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Abstract: DNA N4-methylcytosine (4mC) is one of the key epigenetic alterations, playing essential
roles in DNA replication, differentiation, cell cycle, and gene expression. To better understand 4mC
biological functions, it is crucial to gain knowledge on its genomic distribution. In recent times,
few computational studies, in particular machine learning (ML) approaches have been applied
in the prediction of 4mC site predictions. Although ML-based methods are promising for 4mC
identification in other species, none are available for detecting 4mCs in the mouse genome. Our novel
computational approach, called 4mCpred-EL, is the first method for identifying 4mC sites in the
mouse genome where four different ML algorithms with a wide range of seven feature encodings are
utilized. Subsequently, those feature encodings predicted probabilistic values are used as a feature
vector and are once again inputted to ML algorithms, whose corresponding models are integrated
into ensemble learning. Our benchmarking results demonstrated that 4mCpred-EL achieved an
accuracy and MCC values of 0.795 and 0.591, which significantly outperformed seven other classifiers
by more than 1.5–5.9% and 3.2–11.7%, respectively. Additionally, 4mCpred-EL attained an overall
accuracy of 79.80%, which is 1.8–5.1% higher than that yielded by seven other classifiers in the
independent evaluation. We provided a user-friendly web server, namely 4mCpred-EL which could be
implemented as a pre-screening tool for the identification of potential 4mC sites in the mouse genome.
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1. Introduction

Dynamic DNA modifications, such as methylation and demethylation play crucial roles in the
regulation of gene expression. Methylation of cytosine at CpG sites is considered as an important
epigenetic mark that is involved in the regulation of cell differentiation, genomic imprinting, cell cycle,
aging, preservation of chromosome stability, and gene expression levels [1,2]. The three common
cytosine methylations identified in both prokaryotic and eukaryotic genomes are N4-methylcytosine
(4mC), 5-methylcytosine (5mC) (mediated enzymatically via DNA methyltransferases), and
3-methylcytosine, (produced upon exposure to endogenous or environmental alkylation agents) [3,4].
Due to the widespread distribution and multi-faceted roles of 5mC, it is the most well-explored
and common type of cytosine methylation that illustrates a significant role in several biological
processes [5,6] and is associated with neurological diseases, diabetes, and cancer [7–9]. 4mC is
also regarded as a potent epigenetic modification that protects its self-DNA from the restriction
enzyme-mediated degradation. However, experimental studies on 4mC have lagged owing to the
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paucity of effective identification approaches. Furthermore, the exact mechanisms of epigenetic
modifications and biological functions of 4mC sites are also limited.

Although 4mC is less investigated compared to 5mC, it has varied tasks in controlling DNA
replication, differentiating self and non-self-DNA, cell cycle, correcting DNA replication errors, and gene
expression levels [10,11]. To identify epigenetic cytosine nucleobases, several experimental approaches,
such as methylation-specific PCR, mass spectrometry, whole-genome bisulphite sequencing, the
engineered transcription-activator-like effectors (TALEs) approach, reduced-representation bisulphite
sequencing, and single-molecule real-time sequencing (SMRT) are available [12–14]. Although these
experimental techniques assist in the detection of cytosine methylation sites, they are expensive and
time-consuming when applied on large-scale genome sequencing. Therefore, a pressing need exists for
the development of efficient computational methods for 4mC sites identification.

Lately, several 4mC sites prediction methods have been proposed for six different species,
namely Geoalkalibacter subterraneus, Arabidopsis thaliana, Geobacter pickeringii, Escherichia coli, Drosophila
melanogaster, and Caenorhabditis elegans [15–19]. The state-of-the-art ML approaches for 4mC site
predictions demonstrated the necessity of species-specific models employing cross-species evaluation.
All of these approaches utilized positive samples (4mC sites) obtained from the MethSMRT database [20],
which was developed by integrating the publicly available SMRT sequencing datasets. Unfortunately,
there is no 4mC sites prediction method available for the mammalian mouse genome. In general,
mouse serves as a well-established experimental animal model, since it has been used to mimic the
effect of epigenetic modifications related to mammalian development and human diseases [21,22],
and it has virtually the same set of genes as humans. Therefore, it is necessitated to develop a novel
ML-based predictor for the detection of 4mC sites in the mouse genome.

Here, a new ensemble predictor, 4mCpred-EL has been established for the identification of
4mC sites in the mouse genome. Firstly, 28 probabilistic features were generated by employing four
ML algorithms, namely gradient boosting (GB), extremely randomised tree (ERT), support vector
machine (SVM) and random forest (RF), and seven feature encodings (binary profile (BPF), electron–ion
interaction pseudopotentials (EIIP) of trinucleotides, a combination of dinucleotide binary encoding
(DPE), and local position–specific dinucleotide frequency (LPDF) represented as M6AMRFS, k-mer
composition (Kmer), ring-function-hydrogen-chemical properties (RFHC), dinucleotide-(DPCP) and
trinucleotide-physicochemical properties (TPCP). Secondly, these probabilistic features were inputted
to four different ML classifiers and their corresponding models were developed, which were then
utilised for the generation of an ensemble predictor. Further validation of 4mCpred-EL was evaluated
using an independent dataset. Our results demonstrated that the proposed model outperformed seven
other ML-classifiers with higher prediction accuracies. Furthermore, we established a user-friendly
online web server called 4mCpred-EL for the easy detection of 4mC sites from the mouse genome. We
believe that this study represents the first 4mC site prediction method for the mouse genome, that will
facilitate the identification of correct 4mC sites prediction and could be possibly extended to other
species as well.

2. Materials and Methods

The overall framework of 4mCpred-EL was summarized as per Chou’s 5-step rule [23] (Figure 1):
(i) benchmark and independent datasets were constructed; (ii) DNA sequences were mapped to the
fixed length numerical vector, that could be further utilized as an input feature vector to the classifier;
(iii) an effectual and appropriate classifier was employed to develop a model; (iv) cross-validations (CV)
and evaluations were performed on the independent data to measure the reliability of the prediction
model; and (v) an accessible web-server was established.
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Figure 1. Schematic framework of 4mCpred-EL. It involves the following steps: (1) Dataset construction
for the mouse genome, (2) Generation of probabilistic features using varied ML classifiers and seven
feature encodings, and (3) Final model construction that discriminates the input into 4mC or non-4mC.

2.1. Dataset Construction

The positive samples (sequences comprising 4mC sites) of mouse genome were taken from the
MethSMRT database [20]. All sequences contained a central cytosine (C) nucleotide (NT) with a
length of 41 base pairs (bp). The following criteria were applied to generate a high-quality dataset:
(i) only sequences that had a modQV score greater than 20 were considered, whereas the remaining
sequences were excluded, which is in accordance with the Methylome Analysis Technical Note [24]
(ii) to reduce homology bias, redundant sequences present in the collected samples were excluded via
CD-HIT program [25], and by employing a sequence-identify cut-off of 0.8. Following the filtering, a
non-redundant set of 980 positive samples was obtained. Notably, using a lower sequence identity
threshold, such as 40% or 50%, might aid in reducing the bias and yield more reliable models.
Nevertheless, the limited dataset size in the present study demanded the utility of CD-HIT with a
higher cut-off.

The negative samples, i.e., sequences not containing 4mC sites, were obtained from chromosomal
DNA sequences with a length of 41 bp and a C at their center that was not detected as 4mC by SMRT.
Redundant sequences in the negative samples were subsequently removed by applying a CD-HIT
cut-off value of 0.6. Negative samples that shared a sequence identity >60% with the positive samples
were also removed. This procedure resulted in a large number of negative samples. Nonetheless,
980 samples were randomly selected, and a balanced dataset was generated. From the total pool of
samples, ~80% samples were randomly selected (4mCs: 800 and non-4mCs: 800) and considered as
the benchmark dataset for the prediction model development, whereas the rest of the samples (4mCs:
180 and non-4mCs: 180) were used as an independent set for the model validation.

2.2. Feature Extraction

Generally, an input sequence (DNA) is converted into a fixed length of feature vectors that could be
handled by ML classifiers. Here, seven feature encodings, viz. BPF, DPCP, EIIP of trinucleotides, Kmer,
M6AMRFS, RFHC, and TPCP, were used as the input for ML classifiers to discriminate 4mC-containing
samples from those not containing 4mC sites. A succinct explanation of the feature extraction protocol
is presented in the subsequent sections.
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2.2.1. Kmer

Kmer encoding is one of the simplest approaches for representing DNA sequences: it refers to
the occurrence frequency of all the possible substrings of a length k that are contained in a DNA
sequence, which has been applied for several prediction problems [26–28]. In a sequential model, a
DNA sequence is expressed as: = K1K2K3 . . .KN, where K1, K2, and K3 denote the first, second, third
NT, and so on, and N indicates the sequence length. Notably, Ki is one of the standard NTs, adenine
(A), cytosine (C), guanine (G), or thymine (T). Here, mono-, di-, tri-, tetra-, and penta-NT compositions
were considered and combined to form a 1364 (41 + 42 + 43 + 44 + 45) dimensional feature vector.

2.2.2. M6AMRFS

It is a combination of DPE and LPDF, which has been successfully implemented in M6AMRFS
method for N6-methyl adenosine prediction from RNA sequences [17,29]. In DPE, each 16 possible
dinucleotide is encoded as 0/1 (four-dimensional vector). For instance, AT, AA, GG, and AC are
respectively encoded as (0,0,0,1), (0,0,0,0), (1,1,1,1) and (0,0,1,0). Using DPE, a given sequence is
converted to a 160(40bp × 4)-dimensional vector. LPDF descriptor is denoted as ( f2, f3, . . . , f j), where
f j is computed as: f j =

1∣∣∣Y j
∣∣∣D(

M j−1M j
)
, 2 ≤ j ≤ N, where |Y j| is the length of the jth prefix string

{M1M2 . . . Mj} in the sequence, and D(M j−1M j) represents the frequency of the dinucleotide M j−1M j in
position j of the jth prefix string.

2.2.3. RFHC

Based on the hydrogen bonds, functional groups, and ring structure, four nucleotides can be
classified into three groups, which has been widely utilized for several problems [16,30,31]. Briefly, A
and C containing the amino group, whereas G and T containing the keto group; two rings present in A
and G, while C and T have only one ring; and C and G belong to one group due to formation of strong
hydrogen bonds, while A and T are grouped as they form weak hydrogen bonds. To quantify these
chemical properties, a given DNA sequence was represented with a 4-dimensional vector (a, b, c, dj),
where a, b, and c are computed as follows:

a =

{
1 i f x ∈ {A, G}
0 others

b =

{
1 i f x ∈ {A, T}
0 others

c =
{

1 i f x ∈ {A, C}
0 others

(1)

Based on Equation (1), A, T, G, and C are symbolized as (1,1,1), (0,1,0) (1,0,0), and (0,0,1),
respectively. Density di of the NT in a DNA sequence is derived as:

d j =
1∣∣∣L j
∣∣∣

N∑
j=1

f
(
L j

)
, j = 1, 2, 3, · · · , N ; f ( j) =

{
1 i f L j = p
0 else

, p ∈ {A, C, G, T} (2)

where
∣∣∣L j

∣∣∣ is the length of the substring from the position j to the first position in the DNA sequence.

2.2.4. EIIP of Trinucleotides

Nair and Sreedharan [32] proposed the distribution of electron–ion energies (EIIPs) along the DNA
sequence that has been widely used in enhancer prediction [33], and nucleosome identification [34].
Namely, A, C, G, and T, respectively, have EIIP values of 0.1260, 0.1340, 0.0806, and 0.1335 [32]. The
EIIP of trinucleotides encodes a 64-dimensional vector for a given DNA sequence as:

V = [EIIPTTT· fTTT, EIIPGGG· fGGG, · · · , EIIPCCC· fCCC] (3)
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The subscripts in Equation (3) correspond to various combinations of trinucleotides;
EIIPabc = EIIPa + EIIPb + EIIPc, where EIIPa is the EIIP value of the corresponding nucleotide
in the subscript, and a, b, c ∈ {A, G, C, T}; and fabc denotes trinucleotide (abc) normalized frequency.

2.2.5. BPF

In BPF, the encoding of each NT is depicted as a feature vector of 0s and 1s. In particular, A is
encoded as P(A) = (1, 0, 0, 0), T as P(T) = (0, 1, 0, 0), G as P(G) = (0, 0, 1, 0), and C as P(C) = (0, 0, 0, 1).
For a given DNA sequence D with a fixed length of 41 NT, BPF could be encoded as:

BPF(L) = [P(K1), P(K2), P(K3) . . .P(KL)] (4)

Hence, the BFP(L) generates 164(4 × 41)-dimensional feature vector.

2.2.6. DPCP

In this study, fifteen physicochemical properties were utilized in a manner like [18,27]. The
Supplementary Table S1 presents an overview of these values for each dinucleotide normalized value.
DPCP can be devised as:

V = [DPCPAA· fAA, DPCPAC· fAC, · · · , DPCPTT· fTT] (5)

where DPCPi is one of the ith (i = 1,2,3 . . . 15) physicochemical properties of a dinucleotide listed in
Supplementary Table S1, and fNN denotes the normalized frequency of the dinucleotide. DPCP is
translated as a 240-dimensional vector (from 16 dinucleotides × 15 physicochemical properties).

2.2.7. TPCP

Eleven physicochemical properties were used similar to [18,27]. The normalized values of these
properties for each trinucleotide is shown in Supplementary Table S2. TPCP can be devised as:

V = [TPCPGGG· fGGG, TPCPGCA· fGCA, · · · , TPCPCCC· fCCC] (6)

where TPCPi is one of the ith (i = 1,2,3 . . . 11) physicochemical properties of a trinucleotide listed in
Supplementary Table S2, and fNNN denotes the trinucleotide normalized frequency. TPCP is devised
as a 704-dimensional vector (from 64 trinucleotides × 11 physicochemical properties).

2.3. Application of ML Algorithms in 4mCpred-EL

4mCpred-EL utilizes four commonly used ML classifiers, such as RF [35], GB [36], SVM [37],
and ERT [38]. The Scikit-Learn package (v0.18) [39] was used to implement these classifiers in the
current study. Notably, these classifiers have been widely utilized in the field of bioinformatics or
computational biology [27,40–56]. Since the tuning parameters search ranges are different among
four classifiers, we applied a grid search procedure and optimized each classifier separately. The
computational procedure for prediction model development, including ML parameter search ranges
for each classifier and 10-fold cross validation are similar to our recent studies [18,47,57–60].
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2.4. Performance Evaluation

Specificity (SP), sensitivity (SN), Matthews correlation coefficient (MCC), and accuracy (ACC)
were calculated to assess the performance of our proposed method [61].

SN = TP
TP+FN

SP = TN
TN+FP

ACC = TP+FN
TP+TN+FN+FP

MCC = TP×TN−FP×FN√
(TP+FN)(TP+FP)(TN+FP)(TN+FN)

(7)

where TP and TN represent the number of 4mCs correctly predicted and non-4mCs correctly predicted,
respectively, FN is the number of not correctly predicted 4mC samples, and FP is the number of not
correctly predicted non-4mCs.

3. Results and Discussion

3.1. Evaluation of Nucleotide Composition Preference

To explore the DNA composition preferences between positives (4mC sites) and negatives
(non-4mC sites), two-sample logos [62] were used to determine the statistically meaningful variations
in position-specific composition. The following characteristics were observed (Figure 2): (i) both
positives and negatives comprise the same C base in the middle of the sequences; (ii) C and T bases
were respectively enriched at the upstream and downstream of the positives, while A and G were
respectively depleted at the upstream and downstream of the negatives; (iii) some bases tended to
appear successively along the sequences. For example, three consecutive C bases (positions 1 to 3
and 15 to 17) and four consecutive T bases (positions 28 to 32) were observed in positives, whereas
three consecutive A bases (positions 1 to 3) were observed in negatives. Briefly, enriched and depleted
nucleotides were considerably distinct between positives and negatives, demonstrating that bases
around 4mC and non-4mC sites have position-specific preferences. Hence, it can be implied that the
features with compositional and position data assists in the correct classification of true 4mC from
non-4mC sites.

Figure 2. Compositional inclinations of sequences between 4mC and non-4mC sites. Logo mentioned
above the axis indicates compositional preferences of positives, while the logo below the axis indicates
compositional preferences of negatives.

3.2. Performance Evaluation of Various ML Methods on Seven Feature Encodings

Seven different ML methods, namely GB, ERT, AdaBoosting (AB), k-nearest neighbor (KNN),
logistic regression (LR), SVM, and RF were explored on various feature encodings to identify the
ideal classifier for the 4mC site prediction problem. To test the generalizability of our approach, we
carried out ten independent 10-fold CV test by randomly selecting 80% of the data from the original
dataset and considered them as the benchmark dataset. Basically, each sample from the original
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data were utilized at least once during the prediction model development. Ten optimal models were
developed with respect to each classifier and each encoding, whose evaluation metrices were averaged
to depict their overall performance. The detailed performances of seven classifiers with respect to
different feature encodings is shown in Supplementary Table S3 and briefly provided in Figure 3A.
Results showed that the performance topology of 75% classifiers achieved MCC in the range 0.51–0.57
with respect to the four encodings (Kmer, EIIP of trinucleotides, DPCP, and TPCP), which is 15–16%
higher than the remaining three encodings (M6AMRFS, BPF, and RFHC). Recently, only few methods
implemented three encodings (M6AMRFS, BPF, and RF) in 4mC sites prediction for several prokaryotic
and eukaryotic species. However, individually these features did not contribute much as we expected
in the mammalian mouse genome [15,17], thus indicating that it can used as an additive. Interestingly,
RF, GB, ERT, SVM, and AB achieved their best performance with an ACC in the range of 76.9–78.0%
using Kmer. However, LR and KNN respectively achieved their best performances with an ACC
of 76.8% and 73.6% using TPCP encodings (Figure 3B). Furthermore, the average performance of
four classifiers (RF, ERT, GB and SVM) from seven encodings lies MCC in the range of 0.47–0.48 that
consistently performed better than AB, LNN, and LR (MCC in the range of 0.42–0.44), thus signifying
that decision tree-based and hyperplane-based methods are competitive with each other and better
suited for this problem. Overall, none of the model achieved superior performance over other models,
hence, we performed ensemble approach by considering only four classifiers (because of its consistency)
and seven encodings.

Figure 3. (A) Performances of seven classifiers with respect to seven feature encodings in terms of
MCC. The best performance achieved by each classifier from seven encodings is shown in (B).
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3.3. Construction of 4mCpred-EL

Only four ML classifiers were considered, namely SVM, RF, ERT, and GB, due to their consistent
performance on seven feature encodings, whose predicted probability of 4mC values lies in the range of
0.0–1.0. Here, if the predicted probability value was ≥ 0.50, it belonged to 4mCs, otherwise it belonged
to non-4mCs. The predicted probability of 28 models (i.e., 7 feature encodings× 4 ML classifiers), which
were considered as a feature vector, were inputted again to seven different classifiers to develop their
corresponding prediction models or meta-predictors. Notably, each classifier contains 10 prediction
models for individual encoding (as mentioned in the above section), hence, we utilized all these models
and generated 10 meta-predictors for each classifier and the average performance is shown in Figure 4A.
The results showed that RF, ERT, SVM, and GB achieved same performance, with accuracies in the range
of 79.7–80.0%. Interestingly, each of the seven meta-predictors significantly improved the performance
(Figure 4B) when compared to the best baseline models (Figure 3B), indicating the success of the
meta-strategy combining the strength of multiple predictors and thereby improving the performances.
This approach has been widely applied in various prediction problems previously [17,63].

Figure 4. Meta-predictor performance and its improvement. (A) The performance comparison between
four meta-predictors that utilize 28 probabilistic features as an input. (B) Improvement in the accuracy
of each meta-predictor with respect to the baseline models.

Since the performance of ERT, GB, RF, and SVM were same, these predictors were further combined
into an ensemble approach through a voting system;

E = ERT ∀ GB ∀ RF ∀ SVM

where E and ∀ respectively represented the ensemble classifier termed 4mCpred-EL and the fusing
operator. 4mCpred-EL attained an MCC and ACC respectively of 0.591 and 79.5%. These metrics were
similar when an individual meta-predictor was employed.

To verify the advantage of 4mCpred-EL, its performance was compared with the best models
from the seven different classifiers, as shown in Figure 3B. Table 1 depicted that the MCC and ACC of
4mCpred-EL were 3.2–11.7% and 1.5–5.9% higher than those of the single models. Furthermore, the
AUCs of 4mCpred-EL and other methods were compared, and the P-values were computed using a
two-tailed t-test [64]. 4mCpred-EL considerably outshone most of the single models (except RF and
SVM) with a P-value threshold of 0.05. Although several ML approaches have been quite commonly
applied for 4mC site predictions in different species [15,65,66], this is the first ensemble approach
developed for the identification of 4mCs in the mouse genome.
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Table 1. Evaluation assessment between our proposed method and individual classifiers based on a
benchmark set.

Method MCC ACC SN SP AUC p-Value

4mCpred-EL 0.591 ± 0.001 0.795 ± 0.001 0.804 ± 0.002 0.787 ± 0.002 0.874 ± 0.001 —
SVM 0.559 ± 0.005 0.780 ± 0.002 0.775 ± 0.004 0.784 ± 0.005 0.854 ± 0.003 0.127
ERT 0.559 ± 0.008 0.779 ± 0.004 0.758 ± 0.008 0.800 ± 0.004 0.848 ± 0.005 0.049
RF 0.558 ± 0.009 0.779 ± 0.004 0.762 ± 0.014 0.796 ± 0.008 0.849 ± 0.007 0.058
GB 0.556 ± 0.011 0.778 ± 0.006 0.762 ± 0.011 0.793 ± 0.002 0.845 ± 0.010 0.029
AB 0.537 ± 0.014 0.769 ± 0.007 0.755 ± 0.010 0.782 ± 0.006 0.777 ± 0.008 <0.000001
LR 0.537 ± 0.003 0.768 ± 0.002 0.758 ± 0.003 0.778 ± 0.001 0.842 ± 0.004 0.016602

KNN 0.474 ± 0.003 0.736 ± 0.002 0.692 ± 0.010 0.780 ± 0.006 0.815 ± 0.003 0.000023

Note: p < 0.05 shows a statistically significant difference between 4mCpred-EL and other method that is depicted in
bold. Values are expressed as mean ± standard deviation.

3.4. Feature Contribution and Relevance Analysis

4mCpred-EL owes its improved performance mainly to the probabilistic features. To comprehend
further, the t-distributed stochastic neighbor embedding (t-SNE) distributions of the positive (4mC)
and negative (non-4mC) samples of the 28-dimensional probabilistic feature vector were computed and
the results were compared using seven feature encodings, Kmer, RFHC, DPCP, TPCP, M6AMRFS, BPF,
and EIIP of trinucleotides. The negative and positive samples distributions in the higher-dimensional
space which can be represented by their mutual distances in a two-dimensional (2D) space is depicted
in Figure 5. In Figure 5A–G, a clear inhomogeneity is observed in the distribution pattern of negative
and positive samples, thus showing that the original feature discriminating power is less. On the
contrary, an apparent distinction is observed for the probabilistic features (Figure 5H). This shows
that negative and positive samples found in probabilistic features can be distinguished easily when
compared to other features, thereby enriching the performance.

Figure 5. t-SNE visualization of the benchmark dataset in a two-dimensional feature space. Gray- and
red-colored circles indicate non-4mCs and 4mCs, respectively. (A) Kmer, (B) dinucleotide (DPCP),
(C) trinucleotide-physicochemical properties (TPCP), (D) EIIP of trinucleotides, (E) binary profile (BPF),
(F) M6AMRFS, (G) ring-function-hydrogen-chemical properties (RFHC), and (H) the 28 probabilistic
features (PF).

Next, the relationship between the 28 probabilistic features was investigated. To this end, the
cluster heat maps of Pearson’s correlation coefficients between the 28 probabilistic features were plotted
(Figure 6). The results demonstrated that the 28 probabilistic features were grouped into two clusters,
where the first cluster contained 16 features (4 classifiers × 4 encodings (TPCP, EIIP of trinucleotides,
Kmer, and DPCP)) that are highly correlated with each other, and the second cluster contained the
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remaining 12 features (4 classifiers × 3 encodings (M6AMRFS, BPF, and RFHC)), thereby indicating
that these features are complementary in contributing to the predictive performance.

Figure 6. Cluster heatmap of the correlation between 28 probabilistic features. Dark red denotes very
high correlation and dark blue denotes less correlation (correlation coefficient <0.50).

3.5. Evaluation of Various Methods on the Independent Dataset

It should be noted that 80% were randomly selected from the original data (980 4mCs and
980 non-4mCs) and considered as benchmark dataset and the remaining 20% were considered as
independent dataset. Since, we repeated this process 10 times, 10 benchmark and 10 independent
datasets were obtained. As mentioned above, basically 10 different benchmark datasets were employed
and developed their corresponding prediction model for each approach as listed in Table 1. Therefore,
all the 10 models were evaluated on the respective independent datasets and the average performance
is shown in Table 2. Since this is the first such method, its performance was compared with only seven
different baseline predictors (Figure 3) that produced the best performance among the seven different
feature encodings.

Table 2. Evaluation assessment between our proposed ensemble method and individual classifiers
based on an independent test set.

Method MCC ACC SN SP AUC p-Value

4mCpred-EL 0.596 ± 0.022 0.798 ± 0.011 0.804 ± 0.012 0.792 ± 0.028 0.897 ± 0.008 —
RF 0.562 ± 0.010 0.780 ± 0.005 0.736 ± 0.008 0.824 ± 0.014 0.862 ± 0.002 0.179

ERT 0.552 ± 0.012 0.775 ± 0.006 0.736 ± 0.008 0.814 ± 0.008 0.862 ± 0.011 0.179
SVM 0.544 ± 0.014 0.772 ± 0.007 0.742 ± 0.014 0.801 ± 0.009 0.870 ± 0.007 0.293
GB 0.544 ± 0.011 0.772 ± 0.005 0.743 ± 0.011 0.800 ± 0.020 0.862 ± 0.004 0.179
LR 0.536 ± 0.013 0.768 ± 0.006 0.753 ± 0.005 0.783 ± 0.010 0.863 ± 0.003 0.191
AB 0.524 ± 0.009 0.762 ± 0.005 0.747 ± 0.006 0.776 ± 0.008 0.793 ± 0.017 0.000371

KNN 0.508 ± 0.017 0.747 ± 0.008 0.625 ± 0.006 0.868 ± 0.012 0.826 ± 0.005 0.010668

Note: p < 0.05 shows a statistically significant difference between 4mCpred-EL and other method that is depicted in
bold. Values are expressed as mean ± standard deviation.
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Table 2 shows that 4mCpred-EL displayed the best performance with respect to MCC, ACC,
and AUC (0.596, 79.8%, and 0.897, respectively). In particular, MCC and ACC of 4mCpred-EL
were approximately 3.4–8.8% and 1.8–5.1% higher than those of individual classifiers, thus showing
supremacy of the proposed method. Surprisingly, the benchmark and independent results listed in
Tables 1 and 2 is similar for each method, indicating the robustness of each classifier. Among them,
4mCpred-EL achieved a superior performance on both datasets, which is primarily due to the following
aspects: (i) the probabilistic features integrate wide range of sequence information (including NT
composition, ring function, NT position-specific information, and physicochemical properties) that
distinguish positive and negative samples efficiently; (ii) integration of different classifiers by means of
an ensemble approach by considering each classifier’s advantage and disadvantage to make a robust
prediction model.

3.6. Web Server Implementation

For the convenience of researchers, we established a user-friendly web server that it is available
at http:/thegleelab.org/4mCpred-EL. Particularly, 4mCpred-EL server implemented only the fifth
model among 10 models developed in this study, which achieved consistent performance on both
benchmark (MCC: 0.589 and ACC: 0.794) and independent datasets (MCC: 0.612 and ACC: 0.806) using
our webserver. In order to retrieve the predicted results, a user has to adhere to the following steps:
(i) Prior to the submission, query sequences should be inputted to the input box in FASTA format, for
which example could be found by clicking on the FASTA format button above the right corner of the
input box; (ii) Subsequently, the server outputs predicted results by clicking on the ‘Submit’ button.

4. Conclusions

In this study, the predictor, called 4mCpred-EL, has been proposed for identifying 4mC sites in
the mouse genome. For the development of an efficient predictive model, 28 probabilistic features
were initially generated using four individual classifiers and seven feature encodings that cover
various aspects of sequence data, such as NT position-specific, compositional, physicochemical, and
ring-function information. Consequently, these features were again inputted to ERT, SVM, RF, and
GB and their corresponding meta-predictors were developed. Finally, these four classifiers were
combined into an ensemble approach through a voting system for the final prediction. The performance
comparisons of 4mCpred-EL and the seven individual classifiers, RF, ERT, GB, SVM, AB, LR, and
KNN, on both benchmark and independent datasets revealed that 4mCpred-EL achieved significantly
better performance in identifying 4mCs. The improved performance of this method is due to the
following: (i) the probabilistic feature vector captured the discriminative distribution characteristics
between 4mCs and non-4mCs, and (ii) the appropriate classifiers were identified by exploring various
classifiers, which were further utilized in the development of an ensemble predictor.

In addition to the prediction of 4mCs, this computational framework, including model training,
meta-predictor construction, and ensemble strategy for the final prediction, can act as a valuable guide
and stimulate computational biologists to develop new computational approaches. Furthermore,
integrating other informative features such as pseudo-nucleotide composition and multivariate mutual
information, along with the exploration of other ML algorithms such as deep learning and neural
networks, might further improve its performance [67–70]. We anticipate that this methodology and the
web server will accelerate the identification of putative 4mCs and considerably aid experimentalists in
the elucidation of other functional mechanisms. The limitation of our method is that only sequence
information was utilized for the prediction of 4mC sites owing to its less experimental investigation.
However, such limitation could be addressed in future when the gene expression data for 4mCs
become available. Besides sequence information, we will include such data in our future studies for
the improved and accurate prediction of 4mC sites using ML methods.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/11/1332/s1.
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