratios prevailing in high-acetate 
concentrations. They are related to division (DNA replication), DNA damage repair, such as 
homologous recombination and nucleotide excision repair, and stress-related endogenous processes 
(proteasome and ubiquitin mediated proteolysis). The gene sets prevailing in the low-acetate 
phenotype, SR < 0.5, comprise pathways related to primary carbon metabolism (carbon fixation in 
photosynthetic organisms and pyruvate metabolism) and photosynthesis (photosynthesis, 
photosynthesis-antenna proteins, and carotenoid biosynthesis). They are listed in Table 4, to the right, 
and in Table S5.  

Table 4. KEGG pathways contributing most to the second constraint. 

Ten Most Positive Pathways—High-Acetate-Grown 
Samples 

Ten Most Negative Pathways—Low-Acetate-Grown 
Samples 

KEGG pathways 105 × Pα
1 

107 ×  

Nα
2 

SRα
3 KEGG pathways 106 × Pα

1 

105 ×  

Nα
2 

103 × 

SRα
3 

Nucleotide 
excision repair 

8.52 23.30 36.6 alpha-Linolenic 
acid metabolism 

0 3.72 0 

Sphingolipid 
metabolism 

6.58 17.80 36.9 Photosynthesis—
antenna proteins 

1.30 22.30 5.83 

Ubiquitin 
mediated 

proteolysis 

5.30 11.80 45 Fatty acid 
biosynthesis 

2.54 8.82 28.80 

N-Glycan 
biosynthesis 

10.30 21.90 47.3 Carotenoid 
biosynthesis 

2.07 4.22 49.10 

Base excision 
repair 

9.49 8.16 116.0 Photosynthesis 14.9 17.40 85.60 

beta-Alanine 
metabolism 

16.90 9.19 184.0 Ribosome 4.46 3.90 114.00 

Homologous 
recombination 

9.31 2.06 452.0 Pyruvate 
metabolism 

4.53 3.15 144.00 

DNA replication 29.90 0 Inf Lysine 
biosynthesis 

5.84 3.25 179.00 

Proteasome 7.32 0 Inf Porphyrin and 
chlorophyll 
metabolism 

10.3 4.88 211.00 

SNARE 
interactions in 

vesicular transport 

3.90 0 Inf Carbon fixation in 
photosynthetic 

organisms 

11.7 5.41 216.00 

1 Pα: positive weight of the gene set for constraint α (Equation (2)), 2 Nα: negative weight of the gene 
set for constraint α (Equation (3)), 3 SR (Equation (4)): set ratios reflecting the contribution of the gene 
set to the phenotype. See Methods for more details about the methodology. 

In addition to categorizing KEGG gene sets according to their Gi0, Gi1, and Gi2 values to define 
the biological pathways which are the most important for a specific phenotype, it is also possible to 
look individually at the genes contributing most to each phenotype. The first hundred genes 
contributing most to the balanced state (Table S8), the first phenotype (exponential phenotype or 
stationary) (Tables S9, S10), and the second phenotype (high- or low-acetate phenotype) (Tables S11, 
S12) are listed. Most of these have unknown functions. Those with identified functions are 
underlined. For the first phenotype, they mainly encode proteins participating in photosynthesis and 
to cell division for the exponential phase, and to transporters, stress, catabolism, and amino acid 
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degradation for the stationary phase. For the second phenotype, they mainly encode proteins 
involved in ammonium starvation, but also gamete- and zygote-specific proteins, and histones for 
the high-acetate-phenotype. For the low-acetate phenotype, they are related to photosynthesis, low 
CO2 availability, and division. The presence of these transcripts in the corresponding phenotypes is 
expected. Those with unknown functions or with regulatory/specific functions are worth further 
investigation. For example, in the list of the first 100 genes contributing the most to the exponential 
phase (Table S9), Cre06.g257601, encoding a chloroplast 2-cys peroxiredoxin (PRX1) is found, which 
is probably involved in the redox regulation of chloroplast proteins. This enzyme deserves attention 
to define its targets in the regulation of the exponential phase. In the high-acetate phenotype (Table 
S11), Cre11.g479950, encoding a triose phosphate transporter (TPT17) is found. Five triose phosphate 
transporters are present in the Chlamydomonas genome (Cre06.g263850, TPT2; Cre08.g379350, TPT1; 
Cre09.g415900, TPT15; Cre12.g490100, TPT19; Cre12.g501000, TPT20; Cre16.g663800, TPT25). The fact 
that TPT17 is identified here and not the others suggests a role in the export of triose phosphate out 
of the chloroplast in the specific conditions of the high-acetate phenotype, which deserves further 
investigation.  

In order to identify the regulatory proteins that contribute the most to the balanced state (G0), 
the exponential vs. stationary growth (G1), and low vs. high acetate (G2), the 100 regulatory genes 
contributing most to each phenotype according to their Gi values are summarized in Tables S13–S17. 
Of particular interest is the fact that, in the exponential (Table S15) and low-acetate (Table S16) 
phenotype, NAB1 (Cre06.g268600), which is ranked the first in these lists, was demonstrated to play 
a role in the adaptation to low light [29,30], while one transcription factor (Cre06.g278159/CON1) 
found in the low-acetate phenotype (Table S16) was recently characterized with respect to its role in 
the control of photoprotection during photosynthesis [31,32]. Cre09.g399552 (CCM1), which 
regulates CO2-responsive genes [33], is also ranked in the low-acetate phenotype (Table S16). These 
results suggest that these lists have biological significance and offer a better understanding of the 
regulation of central carbon metabolism. These lists thus provide candidates for genetic engineering, 
with the aim of upregulating or downregulating the acetate response, for example, by looking at the 
regulator genes in the high-acetate phenotype (Table S17), such as Cre04.g220700 encoding an Aurora 
like kinase (ALK2), which is ranked first in this table.   

We also performed K-means clustering of expression values by using the same approach as 
described in [11]. Results (Figure S4) show that cluster 1 discriminates the stationary-phase samples, 
cluster 3 the exponential-phase samples, and cluster 2 the high-acetate samples. 

3.5. Analysis of the Transcripts Encoding Components of the Carbon-Concentrating Mechanism (CCM) 

Since respiration rates are higher for the cells cultivated in high acetate (Figure 3b), internal CO2 
produced by the TCA cycle could also be increased, which could influence the expression of genes 
participating to the carbon-concentrating mechanism (CCM). The presence of CCM mechanisms in 
photosynthetic organisms is linked to the properties of the ribulose 1,5-bisphosphate 
carboxylase/oxygenase (Rubisco) enzyme, which cannot discriminate completely between CO2 and 
O2, making the oxygenation of ribulose bisphosphate competitive with the carboxylation reaction 
under atmospheric CO2. Of the eight transcripts encoding putative components of the CCM/Ci 
transport [34] found in our transcriptomics analysis, four show a significant decreased expression in 
the high-acetate cultivation conditions (ac3-4) compared to low-acetate cultivation (ac1-2) (Figure 5a). 
In addition, the transcript levels of CCM1/CIA5, the master regulator controlling the induction of the 
CCM mechanism [33] and of RCA1 encoding rubisco activase required for expression of Rubisco in 
low CO2 atmosphere [35] are also in significant lower amounts in the high-acetate phenotype (Figure 
5b).  
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Figure 5. FPKM data of transcripts encoding components involved in low CO2 environment. Shown 
in the figure are the following. (a) Eight transcripts encoding components involved in hypothetical 
CCM/Ci transport: Cre04.g223100 (CAH1); Cre04.g222800 (HLA3); Cre05.g248400 (CAH4); 
Cre05.g248450 (CAH5); Cre06.g260250 (CemA); Cre06.g309000(LCIA); Cre10.g452800 (LCIB); and 
Cre09.g415700 (CAH3)]. (b) The CCM1/CIA5 (Cre02.g096300) transcript encoding the master 
regulator controlling the induction of the CCM mechanism, and the RCA1 (Cre04.g229300) transcript 
encoding rubisco activase. Ac1-2 represents the 17 and 31 mM acetate concentrations, and ac3-4 
represents the 44 and 57 mM acetate concentrations. Red color denotes significant downregulation 
(cuffdiff, p-value). 

4. Discussion 

We have analyzed the growth of Chlamydomonas cells cultivated at different acetate 
concentrations, the usual one (17 mM) and three levels above it (31, 44, and 57 mM), at four time 
points of the growth curves (12, 28, 50, and 70 h). Surprisal analysis of the transcriptomics data 
confirms the biological significance of our results. This confirms the predictive value of RNA-seq data 
to identify potential target genes/pathways for genetic engineering. Cells in low acetate rely on both 
acetate assimilation and photosynthesis for growth, which is stopped when acetate is consumed. 
Cells cultivated at 57 mM acetate accumulate higher amounts of starch and other biomass 
components (chlorophylls, fatty acids, and proteins), higher respiration rates, and lower 
photosynthetic activities. These observations are in line with those of [5,27], who reported higher 
respiration rates and decreased photosynthesis activity in acetate-grown (17 mM) cells under 
atmospheric CO2 compared to phototrophic cells. Terauchi et al. (2010) [27] also found higher 
chlorophyll content on a per cell basis in the acetate-grown cells compared to phototrophic-grown 
cells, although photosynthesis activity was decreased. Fan et al. (2012) [1] found a higher starch 
content when cells were cultivated with 80 mM acetate. These results and ours suggest that the excess 
of acetyl-CoA provided by acetate fuels carbon compound synthesis, accumulation, and degradation. 
This leads to an increase in biomass volumetric yields, which could be useful to boost growth for 
biotechnological purposes when cells are cultivated in low light and atmospheric CO2. Cells 
cultivated in high acetate seem to switch toward a heterotrophic growth mode, first by using external 
acetate and then by degrading their internal carbon storage compounds. Although these cells seem 
to suffer from stress (see gene pathways retrieved by surprisal analysis), probably because of 
ammonium exhaustion, they nevertheless divide using the ATP provided by the catabolic activities, 
and, as a consequence, cells in high acetate suffer less from the scarcity of CO2 due to internal 
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recycling of CO2 supplied by the TCA cycle. CCM is not induced, which would also contribute to 
spare ATP for other biochemical pathways, such as cell division. These results corroborate those of 
[5,36], showing that inorganic CO2 transport is suppressed when chloroplasts or cells are cultivated 
in mixotrophic conditions.  

Cells in low-acetate and exponential phase are characterized by gene and gene pathways 
associated with photosynthesis. Similar pathways are found in the stationary phase of Chlamydomonas 
and yeast cells, since both organisms are characterized by transcripts associated with stress-related 
pathways [7,8,37]. Cells enter the stationary phase when the carbon source is depleted, except for the 
highest acetate concentration, where the stationary phase is probably reached once ammonium is 
totally consumed. We also searched for transcripts involved in regulation of the stationary phase that 
would be common to both Chlamydomonas and yeast. We found that Cre08.g377550, which is ranked 
in the list of the first 100 genes most relevant to explain the stationary phase (Table S10), encodes a 
predicted Yippee-type zinc-binding protein that shares 40% identity and 61% conserved residues 
with yeast Moh1p, described as an essential yeast stationary-phase gene [7]. The expression of this 
gene is increased between 5 and 15 times at time points 50 and 70 h of the 17, 31, and 44 mM acetate 
growth curves compared to time points 12 and 28 h. At the last acetate concentration, only the last 
point shows an increase of this transcript, since time point 50 h is still in exponential phase (Figure 
S5). This protein is conserved among eukaryotes [38], and the human form has growth-inhibitory 
effects, inducing cell senescence in human cells [39]. To our knowledge, few data were reported 
concerning Chlamydomonas senescence: CrAPG8, one of the main markers for autophagy in 
Chlamydomonas was shown to be involved in the entry into the stationary phase [9], and, in fact, we 
find the gene pathway autophagy ranked first to explain this growth phase. Senescence was also 
shown to be characterized by variations in the transcript levels of some enzymes involved in the 
antioxidant response: Esperanza et al. (2017) [10] detected an increased level of transcripts encoding 
glutathione S-transferase (GST8, Cre12.g508850) and ascorbate peroxidase (APX1, Cre02.g087700) 
and a decreased level of those encoding catalase (CAT1, Cre09.g417150), glutathione peroxidase 
(GPX1, Cre02.g078300), and Mn-superoxide dismutase (SOD1, Cre02.g096150 MSD1). We found no 
significant variation in our database, except for APX1, whose transcript levels are decreased at the 
stationary phase (Figure S5). Variations in the gene regulation of antioxidant enzymes between the 
two experiments could be explained by different cultivation and sampling conditions, since cells in 
[10] were grown in minimal medium and analyzed after 96 h of growth.  

5. Conclusion 

In conclusion, the response of Chlamydomonas cells to an increase of the acetate concentration in 
the light includes massive entrance of acetate into the cells, and its metabolization into starch and 
fatty acid compounds, responsible for an increase of biomass yield. We also propose that, together 
with the stimulation of respiration, internal CO2 increases, which in turn decreases the level of 
transcripts encoding components related to the CCM. Our findings concerning the comparison of 
growth mode in low and high acetate and the putative transcription factors/genes relevant for these 
phenotypes are summarized in Figure 6.  
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Figure 6. Growth mode of Chlamydomonas under low- and high-acetate concentrations. On the figure 
are shown transcripts encoding transcription factors with demonstrated function in photosynthesis 
(NAB1, CON1) and low CO2-regulating function (CCM1), transcripts encoding transcription factors 
ranked first in the list to explain the high-acetate (ALK2) and stationary (Cre12.g537400) phenotypes, 
and Cre08.g377550 encoding a Yippee-type zinc-binding protein implicated in the stationary phase in 
yeast. PRX1 encodes a Cys2 peroxiredoxin, and TPT17 encodes a triose phosphate transporter. 

Supplementary material: Figure S1. Measurement of acetate assimilation. Figure S2. Fatty acid classes. Figure S3. 
Boxplots of standard deviations. Figure S4. Comparison of 250 top-contributing genes according to surprisal 
analysis and K-means clustering of transcripts. Figure S5. FPKM values for transcripts Cre08.g377550 encoding a 
Yippee-type zinc-binding protein and APX1 (Cre02.g087700). Table S1. Growth rates of WT and iclC. Table S2. 
Percentage of the main fatty acids of C. reinhardtii (iclC strain). Table S3. Number of sequenced reads for 4 acetate 
concentrations and 4 time points. Table S4. Variation in λα explained by the variables growth mode 
(stationary/exponential) and acetate. Table S5. KEGG pathways ranked from low SR or high negative sum (more 
stable) to high SR (less stable). Table S6. KEGG pathways ranked from low SR (stationary state) to high SR 
(exponential state) from the first constraint. Table S7. KEGG pathways ranked from low SR (low acetate) to high 
SR (high acetate) from the second constraint. Table S8. The 100 genes contributing most to the stable state including 
annotation. Table S9. The 100 genes contributing the most to the exponential state, including annotation. Table S10. 
The 100 genes contributing the most to the stationary state, including annotation. Table S11. The 100 genes 
contributing the most to the high-acetate state, including annotation. Table S12. The 100 genes contributing the 
most to the low-acetate state, including annotation. Table S13. The 100 most stable regulatory genes (Protein Kinase 
(PPC), transcriptional regulators, and transcription factors from the iTAK database), including annotation. Table 
S14. The 100 regulatory genes (Protein Kinase (PPC), transcriptional regulators, and transcription factors from 
iTAK) contributing the most to the stationary state, including annotation. Table S15. The 100 regulatory genes 
(Protein Kinase (PPC), transcriptional regulators, and transcription factors from the iTAK database) contributing 
the most to the exponential state, including annotation. Table S16. The 100 regulatory genes (Protein Kinase (PPC), 
transcriptional regulators, and transcription factors from the iTAK database) contributing the most to the low-
acetate state, including annotation. Table S17. The 100 regulatory genes (Protein Kinase (PPC), transcriptional 



Cells 2019, 8, 1367 18 of 21 

 

regulators, and transcription factors from the iTAK database) contributing the most to the high-acetate state, 
including annotation. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Figure S1–S5; Table 
S1–S17  
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Appendix A 

In editing the data for surprisal analysis, all transcripts with an average FPKM value, averaged 
over all samples, values lower than 1 were removed because most of the noise is due to low 
expression values, particularly those below 1 FPKM [40]. In total, 10923 genes were kept in the data 
set. Values lower than 0.01 FPKM were substituted with 0.01 FPKM, to allow the computation of 
logarithms and expression ratios.   

Surprisal analysis [12–16] was carried out on the natural logarithm gene expression value, where 
Xi(s) is the expression level of gene i in sample s. For recent applications to the transcriptomics of C. 
reinhardtii, see [11,28]. The values Yi(s) are arranged in an N × Ns rectangular matrix Y, where N is the 
number of genes and Ns the number of samples, N>>Ns. 

Surprisal analysis provides compaction of the data given by Equation (A1):  

𝑌௜ ሺ𝑠ሻ = ln𝑋௜  ሺ𝑠ሻ = ln𝑋௜଴ + ෍𝐺௜ఈேഀ
ఈୀଵ 𝜆ఈሺ𝑠ሻ       (Α1)  

In Equation (1), α is the index of constraints, 𝑁௔is the number of constraints, and 𝐺௜ఈ is the 
weight of gene i in phenotype 𝛼. For a given constraint, α, surprisal analysis allows a factorization 
between the weight of the constraint, 𝐺௜ఈ, and the weight 𝜆ఈ(𝑠) (the Lagrange multiplier) of sample 
s in the phenotype α. The phenotypes, 𝐺௜ఈ, and Lagrange multipliers, 𝜆ఈ(𝑠), are determined via the 
singular value decomposition (SVD) of the matrix Y, as described in reference [12]: 

  and     (A2)  

where U and V are respectively the left and right eigenvectors of the Y matrix, as determined by the 
SVD procedure and ωα the singular values. The eigenvalues of the Y matrix are ordered by decreasing 
order. When all the Ns terms are kept in Equation (A1) (𝑁ఈ =  𝑁௦), the surprisal expression of the 
transcript levels is an exact representation to the data. Usually, just a few terms in Equation (1) (𝑁ఈ < 𝑁௦) suffice to describe the data, which provide a determination of the main phenotypes present in 
the data.  

The error on the Lagrange multipliers are computed as in [41]. The Lagrange multipliers, 𝜆ఈ(𝑠), 
are the weight of constraints 𝛼,𝛼ଵ = 0,1,2, … , for each sample s. Equation (1) can also be written as 
the following: ln𝑋௜ (𝑠) = ln𝑋௜଴ (𝑝) +  ෍ 𝐺௜ఈ  𝜆ఈఈୀଵ,ଶ,.. (𝑠) = ෍ 𝐺௜ఈఈୀ଴,ଵ,ଶ,...  𝜆ఈ (𝑠)         (Α3)  

Giα = U iα λα s( ) = ωα Vαs
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𝑋௜(𝑝) is the level of transcript i in sample s, and 𝛼 = 0 is the stable state. The different vectors, 𝐺ఈ, are the left eigenvectors obtained by the SVD decomposition of the matrix Y and are orthogonal 
for two different constraints, α and β:  

 ෍𝐺௜ఈ௜ 𝐺௜ఉ =  𝛿ఈ,ఉ                      (Α4)  

It follows from Equation (A4) that an explicit result for the weight 𝜆ఈ(𝑠) is the following: 𝜆ఈ(𝑠) =  ෍𝐺௜ఈ௜ ln𝑋௜ (𝑠)                       (Α5)  

An uncertainty in the weight due to a measurement error of each transcript is the following: 𝛿 𝜆ఈ (𝑠) =  ෍𝐺௜ఈ𝛿 ൫ln𝑋௜  (𝑠)൯               (Α6)           ௜   

The Schwarz inequality of vector algebra yields an upper bound: 

𝛿 𝜆ఈ(𝑠) ≤  ൭෍𝐺௜ఈଶே
௜ୀଵ ൱ଵଶ  ൭෍ቆ𝛿 𝑋௜௦𝑋௜௦ ቇଶே

௜ୀଵ ൱ଵଶ               (Α7)  

where 𝛿 𝑋௜௦ is the standard deviation obtained for the replicates of each sample. From Equation (A4), 
the first sum in Equation (A7) is unity. We can write the second term as 𝑎𝑣(𝛿 𝑋 𝑋⁄ ), and, for N = 
10923, √𝑁  = 30.38. As expected, the upper bound of the error 𝛿𝜆ఈ(𝑠)  on samples ac2t4 and 
particularly on ac3t4 is very large (Table A1). 

Table A1. Upper bound of the error on the Lagrange multipliers 𝜆ఈ(𝑠). 

Sample    
ac1t1 0.38910 40.666 

ac1t2 0.14485 15.139 

ac1t3 0.67040 70.066 

ac1t4 0.49241 51.463 

ac2t1 0.32035 33.481 

ac2t2 0.18783 19.631 

ac2t3 0.27087 28.309 

ac2t4 0.62907 65.746 

ac3t1 0.19546 20.428 

ac3t2 0.20691 21.625 

ac3t3 0.55731 58.246 

ac3t4 0.75679 79.094 

ac4t1 0.19919 20.818 

ac4t2 0.19710 20.600 

ac4t3 0.21022 21.971 

ac4t4 0.37858 39.567 
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