Unique sample ID	Sample materia		ration based or measurement (ng/µl)	measur	ration based or ement (ng/μl) ase H treatmen	after	olume (Ml)	
D1	Mouse Sperm RNA		9		0,001		100	
D3	Mouse Sperm RNA		6		0,003		100	
R1	Mouse Sperm RNA		135		129		100	
R3	Mouse Sperm RNA		50		45		100	
TD1	Mouse Testes RNA		9		0,005		100	
TD3	Mouse Testes RNA		15		0,008		100	
Table S2. S	ummary c	of read numb	ber.					
Mapping summary	D1_L0 01	D1_L002	D3_L001	D3_L002	R1_L001	R1_L002	R3_L001	R3_L002
Total reads	65,078,85	66,068,4 00	69,034,8 94	69,244,6 70	77,403,7 40	77,660,2 02	87,436,6 34	87,820,4 44
Total mapped reads	54,043, 408	54,205,377	54,186,775	54,335,469	59,302,9 98	59,513,9 09	43,560,5 56	43,724,836
Map Rate	83.0%	82.0%	78.5%	78.5%	76.6%	76.6%	49.8%	49.8%

Table S1. Samples Concentration based on A260 measurements before and after RNase H treatment.

Table S3. Primer sequences used for qPCR and relative levels of expression of ten transcripts in mature sperm of Mus musculus

Name	Primers Sequence (5'-3')	Size (bp)
E (2	Forward: CTGCTCACCCCAAGCTTTTTCTG	152
Fezf2	Reverse: GTTCAGCTGTCAAGGCCGAG	152
I Ima 2	Forward: GGAATCCCCGTTCTCCATCAGG	89
Hmx3	Reverse: GCAAAGAGCGTTCGTGGGG	89
II., h10	Forward: GATCTGCCAGGCTCTGCAG	149
Hoxb13	Reverse: GGCACAGGGTTTCAGGGAG	149
Sox21	Forward: GCTTCTGGAGTGCTCCGG	165
50X21	Reverse: GGCGGGCTGAGGTTTTGAG	165

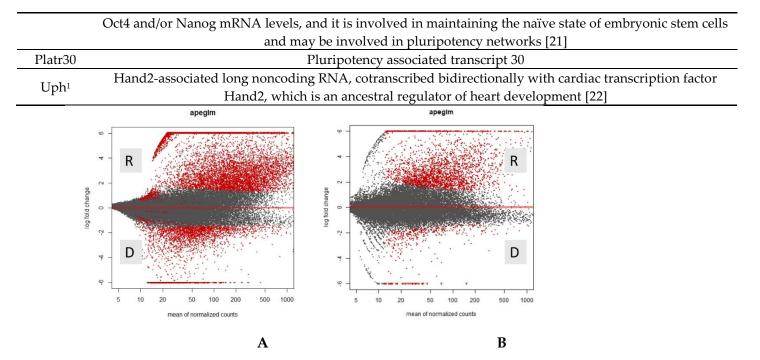

Nanog	Forward: GCGGTGGCAGAAAAACCAGTG	157
	Reverse: GGTTGGTCCAAGTCTGGCTG	157
UPH	Forward: GGGCATCTGTGGAAAGCAG	165
	Reverse: CCGAGGCCCGCTAACTTAC	165
T	Forward: GCAAGGAGTTGACACGATAG	105
Lncenc1	Reverse: CTATGCAGTCTCTGTGCGC	105
Otx-20s1	Forward: GCACATAGGAGGAGAAAGAG	127
Otx-2051	Reverse: CTTGCCTGCTACCAACTGC	127
D1-1-20	Forward: GGATGCTCGAGATGGTCGG	103
Platr30	Reverse: CAGTGTGTGTCGAGCATCC	103
Vmn1r51	Forward: GAGTAAGTGCCCTGAGTAAG	141
	Reverse: CCCTGTGCTGAGGACCTTC	141

Table S4- The highest scores related transcription factors

BSX	(Brain-specific homeobox protein homolog), DNA-binding protein acts as transcriptional activator			
	responsible of normal postnatal growth and nursing			
Gsc2	(Homeobox protein goosecoid-2), probably involved in development and autoregulation of			
	transcription			
Neurod2	(Neurogenic differentiation factor 2), has a role in the cerebellar and hippocampal granular			
	neurons development			
	(Dorsal root ganglia homeobox protein), essential transcription factor forms correct neuron			
Drgx	projections			
Lhx5	(LIM/homeobox protein Lhx5), plays an important role in the neuronal differentiation regulation			
LIXS	and migration during development of the central nervous system			
Barhl2	(BarH-like 2 homeobox protein), regulates neural basic helix-loop-helix genes			
D ((2	(POU domain, class 6, transcription factor 2), transcription factor probably involved in early			
Pou6f2	differentiation of amacrine and ganglion cells			
Fezf1	(Fez family zinc finger protein 1), transcription repressor important for the axonal projection and			
	proper termination of olfactory sensory neurons (OSN). Plays a role in rostro-caudal patterning of			
	the diencephalon and in prethalamic formation. Regulates olfactory bulb development			

Table S5- Details of the known function confirmed transcripts

Transcript	Function			
Hoxb13	Encodes homeobox protein Hox-B13 transcription factor, which is part of developmental regulatory			
	system. Specifically generates cells on the anterior-posterior axis [20]			
Hmx3	Homeobox protein HMX3 transcription factor. Specifies neuronal cell types that play an important role in			
	inner ear, hypothalamus and hypothalamic/pituitary axis development [20]			
Fezf2	Fez family zinc finger protein 2, which is responsible for forebrain embryonic development			
Sox21	Plays a role in progressing neurogenesis			
Otx2os1	Antisense strands of otx2, which in mice are involved in the development of the midbrain, forebrain and			
<i>Utx2051</i>	sense organs			
Lncenc1	lncRNA that is differentially highly expressed in embryonic stem cells. Probably plays an important role			
	in regeneration of mouse embryonic stem cells. Its depletion is associated with a significant reduction in			

Figure S1. Analysis of next generation sequencing data reveals difference in amount of transcript expression in D and R fractions. MA plot showing log fold change (y-axis) in transcripts: (**A**) for protein-coding; (**B**) for lncRNA between sperm D molecules vs. R fractions compared with the mean of normalized counts (D and R n=4, each samples represents pooled sperm RNA, 2 technical replicates/group). MA plot to visualize RNA-seq data transformed onto the M (log fold change) and A (mean average) scale. Log fold change represents D versus R.

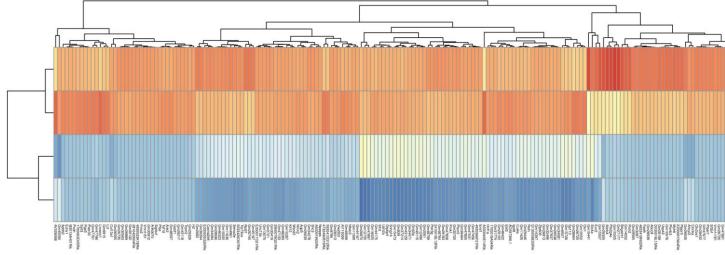
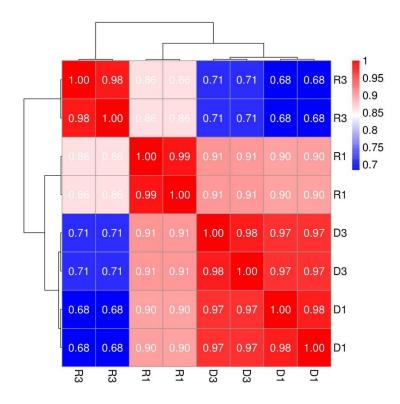
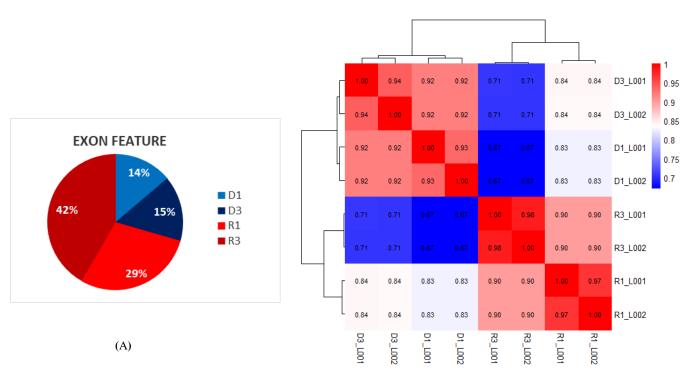
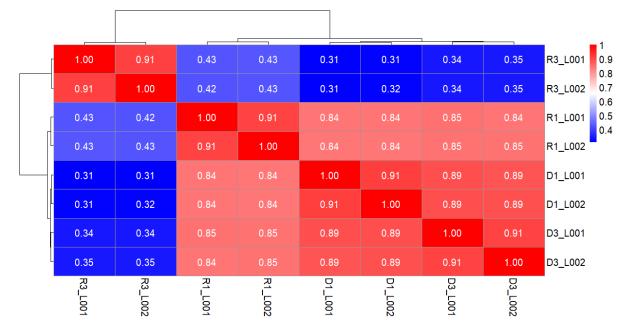


Figure S2. single lncRNA RNA transcripts in comparison with differential accumulation in sperm D fractions (n = 2 with two replicates). Plotted are the row z-score of log-normalized counts.

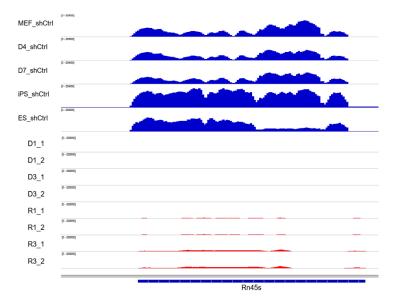

Figure S3. Hierarchical cluster analysis of the pairwise correlation coefficients between the D and R fractions of sperm transcripts.

Figure S4. (A) Pie chart indicating the fraction of exon features (in percent) of D and R sperm fractions; (B) Hierarchical clustering showing the correlation between sperm exon features of D and R fractions.

Figure S5. Hierarchical clustering of non-coding transcripts (piRNA and tRNA-derived fragments)

Figure S6. IGV visualization of wild-type somatic cells (MEF, D4, D7, iPS, ES) from Cossec et al., 2018 compared to sperm cells (D and R fractions).