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Abstract: One of the greatest challenges in neuro-oncology is diagnosis and therapy (theranostics) 
of leptomeningeal metastasis (LM), brain metastasis (BM) and brain tumors (BT), which are 
associated with poor prognosis in patients. Retrospective analyses suggest that cerebrospinal fluid 
(CSF) is one of the promising diagnostic targets because CSF passes through central nervous system, 
harvests tumor-related markers from brain tissue and, then, delivers them into peripheral parts of 
the human body where CSF can be sampled using minimally invasive and routine clinical 
procedure. However, limited sensitivity of the established clinical diagnostic cytology in vitro and 
MRI in vivo together with minimal therapeutic options do not provide patient care at early, 
potentially treatable, stages of LM, BM and BT. Novel technologies are in demand. This review 
outlines the advantages, limitations and clinical utility of emerging liquid biopsy in vitro and 
photoacoustic flow cytometry (PAFC) in vivo for assessment of CSF markers including circulating 
tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA), proteins, exosomes and 
emboli. The integration of in vitro and in vivo methods, PAFC-guided theranostics of single CTCs 
and targeted drug delivery are discussed as future perspectives. 

Keywords: cerebrospinal liquid biopsy; in vivo flow cytometry; tumor biomarkers; circulating 
tumor cells; ctDNA; miRNA; exosomes; emboli; targeted therapy 
 

1. Introduction 

Leptomeningeal and brain metastasis (LM and BM) as a result of metastatic dissemination of 
solid tumors (e.g., melanoma, breast cancer, lung cancer and colorectal cancer) and hematological 
neoplasms as well as primary brain tumors (BTs, e.g., glioma) are commonly fatal with minimum 
treatment options [1–11]. Relatively high number of underdiagnosed LM, BM and BT and often 
ineffective therapy are the major challenges. For example, autopsy data demonstrate that BM 
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contribute to death in ~75% of melanoma patients but they are clinically diagnosed in only 37% cases 
[8]. 

Among other parts of central nervous system (CNS), cerebrospinal fluid (CSF) is the easiest 
accessible medium that can directly uptake tumor markers from different parts of CNS [12–17]. 
Normally, CSF is a colorless liquid (a total volume of 130–150 mL for human) that contains up to 5 
cells/µL, mainly leukocytes (white blood cells [WBCs]) [18–20]. CSF is produced by the choroidal 
plexus of the ventricular system and ependymal brain cells from blood [18,20–21]. 

In tumor patients with CNS involvement, CSF contains various markers associated with disease 
progression and responses to therapy [2–4,13–17,22–30]. Among others, circulating tumor cells 
(CTCs) are direct seeds of metastasis and, therefore, their diagnostic significance encourages high 
attention of researchers and clinicians. Furthermore, multiple recent reports suggested that detection 
of tumor-derived markers such as exosomes, circulating tumor DNA (ctDNA), micro-RNA (miRNA) 
and proteins is relevant to LM, BM and BT. The diagnostic significance of these markers seems 
especially important for BT because some BTs are not metastatic and do not typically shed CTCs but 
may release tumor-derived markers in CSF. CTC aggregates (so-called clusters or emboli) in CSF may 
also have diagnostic value. This speculation is based on: (1) finding CTC emboli in CSF samples of 
patients with lung cancer and LM [30]; (2) detection of CTC clusters in blood of patients with BT (e.g., 
glioblastoma) assuming their leaving CNS through the compromised blood-brain barrier (BBB) [31]; 
and (3) experimental and clinical evidences that multicellular CTC aggregates in peripheral blood 
represent the aggressive cell subset responsible for initiating and promoting metastasis [31–40]. 

Based on the physiology of CNS and mechanisms of tumor development (e.g., compromising 
BBB to penetrate tumor cells [41]), CTCs, their aggregates and other tumor-derived markers may 
invade CSF through different mechanisms that include (1) crossing the compromised BBB by blood 
and lymphatic CTCs and/or (2) shedding tumor cells by existing BM and BT. The latter mechanism 
provides a solid basis for using CSF tumor markers to diagnose progression of BM and BT, and to 
estimate responses to therapy. The first mechanism likely works for LM and BM and suggests the 
origin of CSF tumor biomarkers from blood or/and lymph and their possible entry to CSF before 
colonization of brain tissue and meninges. 

Thus, testing CSF might predict deadly LM, BM and BT; and advanced methods to assess CSF 
tumor markers in CSF are urgently needed to prolong life of patients suffering from CNS tumor 
lesions. 

2. In Vitro Detection of CSF Tumor Markers 

The gold standard for routine clinical examination of CSF is cytology after lumbar puncture [9–
11,24,42,43]. The detection approach is based on cytomorphology of tumor cells after staining 
samples with Wright-Giemsa or Papanicolaou dyes. However, the sensitivity of CSF cytology is 
estimated as low as 50% [9]. Furthermore, cytology is a relatively subjective method since its results 
depend on the ability of a laboratory technician to correctly identify types of cells, for example, to 
distinguish tumor cells from normal leukocytes [24–26]. This may lead to delaying of therapeutic 
interventions until other diagnostic criteria (e.g., abnormal magnetic resonance imaging [MRI]) 
and/or strong clinical symptoms emerge. As a result, involvement of CNS in some patients is found 
at autopsy only. 

The limitations of cytology and deadly nature of LM, BM and BT encouraged researchers and 
clinicians to develop more sensitive and accurate markers using modern technologies. During the 
past decade, substantial efforts have been made to assess CSF samples using new concept of liquid 
biopsy (Figure 1) [2,15–17,23,26–30,44–48]. 
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Figure 1. Cerebrospinal fluid (CSF) liquid biopsy detection of tumor markers in vitro. 

CSF Liquid Biopsy 

Several years ago, Patel et al. showed that FDA-approved CellSearch method can be used to 
identify CTCs in 7.5 mL CSF samples of breast cancer patients [22]. Compared to traditional cytology, 
the CellSearch assay has been demonstrated significantly higher number of CTCs [22,28,30,49,50]. 
Despite promise, this technological platform is limited in detection of only a few tumor markers, 
typically EpCam, for patients with epithelial cancers (e.g., breast cancer) and CD 146 and HMW-
MMA for patients with melanoma [21,49]. Thus, CellSearch obviously cannot identify a highly 
heterogeneous population of CTCs and not suitable for diagnosis of many tumors such as 
glioblastoma. These limitations somewhat reduced enthusiasm to recommend this method in routine 
clinical practice. 

Using real-time polymerase chain reaction (RT-PCR) for examination of patients with BM and 
LM has demonstrated higher sensitivity than conventional cytology [51]. However, relatively high 
rate of false-negatives during RT-PCR analysis make it a suboptimal method for CSF testing [9]. To 
solve this problem, cancer researchers and clinical oncologists recently explored the use of high-
sensitive droplet-digital PCR (ddPCR) [52–56]. It was shown that ddPCR provides accurate and 
reliable CSF analysis. It can work with poor DNA quality and measure multiple parameters including 
absolute allele quantification, rare mutation, copy number variations, DNA methylation and gene 
rearrangements [52]. In a few clinical studies, ddPCR of CSF was able to detect ctDNA in patients 
with melanoma and CNS metastasis; and the obtained results were strongly correlated with cytology 
results and detection of abnormalities in MRI [52,56]. It is interesting that some patients with high 
level of ctDNA showed negative cytological results [56]. The small volume of CSF fluid required for 
testing ctDNA is definitely an additional advantage but high level of false results is a challenge. 
Overall, to date, it is too early to make conclusions on diagnostic value of ctDNA. 

Another promising emerging data of CSF liquid biopsy have been obtained using 
immunofluorescence in situ hybridization (FISH) technology [24,57–60]. The published results hold 
promise to provide more accurate diagnosis of CSF CTCs than cytology. The main advantage of FISH 
is phenotypic and karyotypic identification and characterization of the highly heterogeneous CTCs, 
which can be assessed by both chromosome ploidy and the expression of various tumor markers [57]. 
However, FISH is not currently standardized for liquid biopsy and requires future development and 
research to clarify whether or not this method is reliable for identification of CTCs. 

Integration of array comparative genomic hybridization (ACGH) analysis and whole genome 
amplification provided achieving the genomic characterization of rare CSF CTCs [61,62]. The clonal 
similarity between CSF CTCs and primary tumor genomic profiles with more copy number 
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alterations in CTCs was demonstrated using samples of CSF and primary tumor from breast cancer 
patients with LM [62]. 

Analysis of CSF samples with conventional flow cytometry in vitro has been reported to 
diagnose CTCs in CSF [63–65]. Flow cytometry immunophenotypic testing of bulk breast cancer 
receptors, cancer stem cell markers and various WBC subpopulations looks interesting and suggests 
interplay of CSF and lymph fluid during CTC migration [63]. However, well-known limitation of 
flow cytometry to detect rare events might reduce enthusiasm for its use of assessment of CTCs which 
is supposed to be rare (up to 1-5 CTCs per sample) at early stage of CNS involvement. 

In the past few years, the clinical potential of some other technological platforms including 
microfluidic technology, immunomagnetic platform, high performance liquid chromatography-mass 
spectrometry, next generation sequencing (NGS) and proteolytic activity matrix assay (PrAMA) has 
also been demonstrated [25,50,55,66–69]. Despite interest and promises, the singularity of these 
reports does not allow yet making conclusions on suitability of these methods to improve prognosis 
in patients.Overall, despite CSF liquid biopsy is expected to yield clinically significant biomarkers 
and assays, the main drawback to all aforementioned approaches in vitro is that their sensitivity is 
substantially limited by the volume of the sample [70,71]. Typically, up to 10 mL of CSF is used for 
examination, which is estimated to be less than 6–7% of the total 130–150 mL volume of human CSF. 
It means that in vitro testing misses up to 93–94% of CTCs [71]. A simple recalculation of the results 
in vitro, which detected minimum 1–2 CTCs per CSF patient sample (5–10 mL) with the existing LM 
and BM [21,49], shows that the real number of CTCs at the time of diagnosis was more than 15–20 
cells in the total CSF volume. Serial analysis of multiple samples from repeated punctures increases 
sensitivity [28]. However, repeated punctures are a challenge because it can be performed over 
several days and may lead to delaying of therapies. In addition, the existing methods in vitro are 
burdened with: 1) low throughput, which may require many hours (if not, days) to assess a typical 
CSF sample and 2) multiple time-consuming sample-processing steps including staining, 
immunomagnetic capture, isolation and washing, which result in loss of many CTCs [21,23,30,49,51]. 
As a result, CTCs in small quantities may escape detection, which also contributes to late diagnosis 
and poor outcomes. 

Based on this, liquid biopsy in vitro can provide advanced molecular and genetic analysis of 
tumor associated markers in CSF but it cannot detect rare CTCs at early stage of LM and BM and 
possibly, before LM and BM initiation (Table 1). The rarity of CSF CTCs definitely demands a new 
strategy. An attractive solution to these problems is to monitor almost entire CSF volume in vivo 
(Table 1). 

Table 1. New and emerging technologies for detection of tumor biomarkers in CSF. 

Detection 
method Biomarker Disease 

Approach 
Significant 
advantages 

Main 
limitations 

Application 
Refs In 

vitro 
In 

vivo 
Research Clinical 

CellSearch 
CTCs, 
Cell 

emboli 

BM, 
LM  

+  

FDA-
approved 

technology, 
Higher 

sensitivity 
than 

cytology 

Small sample 
volume, 

Processing 
delay, 

Limited 
number of 
detected 
markers 

+ + 
[22,2
8,30,4
9,50] 

Microfluidic 
technologies 

CTCs BM, BT +  

Single CTC 
capture in 

sub-
nanoliter 

trap, 
Relatively 

quick 
(~1hr) 

analysis 

Early stage of 
research using 

cell lines  
+  [69] 
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Immuno-
magnetic 
platform 

CTCs LM +  

Capable to 
detect and 
separate 
rare cells 

Low 
sensitivity due 

to small 
sample 
volume, 
Limited 

number of 
detected 
markers 

 + [25] 

FC in vitro CTCs LM +  

Standar-
dized 

technology, 
Higher 

sensitivity 
than 

cytology 

Impossibility 
to detect rare 

cells 
+ + 

[63–
65] 

ddPCR 
 ctDNA, 
miRNA, 

CTCs 

BT, BM, 
LM 

+  
High 

specificity 

False-
positivity, 

Not 
standardized 

+ + 
[52–
56] 

FISH CTCs LM, BT +  

Analysis 
poor DNA, 
Relatively 

high 
resolution 

Early stage of 
research, Not 
standardized 

+ + 
[24,5
7–60] 

ACGH CTCs  +  

Whole 
genome 

sequencing, 
High 

resolution 
compared 

to 
convention

al CGH 

Inability to 
detect 

aberrations 
that do not 

result in copy 
number 
changes 

 + 
[61,6

2] 

NGS 
 ctDNA, 
miRNA  

LM +  

High-
throughput 

whole 
genome 

sequencing, 
High 

specificity 

High price, 
Complex data 

analysis 
 + 

[50,5
6] 

PrAMA Proteases LM +  

Detection 
of protease 
activity as 

indicator of 
BBB 

degradatio
n 

Early stage of 
research  

 + [66] 

PAFC 
in vivo 

CTCs, 
Cell 

emboli 
BM   

Extremely 
high 

sensitivity, 
Theranostic 
capability 

Detection of 
surface CTC 

receptors  
+  [71] 

CTCs—circulating tumor cells, LM—leptomeningeal metastasis; BM—brain metastasis; BT—brain 
tumor; FC—flow cytometry; ddRCP—droplet-digital polymerase chain reaction; ctDNA—cell free 
DNA; miRNA—microRNA; FISH—immunofluorescence in situ hybridization; ACGH—array 
comparative genomic hybridization; CGH—comparative genomic hybridization; NGS—next 
generation sequencing; PrAMA—proteolytic activity matrix assay; PAFC—photoacoustic flow 
cytometry. 

3. In Vivo Diagnosis of CSF 

Despite significant progress in neuroimaging in vivo (e.g., MRI, computed tomography [CT], 
radiography) [9,11,50,64,72–74], existing diagnosis, even advanced multi-modal imaging is not 
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sufficient to make judgments about early LM and BM. The low spatial and temporal resolution of CT 
and MRI allows identification of only macroscopic changes in the CNS (e.g., metastases ≥10 mm by 
CT). Therefore, the diagnosis is typically based on the indirect signs of LM including pathological 
meningeal contrast enhancement at the MRI examination, which are often equivocal. In addition, a 
recent study has found that immunotherapy might be a source of MRI false positivity 
('pseudomeningeosis') [73]. New generations of MRI, such as phase-contrast MRI, enable quantitative 
measurements of CSF flow but not suitable for detection of relatively fast moving single CTCs and 
particles due to slow time response [75]. The same limitation applies to intravital fluorescence 
microscopy which has been used for imaging CSF plasma (so-called, cisternography) but not single 
cells in CSF [76]. Furthermore, the translation of fluorescent neuroimaging to humans in vivo is 
problematic due to 1) cytotoxicity of fluorophores, 2) undesirable immune responses to tags and 3) 
assessing only superficial fluid flows due to strong influence of autofluorescent and scattering 
background. 

Photoacoustic Flow Cytometry In Vivo 

The most promising method for detecting CTCs in CSF is photoacoustic (PA) flow cytometry 
(PAFC), which compared to other in vivo diagnostic techniques, demonstrated ultra-sensitive 
molecular detection and counting of single cells in different body fluids (e.g., blood, lymph and CSF) 
[40,70,77–83]. The principle of multicolor PAFC is based on noninvasive (i.e., through intact skin) 
irradiation of the selected fluid with short laser pulses at different wavelengths followed by the 
detection of laser-induced acoustic waves (referred to as PA signals) using an ultrasound transducer 
placed on the skin (Figure 2a). PA methods provide higher sensitivity and resolution in deeper tissues 
(up to 2–3 cm, with potential up to 5–7 cm [70,84]) than other optical modalities. These benefits make 
possible detection of CTCs in CSF through the atlanto-occipital membrane. In PAFC, this allows 
distinguishing signals from single fast-moving particles (e.g., CTCs, exosomes, and emboli) at laser 
energies within the safety standards for humans [70,77,81,83,85,86]. In regards of CSF detection, 
PAFC has advantages compared to other in vivo methods. Specifically, the colorlessness and optical 
transparency of CSF, commonly accepted as a diagnostic limitation, provides low absorbance and, 
therefore, extremely low PA background signal, which significantly improves distinguishing stronly 
light absorbing objects [71]. It means that CTCs, exosomes or emboli with strong absorbing molecules 
(e.g., natural melanin or nanoparticles) are predominated over the absorption of CSF by a few orders 
of magnitude, especially in the near-infrared window of transparency for biotissues (“first window”: 
700–1100 nm). Based on this, some  strong absorbing cells such as melanoma CTCs with natural 
intracellular high absorbing melanin as intrinsic non-toxic PA contrast agents, can be easily detected 
by PAFC in label-free mode. To detect low absorbing tumor-related CSF markers (e.g., breast cancer 
CTCs), they should be labeled by exogenous PA contrast agents conjugated with ligands (e.g., 
antibodies, peptides, or folic acid) against specific surface receptor(s). The key requirements for in 
vivo use of contrast agents include low toxicity and high PA contrast. Some of the best candidates are 
gold and magnetic nanoparticles [77,87,88]. 

The first successful demonstration of PAFC’s capability to diagnose CSF tumor markers was 
reported using preclinical models of breast metastatic cancer (Figure 2b–d) [71]. It was shown that 
PAFC was able to detect CSF CTCs with 10–20 times higher sensitivity compared to in vitro methods. 
The most important finding is that some tumor-bearing mice without histologically detectable BM 
exhibited rare CSF CTCs (e.g., 1–3 signals every 40–60 min). The presence of blood CTCs in these 
mice suggests the possible origin of CSF CTCs to be from blood CTCs and indicates the potential of 
CSF CTCs as a predictive biomarker of BM. The obtained experimental evidence is in line with the 
aforementioned suggestion that blood and lymphatic CTCs might pass the compromised BBB and 
enter brain tissue, meninges and CSF to form BM and LM. This may serve as a scientific foundation 
for prognosis and prediction of LM and BM in patients. 
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Figure 2. Assessment of circulating tumor markers in CSF in vivo with multicolor PAFC. (a) Principle 
of diagnosis with PAFC. (b) Intravital luminescence imaging of metastatic breast cancer progression 
in orthotopic xenograft mouse model after inoculation of human MDA-MB-231-luc2-GFP cells. (c) 
Two-color PAFC of the spontaneous CSF CTCs in vivo; inset: the photoacoustic signal width 
(indicated by arrows), which is associated with a single circulating tumor cell (CTC). (d) PAFC of 
circulating CTC-containing embolus in tumor-bearing mice; gray rectangle: aggregate of CSF-CTCs 
and leukocyte (WBC); insert: the blood CTC rate at the time of CSF monitoring. 

Another interesting finding is the existence of CTC-containing emboli in CSF in vivo (Figure 2d). 
Identification of embolus is based on the width and shape of PA signal, assuming that embolus’ 
multicellular structure produces a relatively wider PA signal containing a set of narrower peaks. 

Overall, the success of preclinical studies together with the simplicity and safety of PAFC give 
confidence to rapidly translate this method into clinical practice. PAFC diagnosis of CSF in human 
subarachnoid space and spinal canal at a depth of 1–3 cm seems possible and was supported by the 
reports on high sensitivity and resolution of PA methods in deeper tissues. Recently, the clinical 
relevance of PAFC was successfully demonstrated in clinical trials with melanoma patients by 
detecting blood CTCs in 1–2 mm hand vessels at depth of 1-3 mm with a detection limit of 1 CTC/1000 
mL (i.e.,103 –fold increased sensitivity compared to existing CTC assays) [40]. 

4. Future Directions 

To date, crucial steps in increasing the survival of patients with LM and BM are (1) early 
diagnosis; (2) initiating preventive therapy such as targeted therapy of single CSF CTCs and their 
emboli and (3) assessing therapeutic efficacy in order to optimize an individual course of therapy. 

4.1. Advance Diagnosis 

Although many promising technologies to detect various CSF tumor markers during liquid 
biopsy have been reported, there is no standardized and validated assay that is currently ready to 
introduce for daily clinical practice as an advanced alternative or supplement of conventional 
cytology. 

Novel approaches integrating unprecedented high sensitivity of in vivo flow cytometry and 
comprehensive molecular and genetic characterization of tumor markers in CSF in vitro are highly 
desired for clinical needs. 

In addition, one of the possible future alternatives is CSF diagnosis in vivo using updated 
GILUPI CellCollector. This method was introduced in 2016 for EpCam-based detection of CTCs in 
blood by introduction of EpCAM-coated wire into a vein of the patient [89]. However, the invasive 
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nature of the method and possibility of missing CTCs, which transit outside the wire, somewhat 
reduce enthusiasm of using GILUPI device for CSF assessment. 

The new looks are also suggesting continuous cell exchange between CSF, blood, lymph and 
brain tissue [90–92] that should be considered at the diagnosis. The prognostic value of CTCs, if they 
are simultaneously tested in blood, lymph and CSF, would provide a new, highly sensitive and 
accurate prognostic biomarker of metastasis progression and therapy efficacy. 

4.2. Therapeutic Perspectives 

Minimal treatment options in current management of LM and BM lead to poor prognosis for 
patients due to low efficacy, late therapy initiation, use of common (i.e., not-personalized) therapeutic 
schematics and high toxicity. From this, one of the top future priorities is development of novel 
targeted and immune therapies. The molecular-targeted nanotechnology platform is highly 
promising for targeted drug delivery. For this purpose, nanoparticles should have high sensitivity, 
specificity and selectivity as well as safety, multifunctionality, multimodality, ability to penetrate BBB 
and high efficiency of drug delivery to tumor. Among existing nanoparticle-based drug cargoes, the 
most promising candidates include low toxic individual nanoparticles, high-contrast spasers, 
liposomes, polymer micelles, lipid micelles packaged with semiconducting polymer dots as 
simultaneous MRI and PA imaging and photodynamic and photothermal dual-modal therapeutic 
agents, layer by layer based composite structures (core-shells) and microcapsules (shells) and 
biocompatible natural magnetic nanoparticles [87,88,93–98]. The targeting could be achieved by 
surface modification using targeted molecules specific to CTCs, exosomes and emboli [88,99]. For 
example, a single injection of core-shells in CSF has shown the effectiveness of their use for the long-
term delivery of painkillers in the treatment of persistent pain [100]. Potentially, these drug delivery 
systems may be effective for treating CTCs in CSF. 

There is a high therapeutic potential of modern technologies for creating synthetic truncated 
antibodies [101] and scaffolds [102]. The revolutionary progress in genetic and protein engineering 
methods make it possible to directionally modify the molecular size, affinity, specificity and 
immunogenicity of an antibody, their derivatives and analogues, oriented to the use in the diagnosis 
and targeted therapy of cancer. Today, rational design and molecular engineering allow modelling 
of the compounds with preprogrammed properties and to create biotechnological producers of 
therapeutic medicines [102–106]. A promising direction is conjugation of these unique theranostic 
agents with nanoparticles. The advantages of using nanoparticles in these conjugates include 
developed surface of nanoparticles, which can be decorated with biocompatible functional moieties 
for targeted delivery; and diagnosis that guides and monitors effects of the nanoparticle-assisted 
therapy [107–110]. Recently, the design of a hybrid nanocomplex based on an upconversion 
nanoparticle (UCNP) was reported [111]. Owing to their unique photophysical properties, UCNPs 
are high-potential platform for theranostics complexes. Conversion of near-infrared light, which can 
deeply penetrate in biological tissue, to the higher photon energy visible, ultra-violet and near-
infrared light is among UCNP’s most useful properties. Two toxic agents––beta-emitting 
radionuclide yttrium-90 and a highly efficient targeted toxin DARPin-exotoxin A from Pseudomonas 
aeruginosa––were coupled to UCNP core to exert toxicity to cancer cells. As a result, on the one hand, 
the photophysical properties of hybrid nanocomplex enable background-free imaging of its 
distribution in cells and animals. On the other hand, specific delivery of UCNP complexes to cancer 
cells results in combined therapy by two toxic agents with markedly increased synergetic effect [111]. 
The design of the hybrid multifunctional nanoheterocomplex proves the principle “when the whole 
is greater than the sum of the parts.” 

The novel targeted CSF therapy may also use the advanced design of heterostructures based on 
the barnase:barstar pair [112]. The ribonuclease barnase and its inhibitor, barstar, are small stable 
proteins. They form extremely tight complex with a Kd∼10−14 M. The strategy is applicable to any 
proteins or nanoparticles that can be functionally attached to the barstar and barnase, especially for 
production of heterooligomeric constructs because the extremely specific barnase∙barstar interaction 
eliminates reliably the mispairing problems. This universal platform is a promising alternative to 
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commonly used chemical conjugation techniques in nanobiotechnology, theranostics and clinical 
applications. It provides a straightforward technology to design wide range of multifunctional 
nanoheterostructures for the highly efficient delivery of active agents to tumor cells for theranostics 
[112–117]. 

A very exciting future direction is the possibility of integration of in vivo molecular diagnosis, 
targeted therapy and estimation of therapeutic efficacy in one technological platform of PAFC 
[40,79,118]. PAFC’s capability to identify a single high-absorbing CTC and immediately “kill” it 
through photothermal-indiced nanobubbles with photomechanical action on CTC membranes and 
vital intracellular structures was demonstrated for blood CTCs in experiments and, recently, in 
clinical research in blood circulation [40]. Furthermore, the following disappearance of the CTC-
associated PA signals might serve as the criterion of effective therapy. These data bring hope that 
earliest rare CTCs might be identified and “killed” directly in CSF before colonization of brain tissue 
and formation of BM and LM. 

It is expected that technological innovations and ongoing clinical trials would contribute to the 
finding of novel approaches to provide advances in BM and LM theranostics at the earliest possible 
stages before development of overt deadly lesions, to select patients with high risk of BM and LM for 
personalized therapy, to identify early disease progression and thereby improve survival rates of 
cancer patients. 
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