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Abstract: Connexin 43 (Cx43) is essential for cardiac electrical coupling, but its effects on myocardial
fibrosis is controversial. Here, we analyzed the role of Cx43 in myocardial fibrosis caused by
angiotensin II (AngII) using Cx43fl/fl and Cx43Cre-ER(T)/fl inducible knock-out (Cx43 content: 50%)
mice treated with vehicle or 4-hydroxytamoxifen (4-OHT) to induce a Cre-ER(T)-mediated global
deletion of the Cx43 floxed allele. Myocardial collagen content was enhanced by AngII in all
groups (n = 8–10/group, p < 0.05). However, animals with partial Cx43 deficiency (vehicle-treated
Cx43Cre-ER(T)/fl) had a significantly higher AngII-induced collagen accumulation that reverted when
treated with 4-OHT, which abolished Cx43 expression. The exaggerated fibrotic response to AngII
in partially deficient Cx43Cre-ER(T)/fl mice was associated with enhanced p38 MAPK activation and
was not evident in Cx43 heterozygous (Cx43+/-) mice. In contrast, normalization of interstitial
collagen in 4-OHT-treated Cx43Cre-ER(T)/fl animals correlated with enhanced MMP-9 activity, IL-6
and NOX2 mRNA expression, and macrophage content, and with reduced α-SMA and SM22α in
isolated fibroblasts. In conclusion, our data demonstrates an exaggerated, p38 MAPK-dependent,
fibrotic response to AngII in partially deficient Cx43Cre-ER(T)/fl mice, and a paradoxical normalization
of collagen deposition in animals with an almost complete Cx43 ablation, an effect associated with
increased MMP-9 activity and inflammatory response and reduced fibroblasts differentiation.
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1. Introduction

Connexins are a family of membrane proteins with a characteristic structure consisting of four
transmembrane domains, cytoplasmic amino- and carboxi-terminal domains, and an extracellular
loop [1]. Hexameric connexin assemblies, known as connexons or hemichannels, dock with connexons
from adjacent cells, to form intercellular channels, that put into contact the cytoplasms of neighboring
cells. In the heart, these intercellular channels gather at cardiomyocyte poles [2], forming plaques
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called gap junctions. Gap junctions constitute low resistance pathways that are essential to allow
electrical current flow between connected cells, and thus, coordinated cardiac contraction [3].

A total of 21 different connexin genes have been described in the human genome, whereas 20 have
been found in mice [4]. Each of these genes code for a different protein, all sharing a similar structure
and high homology [4]. Connexin 43 (Cx43) is the most ubiquitous connexin isoform, being widely
distributed in most tissues, including cardiac cells (cardiomyocytes, fibroblasts, and endothelial and
smooth muscle cells) [5,6].

The best known function of Cx43 in the heart is to allow electrical coupling between neighboring
cardiomyocytes [3]. The importance of gap junction channels in electrical coupling is demonstrated by
evidence showing that altered gap junction coupling through Cx43 intercellular channels increases
arrhythmogenesis [7]. However, Cx43 has additional gap junction-dependent and independent
functions [8]. Thus, Cx43 gap junction channels allow the existence of chemical coupling between the
cytoplasms of connected cells, permitting transfer of most ions and second messengers [9]. Chemical
coupling through Cx43 has been suggested to be involved in propagation of cell death during
myocardial ischemia reperfusion, as demonstrated by the fact that gap junction uncouplers reduce
infarct size after transient ischemia in different animal models [10]. In the same direction, isolated hearts
from transgenic mice devoid of Cx43 had reduced infarctions after transient global ischemia [11,12].

Gap junction-independent functions of Cx43 in the heart include those ascribed to free sarcolemmal
hemichannels and mitochondrial Cx43. Free hemichannels at the sarcolemma have been suggested
to play a prominent role in paracrine communication and may affect cell death and survival [8,13].
In addition, some data suggest that mitochondrial Cx43 plays a key role in ischemic preconditioning,
as protection is abolished when Cx43 translocation to the mitochondria is reduced [11,12].

Less known are the effects of Cx43 on scar formation and collagen deposition, especially in
the heart. Whereas in most tissues reduction of Cx43 expression or functionality is associated with
beneficial effects on scar formation [14–16], data on the role of Cx43 in cardiac remodeling and collagen
deposition are not conclusive. Thus, some authors have reported that reduced Cx43 expression in
heterozygous Cx43+/- mice attenuates collagen content in infarcted and non-infarcted regions and
reduces ventricular remodeling and scar area (i.e., infarct size) several weeks after permanent coronary
ligature [17,18]. In addition, application of the cell-permeable Cx43 carboxiterminal mimetic peptide
αCT1, that competitively inhibits the interaction of endogenous Cx43 with zonula occludens-1, to
cryoinjured mouse hearts was associated with reduced gap junction remodeling and lower inducibility
of ventricular arrhythmias 7 to 9 days after injury [19], and decreased left ventricular volumes 8
weeks later [20]. In contrast to these findings, it has been reported that reduced cellular coupling
in Cx43Cre-ER(T)/fl mice, expressing 50% of normal Cx43 content, associates with increased collagen
deposition after pressure overload induced by transverse aortic constriction [21]. However, most of
these studies have used mice models with partial Cx43 deficiency (about 50%) present from birth.
This fact might have resulted in compensatory changes that may account for some of those findings.
In addition, data on scar size might be biased by the acute effects of Cx43 deficiency on cell injury [10].
In this context, the aims of this work were to analyze the effects of an inducible, and almost complete,
Cx43 deficiency on cardiac fibrosis and left ventricular remodeling after angiotensin II (AngII)-induced
pressure overload in Cx43Cre-ER(T)/fl mice, and to analyze the mechanisms involved.

2. Materials and Methods

An expanded description of the methods used in this work can be obtained at the
Online Supplement.

2.1. Mice and Experimental Protocol

Studies were carried out in adult conditional, Cx43-deficient, Cx43Cre-ER(T)/fl animals and in its
Cx43fl/fl littermates (4–6 months old, genetic background: C57BL/6J) of both sexes (sex ratio 1:1).
Cx43Cre-ER(T)/fl animals were developed by Eckardt et al [22]. In them, the coding region of one
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of the Cx43 alleles was replaced by Cre-ER(T), a fusion construct of the Cre recombinase and a
specifically mutated domain of the human estrogen receptor. Treatment with 4-hydroxytamoxifen
(4-OHT) leads to binding of the drug to the ER(T) domain, inducing Cre activity, whereas ER(T) is
insensitive to the natural ligand β-estradiol. Cre activation causes a global deletion of Cx43, after
recognition of loxP sites flanking the second Cx43 allele, not modifying expression of other connexin
isoforms [7,12,22,23]. Osmotic minipumps were subcutaneously implanted, at the interscapular space,
and under 2% isofluorane anesthesia (model 1002, Alzet, DURECT Corporation, Cupertino, CA, USA)
to continuously deliver saline or AngII (1000 ng/kg/min, Sigma-Aldrich, St Louis, MO, USA) at a
constant flow of 0.25 µl/h, for 14 days [24]. One day after pump implantation, Cx43Cre-ER(T)/fl and
Cx43fl/fl mice were intraperitoneally injected with vehicle (oil) or 4-OHT to induce Cx43 ablation
in the former, as described before [12,22]. This protocol was chosen to ensure that the reduction
in Cx43 content coincided with the time of maximal collagen deposition, and to avoid excessive
mortality associated with Cx43 deficiency [7,12,22]. In addition, Cx43+/- mice and their wild-type
Cx43+/+ littermates (genetic background: C57BL/6J) were used to characterize some of the findings.
These animals were a kind gift from Dr. S. Poelzing (Virginia, USA). At the end of the experimental
procedure, mice were euthanized with a sodium pentothal overdose (1.5 g/kg, intraperitoneal). Hearts
were quickly excised and weighted. The basal half was immediately snap-frozen in liquid N2, whereas
the apical area was fixed overnight with 4% paraformaldehyde and embedded in paraffin. Cardiac
hypertrophy was calculated as the ventricular weight/body weight ratio. Animals were distributed
in the following experimental groups: Cx43fl/fl + oil, Cx43fl/fl +4-OHT, Cx43Cre-ER(T)/fl + oil, and
Cx43Cre-ER(T)/fl + 4-OHT (n = 8–11/group), together with Cx43+/+ and Cx43+/- (n = 4–7/group), either
treated with saline or AngII.

To check whether changes in collagen deposition observed in Cx43Cre-ER(T)/fl mice injected with oil
after AngII treatment were secondary to increased p38 MAPK activity, 8 additional animals from this
group were intraperitoneally treated with 10 mg/Kg/day SB203580, a p38 MAPK inhibitor (prepared
at 6.67 mmol/L in 33% DMSO), beginning the first day after pump implantation to the end of the
experimental protocol.

2.2. Systolic Cardiac Function by Transthoracic Echocardiography

Echocardiographic measurements were performed at baseline and at the end of the experimental
protocol, with a Vivid q portable ultrasound system, using an ILS 12 MHz transducer (GE Healthcare,
WI, USA), as described [25].

2.3. Collagen Content and Cardiomyocyte Size

Cardiac fibrosis was analyzed in paraffin-embedded histological sections (4 µm) stained with
Picrosirius Red (Sigma-Aldrich, MO, USA) as described [24]. Mean cardiomyocyte cross-sectional area
was measured in sections stained with hematoxylin and eosin [25].

2.4. Immunohistochemistry

Immunostaining was performed in paraffin-embedded cardiac sections (4 µm) by overnight
incubation (4 ◦C) with antibodies against LAMP-2/Mac-3 (#sc-19991, 1:200, Santa Cruz Biotechnology
Inc., Dallas, TX, USA) or MMP9 (#ab38898, 1:500, Abcam, Cambridge, UK) as previously described [24].
Each staining was performed by duplicate.

2.5. Real Time-PCR

Total RNA from frozen mouse myocardium was isolated using the TriPure Isolation Reagent
(Roche Diagnostics, Indianapolis, IN) following manufacturer’s instructions [24]. Quantification of
mRNA levels was performed by real-time PCR using an ABI PRISM 7900HT sequence detection system
(Applied Biosystems, Foster City, CA, USA) and specific primers and probes provided by Applied
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Biosystems (Assay-on-Demand system) or Integrated DNA technologies (Coralville, IA, USA). Relative
mRNA levels were determined using the 2−∆∆Ct method.

2.6. Total Myocardial Homogenates

Snap-frozen myocardium was homogenized (Diax 600 homogenizer, Heidolph, Germany) in
homogenization ice-cold buffer (in mmol/L: Tris-HCl 20, NaCl 140, EDTA 0.8 (pH 7.8), Tween 20 0.1%,
sodium fluoride 1, sodium orthovanadate 1, and a protease cocktail inhibitor (1%)). Protein lysates
were obtained from the supernatant after centrifugation at 750 g for 10 minutes (4 ◦C).

2.7. Gelatin Zymography

Enzymatic activities of metalloproteinase (MMP)-9 and MMP-2 in murine cardiac homogenates
were measured by zymography, as previously described [26]. Gels were scanned in a CanonScan
9000F scanner and densitometrically analyzed (Image Studio Lite v5.0, LI-COR Corporate, Lincoln,
NE, USA).

2.8. Cardiac Fibroblasts Isolation

Cardiac fibroblasts were isolated from a pool of 2–4 hearts of adult mice by differential
centrifugation of cardiac cells after digestion with a mix of collagenase-trypsin as previously
described [24].

2.9. Western Blot Analysis

Protein extracts from mouse hearts, and from fibroblasts in culture, were electrophoretically
separated on 10% polyacrylamide gels and analyzed by Western blot according to standard
procedures [12,27].

2.10. Statistics

Data are expressed as mean ±SEM. Statistical analysis was performed using SPSS 15.0 (IBM,
Armonk, NY, USA). Differences were assessed by one-way or two-way ANOVA and Tukey post hoc
tests. Repeated measures ANOVA (MANOVA) was used for echocardiographic data. Differences were
considered significant when p < 0.05.

3. Results

Two Cx43Cre-ER(T)/fl mice injected with 4-OHT and infused with saline, and three AngII-infused,
died during the 14 days interval and were excluded from further analysis. This mortality corresponds
to that previously associated with Cx43 deficiency in this model [7,12,22].

3.1. AngII Treatment Induces a Similar Hypertrophic Response in Hearts from Cx43fl/fl and Cx43Cre-ER(T)/fl

Mice Independently of Cx43 Levels

Treatment with AngII for 14 days induced an increase in cardiac weight/body weight (CW/BW)
ratio, indicative of cardiac hypertrophy, of similar magnitude in all groups, independently of Cx43
levels (Figure 1a). The lack of influence of Cx43 on the hypertrophic response to AngII was confirmed
by assessment of cardiomyocyte cross-sectional area, which was similarly enhanced in all groups
(Figure 1b), and by echocardiography, showing increased LVPW and IVS (Figure 1c–d) at day 14, with no
changes in ejection fraction, LVEDD, or LVESD (Figure 1e–g). Two-way ANOVA analysis demonstrated
a significant effect of AngII infusion (p < 0.001) on CW/BW and cardiomyocyte cross-sectional area,
with no significant differences between experimental groups and lack of interactions between infusion
treatment and group. Consequently, with these data, AngII induced a significant induction of the
classic hypertrophic marker ANP in all groups (two-way ANOVA, p < 0.001), with no effect of group
allocation and lack of interaction between both factors (Figure 1h).
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Figure 1. AngII treatment induces a similar cardiac hypertrophic response in hearts from Cx43fl/fl and
Cx43Cre-ER(T)/fl mice, independently of Cx43 expression levels. Changes in cardiac weight/body weight
(CW/BW) ratio (a) and cardiomyocyte cross-sectional area (b) in Cx43fl/fl (fl/fl) and Cx43Cre-ER(T)/fl (Cre/fl)
mice, treated with saline or angiotensin II for 14 days. * (p < 0.05) indicates significant differences vs. the
corresponding saline-treated group. (c–g) Changes in left ventricular posterior wall thickness (LVPW),
interventricular septum thickness (IVS), left ventricular end-diastolic internal diameter (LVEDD), left
ventricular end-systolic internal diameter (LVESD) (all expressed vs. body weight), and ejection fraction
(EF) in the same animals. Data from saline-treated animals are shown pooled as a single group. *
(p < 0.05) indicates significant differences vs. all groups except Cx43fl/fl +4-OHT + AngII and Cx43fl/fl +

oil + AngII in C and D, respectively. (h) Changes in myocardial ANP mRNA. * (p < 0.05) indicates
significant differences vs. the corresponding saline-treated group.

As happened in Cx43fl/fl and Cx43Cre-ER(T)/fl mice, chronic exposure to AngII induced a similar
increase in CW/BW ratio in both Cx43+/- animals (3.80 ± 0.13 in saline-treated (n = 4) to 4.8 ± 0.20
mg/g in AngII-infused mice (n = 6), p = 0.004) and in their wild-type littermates (from 4.20 ± 0.09 in
saline-treated (n = 7) to 4.60 ± 0.20 mg/g in AngII-treated mice (n = 6), p = 0.04).

3.2. AngII Treatment Differentially Modulates Cardiac Fibrosis in Cx43Cre-ER(T)/fl Mice

Myocardial interstitial collagen was low in all saline-infused experimental groups, with a collagen
volume fraction ranging between 2% and 3% (Figure 2). In contrast, treatment with AngII for 14 days
increased collagen content in Cx43fl/fl mice injected with oil from 2.67 ± 0.32% to 7.30 ± 1.19% (p < 0.05)
(Figure 2a). The enhanced collagen deposition in response to AngII was even higher, in oil-treated
Cx43Cre-ER(T)/fl animals, expressing 50% of normal Cx43 content (Figure 2b).
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Figure 2. Cardiac fibrosis induced by AngII in Cx43Cre-ER(T)/fl and Cx43+/- mice. Representative images
(upper panels) and mean quantification (lower graphs) of interstitial collagen deposition, expressed
as percentage of total myocardial area, in Cx43fl/fl ((a) fl/fl) and Cx43Cre-ER(T)/fl ((b) Cre/fl) mice, after
treatment, for 14 days, with saline or AngII. Bar represents 50 µm. (c) shows changes in fibrosis in
wild-type and Cx43+/- animals. The approximate amount of Cx43 expression is indicated, in parenthesis,
below the name of each group. * (p < 0.05) indicates significant differences vs. the corresponding
saline-treated group. τ (p < 0.05) indicates significant differences vs. all Cx43fl/fl or Cx43Cre-ER(T)/fl

AngII-treated animals.

To assess whether the marked enhancement in collagen content in response to AngII observed in
Cx43Cre-ER(T)/fl + oil mice could be explained by their mild Cx43 deficiency, this approach was also
conducted in a mouse model having a similar partial reduction of Cx43 (Cx43+/- mice). Unexpectedly,
AngII did not increase collagen deposition in Cx43+/- mice over levels found in AngII-treated Cx43+/+

animals (Figure 2c), which may suggest that findings obtained in Cx43Cre-ER(T)/fl + oil mice were, in
fact, not directly related to the level of Cx43 expression.

The effects of AngII on collagen deposition observed in Cx43fl/fl mice injected with oil were not
modified when animals of this genotype were treated with 4-OHT (Figure 2a). In contrast, the marked
enhancement in collagen content observed in mild Cx43-deficient Cx43Cre-ER(T)/fl mice was reverted
in animals with an almost complete Cx43 deletion (Cx43Cre-ER(T)/fl treated with 4-OHT) (Figure 2b),
with collagen values approaching those found in Cx43fl/fl mice after AngII (Figure 2a). Two-way
ANOVA analysis demonstrated significant effects of both group allocation and infused treatment, and
a significant interaction between both variables in Cx43fl/fl and Cx43Cre-ER(T)/fl animals, but only for
infused treatment in Cx43+/- mice.

Analysis of slices using polarized light microscopy showed a significant increase in mature
collagen, after AngII, in all groups except in Cx43Cre-ER(T)/fl animals treated with 4-OHT (Supplemental
Figure S1).
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3.3. Paradoxical Overexpression of mRNAs Coding for Proteins Involved in Collagen Turnover in
Cx43-Deficient Mice

Next, we analyzed expression of mRNAs coding for proteins involved in collagen synthesis
(COL1A1, TGFβ1, P4HA1), maturation (LOX) and degradation (TIMP1, TIMP2) in both wild-type
(Cx43fl/fl) and Cx43-deficient mice, infused with saline or AngII. As can be seen in Figure 3, when
treated with saline, hearts from Cx43fl/fl mice and from Cx43Cre-ER(T)/fl animals injected with oil (50%
Cx43 expression) showed similar levels of all studied mRNAs. In contrast, saline-treated Cx43Cre-ER(T)/fl

mice injected with 4-OHT depicted a marked induction of COL1A1, TGFβ1, LOX, and TIMP1. Such
induction occurs despite these saline-infused animals did not deposit more interstitial collagen that
remaining groups (Figure 2b).
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Figure 3. Expression of mRNAs coding for proteins involved in collagen turnover in AngII-treated
Cx43Cre-ER(T)/fl mice. Levels of mRNAs coding for proteins involved in collagen synthesis (COL1A1,
P4HA1) (a–c), maturation (LOX) (d) and degradation (TIMP1, TIMP2) (e–f), expressed as percentage
vs. Cx43fl/fl + oil mice treated with saline, in both wild-type (Cx43fl/fl, fl/fl) and Cx43-deficient mice
(Cre/fl), implanted with osmotic pumps containing saline or AngII. * (p < 0.05) indicates significant
differences vs. the corresponding saline-treated group. # (p < 0.05) shows significant differences vs.
Cx43fl/fl mice injected with oil and implanted with saline-filled pumps.

Furthermore, treatment with AngII increased expression of these four mRNAs in Cx43fl/fl mice
and in Cx43Cre-ER(T)/fl animals injected with oil, as compared with corresponding mice implanted
with saline-containing osmotic pumps, but not in mice with a marked Cx43 deficiency (Cx43Cre-ER(T)/fl

+4-OHT) (Figure 3). In this last group, the mRNA levels of COL1A1, TGFβ1, and LOX, although still
elevated, were significantly lower in AngII-infused than in saline-infused animals. Two-way ANOVA
analysis for COL1A1, TGFβ1, and LOX showed a significant effect of group allocation (p < 0.001)
and significant interactions with infused treatment (p < 0.05), but no effects of AngII treatment. No
significant changes were observed for P4HA1 and TIMP2 in any case.

3.4. Enhanced Collagen Deposition in Response to AngII in Hearts from Partially Deficient Cx43Cre-ER(T)/fl

Mice Correlates with Increased p38 MAPK Activation

AngII signaling is a complex process involving sequential activation of different transduction
pathways that regulate extracellular matrix formation, cell survival and proliferation, hypertrophy, and
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contraction [28,29]. Thus, we tested whether the effects of AngII on collagen deposition in Cx43-deficient
mice could be explained by changes in some of these pathways. As depicted in Supplemental Figure
S2, there were no changes in the degree of activation (i.e., phosphorylation) of Akt, ERK1/2, STAT3, or
SMAD2/3 in any experimental group, neither under saline or AngII infusion, although there was a
significant increase, in the last case, in the total amount of ERK1/2 in animals in which Cx43 expression
was abolished (Cx43Cre-ER(T)/fl +4-OHT). In contrast, the enhanced AngII-induced collagen deposition
seen in Cx43Cre-ER(T)/fl mice receiving oil (50% of Cx43 expression) was associated with an increased
p38 MAPK activation (Figure 4a). This enhanced p38 MAPK phosphorylation was not observed in
AngII-treated Cx43+/- mice (Figure 4b), which correlated with the unaltered deposition of collagen
seen in these animals (Figure 2c).
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Figure 4. Enhanced collagen deposition in Cx43Cre-ER(T)/fl + oil mice treated with AngII correlates with
increased p38 MAPK activation. Expression and degree of activation of p38 MAPK in myocardial
samples from Cx43fl/fl (fl/fl) and Cx43Cre-ER(T)/fl (Cre/fl) mice (a) and from wild-type (WT) and Cx43+/-

animals. (b) Upper panels show representative Western blots, whereas middle and bottom panels show
degree of activation and total protein levels, respectively. * (p < 0.05) indicates significant differences
vs. the corresponding control Cx43fl/fl group. (c) Interstitial collagen, expressed as percentage of total
myocardial area, in hearts from Cx43Cre-ER(T)/fl mice treated with oil and infused, for 14 days, with
saline, AngII, or AngII plus the p38 MAPK inhibitor SB203580 (10 mg/Kg/day). (d) Changes in cardiac
weight/body weight (CW/BW) ratio in the same animals. * (p < 0.05) indicates significant differences vs.
remaining groups.

To check whether the enhanced collagen deposition induced by AngII seen in oil-treated
Cx43Cre-ER(T)/fl mice was secondary to increased p38 MAPK activity, a group of these animals were
treated with SB203580, a p38 MAPK inhibitor, for the entire experimental period. As seen in Figure 4c,
treatment with SB203580 markedly attenuated the enhanced collagen deposition induced by AngII
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in this group. Similarly, SB203580 reduced the increase in CW/BW ratio induced by AngII in these
animals (Figure 4d).

As happened with Akt, STAT3, or SMAD2/3, no changes were observed in the expression of other
proteins involved in collagen synthesis (P4HA1) or in myofibroblasts differentiation (α-SMA) in any
experimental group, neither under saline or AngII treatment (Supplemental Figure S3a-b). Furthermore,
changes in Cx43 expression induced by Cre recombinase insertion and by 4-OHT administration were
not modified by AngII treatment (Supplemental Figure S3c). On the other hand, increased vimentin (a
fibroblast marker) and LOX levels were observed in mice highly deficient for Cx43 (Cx43Cre-ER(T)/fl

+4-OHT) under baseline conditions (Supplemental Figure S3d).

3.5. Normalization of Collagen Content in Hearts from Cx43Cre-ER(T)/fl Mice Injected with 4-OHT After AngII
Treatment is Associated with Increased MMP-9 Activity

Gelatin zymography of mice myocardial samples demonstrated significantly enhanced MMP-9
activity in animals with a virtual absence of Cx43 (Cx43Cre-ER(T)/fl +4-OHT), as compared with remaining
groups, both under saline and AngII treatment (Figure 5). No significant differences were observed for
MMP-2 activity.
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Figure 5. Normalization of collagen deposition in Cx43Cre-ER(T)/fl mice treated with 4-OHT and infused
with AngII correlates with increased MMP9 activity. Representative gelatin zymography (upper panel)
showing MMP2 and MMP9 enzymatic activity in myocardial samples from saline- and AngII-treated
Cx43fl/fl (fl/fl) and Cx43Cre-ER(T)/fl (Cre/fl) mice. Lower panels show mean quantification of 6 different
experiments. * (p < 0.05) indicates significant differences vs. corresponding the Cx43fl/fl + oil group.

3.6. Isolated Cardiac Fibroblasts from Highly Deficient Cx43Cre-ER(T)/fl Mice Have Altered Phenotype and
Differentiation Capacity

Isolated cardiac fibroblasts from animals with a marked Cx43 deficiency (Cx43Cre-ER(T)/fl +4-OHT)
depicted an abnormal phenotype, including reduced size and highly refringent nuclei (Figure 6a).
In addition, these cells had reduced expression of α-SMA and SM22α, two markers of cell differentiation
(Figure 6b). As expected, Cx43 was absent in cells from these animals, whereas those treated with oil
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had about half Cx43 expression as compared with cells from Cx43fl/fl mice. Treatment with AngII did
not modify expression of these markers in any experimental group (not shown).Cells 2019, 8, x FOR PEER REVIEW 10 of 17 
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Figure 6. Altered phenotype and expression of differentiation markers in isolated cardiac fibroblasts
from Cx43fl/fl and Cx43Cre-ER(T)/fl mice. (a) Upper images show morphology of cardiac fibroblasts
isolated from control hearts from the four groups of animals. (b) Representative Western blots for Cx43,
αSMA and SM22α, and total protein expression of analyzed proteins, in fibroblasts isolated from hearts
from Cx43fl/fl (fl/fl) and Cx43Cre-ER(T)/fl (Cre/fl) mice. * (p < 0.05) indicates significant differences vs.
Cx43fl/fl + oil animals. τ (p < 0.05) indicates significant differences vs. Cx43Cre/fl + oil animals.

3.7. Deletion of Cx43 in Cx43Cre-ER(T)/fl Mice Injected with 4-OHT is Associated with Enhanced Cardiac
Expression of Inflammatory Markers

Cx43 deletion by OHT treatment of Cx43Cre-ER(T)/fl mice triggered a strong increase in myocardial
mRNA levels of IL-6 and NOX2, both in saline- and AngII-infused animals (Figure 7a–b). Two-way
ANOVA demonstrated a significant effect of group allocation (p < 0.001), but not of infused
treatment and only a marginal significant interaction between both factors for NOX2. Furthermore,
immunohistochemical staining of paraffin-embedded cardiac sections demonstrated enhanced
expression of LAMP-2/Mac-3 and MMP9 in hearts from Cx43Cre-ER(T)/fl mice treated with 4-OHT
under both saline and AngII infusion (Figure 7c–d).
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Figure 7. Expression of inflammatory markers in saline- and AngII-treated Cx43fl/fl and Cx43Cre-ER(T)/fl

mice. Levels of mRNAs coding for IL-6 (a) and NOX2 (b), expressed as percentage vs. Cx43fl/fl +oil
mice treated with saline, in both Cx43fl/fl (fl/fl) and Cx43-deficient mice (Cre/fl), implanted with osmotic
pumps containing saline or AngII. # (p < 0.05) shows significant differences vs. Cx43fl/fl mice injected
with oil and infused with saline. (c–d) Immunohistochemical images of myocardial sections incubated
with LAMP-2/Mac-3 (c) or MMP9 (d) antibodies. Bar represents 50 µm.

4. Discussion

This study demonstrates that ablation of Cx43 expression differentially modulates the fibrotic
response to AngII in Cx43Cre-ER(T)/fl mouse hearts. Whereas partial Cx43 deficiency (about 50%) is
associated with a huge AngII-induced increase in interstitial collagen deposition in Cx43Cre-ER(T)/fl

mice, an almost complete Cx43 ablation (induced by 4-OHT in these mice) reverted this response. The
exaggerated collagen accumulation observed in hearts from AngII-infused Cx43Cre-ER(T)/fl mice treated
with vehicle, was not evident in Cx43+/- animals, a mice model having a similar mild Cx43 deficiency,
which might be indicative that this response is not directly related to Cx43 levels, but was associated
with an induction of p38 MAPK signaling, since abnormal AngII-mediated collagen deposition in
Cx43Cre-ER(T)/fl mice was abolished by an inhibitor of this pathway. In contrast, normalization of
interstitial collagen in 4-OHT-treated Cx43Cre-ER(T)/fl animals, in which Cx43 was almost undetectable,
was associated with enhanced MMP-9 activity, reduced fibroblasts differentiation and increased
inflammatory reaction.

Chronic exposure to AngII has been shown to cause cardiomyocyte hypertrophy leading to
an increase in heart mass [24,28,30,31]. Although cardiac hypertrophy is initially an adaptive
process required to sustain cardiac output, it can progress into a maladaptive response triggering
cardiomyocyte death and fibrosis, which are responsible for reducing contractility and causing diastolic
dysfunction [28,30,32]. In our present study, Cx43fl/fl and Cx43Cre-ER(T)/fl mice treated with AngII for 14
days depicted both cardiac hypertrophy and an increase in collagen deposition. However, whereas
cardiac hypertrophy was similarly induced in all the study groups, regardless of Cx43 expression levels,
cardiac fibrosis was differentially enhanced. A similar dissociation between cardiac hypertrophy and
fibrosis in response to AngII has been previously described for interferon regulatory factor 3 (IRF3) [31].
In our present study, myocardial hypertrophy was determined by the CW/BW ratio, cardiomyocyte
cross-sectional area, and by left ventricular dimensions using echocardiography, showing an increase
in interventricular septum thickness (IVS) and left ventricular posterior wall thickness (LVPW) in
all groups. However, no significant changes were detected in ejection fraction 14 days after AngII
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treatment, which may indicate that our mice were still in the compensatory phase of left ventricular
remodeling and hypertrophy [33].

Most studies, mainly conducted in non-cardiac tissues, have associated a reduction in Cx43
expression or functionality with benefits in scar formation. Research carried out in the skin has
demonstrated that down-regulation of Cx43 levels in mice or rats improves the rate of the wound
healing effect associated with reduced granulation tissue, and smaller, less distorted, scars [14].
Similarly, hydrogels containing cell-permeable Cx43 carboxiterminal mimetic peptide αCT1, or
coated collagen scaffolds with antisense oligodeoxynucleotides targeting Cx43 mRNA, promote
regenerative wound healing, reduce the area of scar, and improve skin mechanical properties in mice
and pigs [20,34–36]. Furthermore, Cx43 deficiency in heterozygous knock-out mice accelerates wound
closure and re-epithelization and increases proliferation and activation of dermal fibroblasts [37].
Importantly, in a prospective, multicenter, clinical trial, αCT1 therapy significantly reduced the mean
percent ulcer area in patients with chronic venous leg ulcers as compared with conventional compression
bandage therapy [38]. However, such benefits are not restricted to the skin. Thus, application of
the inhibitory Cx43 mimetic peptide Gap27 has been shown to be effective in promoting healing of
superficial epithelial corneal wounds [15]. Furthermore, treatment with TAT-Gap 19, a specific Cx43
hemichannel inhibitor, or carbenoxolone, a general hemichannel and gap junction inhibitor, lowered
the degree of liver fibrosis induced with thioacetamide in Balb/c mice [16]. Finally, studies in the heart,
involving coronary artery occlusion [17,18] in Cx43+/- mice, or cryoinjury [19,20] in animals treated
with αCT1 peptide, have shown attenuation of left ventricular remodeling and reductions in scar area
(i.e., infarct size).

Conversely, only few studies have shown a detrimental effect of Cx43 deficiency on collagen
deposition and scar formation, and these seem to be restricted to bone and to some concrete scenarios
in the heart. Thus, deletion of Cx43 in osteocytes and osteoblasts results in defective bone properties,
effects associated with reduced expression of LOX, an extracellular enzyme essential for collagen
cross-linking [39]. Regarding the heart, it has been demonstrated that aged Cx43Cre-ER(T)/fl mice,
expressing about half of normal Cx43 content, had a higher collagen deposition than its genetic controls
Cx43fl/fl, an effect that correlated with enhanced arrhythmia inducibility [21]. Furthermore, the increase
in collagen content induced by pressure overload through transverse aortic constriction was even
higher in young Cx43Cre-ER(T)/fl mice that in Cx43fl/fl animals [21]. Our present study, in which pressure
overload was induced using a different strategy, chronic AngII treatment for 14 days, thus, confirms an
exaggerated fibrotic response in these animals, having a partial Cx43 deficiency.

Unexpectedly, when we carried out this experimental approach in Cx43+/- mice, having a similar
partial Cx43 reduction, we found that they did not increase collagen deposition in response to pressure
overload above levels found in AngII-treated wild-type (Cx43+/+) animals. These findings may
suggest that data obtained in partially deficient Cx43Cre-ER(T)/fl mice may not be directly related to the
degree of Cx43 deficiency. In fact, such exaggerated collagen accumulation observed in hearts from
Cx43Cre-ER(T)/fl mice after AngII-induced pressure overload was associated with a marked increase in
p38 MAPK activation. Interestingly, the enhanced collagen accumulation was abrogated in the presence
of the p38 MAPK inhibitor SB203580. Therefore, our results support that the excessive fibrotic response
observed in partially deficient Cx43Cre-ER(T)/fl mice was dependent on the enhanced activation of this
pathway. Previous studies have demonstrated that AngII signaling is a complex process involving
sequential activation of different protein kinases, including, p38 MAPK [28,29].

In contrast to Cx43Cre-ER(T)/fl mice with partial Cx43 deficiency, Cx43Cre-ER(T)/fl animals with
almost a complete ablation of the protein showed a normalized fibrotic response to AngII, which
attained values similar to those found in AngII-infused Cx43fl/fl mice. Even more, these mice did not
depict the increase in mature collagen observed in remaining groups. This normalization might be
understood, when considering this genotype alone, as a protective response against collagen deposition
induced by AngII, similar to that described in other tissues when Cx43 expression or function was
reduced [14,15,20,34–37].
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To assess the mechanisms involved in the reversion of the exaggerated collagen accumulation seen
in 4-OHT-treated Cx43Cre-ER(T)/fl mice, we first analyzed changes in expression of mRNAs coding for
proteins involved in collagen synthesis (COL1A1, TGFβ1, P4HA1), maturation (LOX), and degradation
(TIMP1, TIMP2). Unexpectedly, we detected a marked increase in mRNAs coding for COL1A1, TGFβ1,
LOX, and TIMP1 in these animals, which was already apparent under baseline conditions. This increase
appeared despite these saline-infused animals showed very low amounts of interstitial collagen, similar
to those found in remaining groups (between 2% and 3%). This response may represent a compensatory
mechanism to the increased MMP9 activity and expression seen in these hearts, and correlated with a
huge increase in vimentin expression, which is suggestive of a higher amount of fibroblasts in animals
with a complete ablation of Cx43. More interestingly, treatment with AngII induced expression of
these genes involved in collagen turnover in all groups, but not in Cx43Cre-ER(T)/fl mice treated with
4-OHT. In these animals, mRNAs levels for COL1A1, TGFβ1, and LOX, although still elevated, were
significantly lower than those found in its corresponding saline-treated group, and these data correlated
with the previously described reduction in collagen accumulation after AngII treatment.

Normalization of the excessive interstitial collagen deposition after AngII infusion in 4-OHT-treated
Cx43Cre-ER(T)/fl mice was also associated with a low expression ofα-SMA and SM22α and morphological
abnormalities in isolated fibroblasts from these animals. Both proteins are markers of the phenotypic
switch of fibroblasts to myofibroblasts [24], and these results may be suggestive of reduced differentiation
capacity. As cardiac fibroblast to myofibroblasts differentiation has been previously associated with
collagen synthesis and secretion [40], these findings may explain, at least in part, the lower collagen
deposition in response to AngII observed in these animals. Lack of changes in α-SMA content in tissue
extracts, in comparison with isolated fibroblasts, might be due to the fact that, in the heart, this protein
is highly expressed in other cell types, mainly smooth muscle cells [41].

As mentioned before, Cx43Cre-ER(T)/fl animals injected with 4-OHT had an enhanced MMP-9 activity,
assessed by gelatin zymography of mice myocardial extracts, but also an increased inflammatory
reaction, denoted by enhanced IL-6 and NOX2 mRNA levels and higher macrophage content.
A number of cells within the myocardium express matrix metalloproteinases, including fibroblasts and
macrophages [42,43]. A larger number of both cell types might be responsible for increased MMP9
activity and expression, leading to enhanced collagen degradation in these animals.

Previous studies have suggested the presence of either the entire Cx43 protein [44] or its
carboxy-terminus [45] in the nucleus, where it may inhibit cell growth [8]. Furthermore, it has been
demonstrated that naturally occurring carboxy-terminal fragments of Cx43 can be generated by internal
translation of the Cx43 transcript [46], with several isoforms being expressed in the heart [47], including
cardiac mitochondria [48]. Functions of these low molecular weight fragments are largely unknown,
although some of them can autoregulate full-length Cx43 trafficking [46]. Of note, a recent work has
shown that the 20 kDa carboxy-terminal fragment of Cx43 may act as a transcriptional regulator at
cell nucleus, binding to N-cadherin promoter and controlling its expression [49]. In view of these
findings, one plausible hypothesis to explain our results in 4-OHT-treated Cx43Cre-ER(T)/fl animals
infused with AngII is that a lack of these Cx43 fragments would alter transcriptional control in cardiac
cells, modifying fibroblast phenotype and increasing the inflammatory reaction, leading in last term to
reduced collagen accumulation. This possibility should, in any case, be tested in the future.

Previous works have proposed AT1 receptors to mediate most of the physiologic cardiovascular
actions of AngII, including hypertension, vasoconstriction, or the increase in cardiac contractility,
among others [29,30]. In addition, stimulation of AT1 receptors would be involved in critical cardiac
responses such as cellular hypertrophy, gene reprogramming, and cell death in cardiomyocytes,
whereas they mediate cellular proliferation and up-regulation of fibrosis-associated genes in cardiac
fibroblasts [30]. Considering the last, it is tempting to speculate that fibrosis in our model should be
mediated by AT1 receptors. However, we should also consider that AT2 receptors may have a protective
action against fibrosis, as they seem to antagonize, at least under some conditions, AT1-mediated
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effects [29]. Whether AT1/AT2 receptors could contribute to the fibrotic responses observed in our
model is a complex issue that deserves further research.

In conclusion, this study demonstrates a paradoxical effect of Cx43 deficiency on cardiac collagen
deposition induced by AngII in Cx43Cre-ER(T)/fl mice. Whereas a mild Cx43 deficiency is associated
with an exaggerated fibrotic response, an almost complete Cx43 ablation after 4-OHT administration
normalized collagen accumulation to levels found in wild-type animals (Cx43fl/fl). The enhanced
collagen deposition seen in hearts from vehicle-treated Cx43Cre-ER(T)/fl mice is dependent on increased
p38 MAPK activation, but probably not directly related to changes in Cx43 expression. Further,
normalization of the fibrotic response to AngII in animals with very low expression levels of Cx43 is
associated with enhanced MMP-9 activity, reduced fibroblasts differentiation capacity, and increased
inflammatory response.
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