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Abstract: In cells, photosensitizer (PS) activation by visible light irradiation triggers reactive oxygen
species (ROS) formation, followed by a cascade of cellular responses involving calcium (Ca2+) and
other second messengers, resulting in cell demise. Cytotoxic effects spread to nearby cells not
exposed to light by poorly characterized so-called “bystander effects”. To elucidate the mechanisms
involved in bystander cell death, we used both genetically encoded biosensors and fluorescent
dyes. In particular, we monitored the kinetics of interorganellar Ca2+ transfer and the production of
mitochondrial superoxide anion (O2

−·) and hydrogen peroxide (H2O2) in irradiated and bystander
B16-F10 mouse melanoma cancer cells. We determined that focal PS photoactivation in a single
cell triggers Ca2+ release from the endoplasmic reticulum (ER) also in the surrounding nonexposed
cells, paralleled by mitochondrial Ca2+ uptake. Efficient Ca2+ efflux from the ER was required to
promote mitochondrial O2

−· production in these bystander cells. Our results support a key role for
ER–mitochondria communication in the induction of ROS-mediated apoptosis in both direct and
indirect photodynamical cancer cell killing.

Keywords: bystander effect; organellar Ca2+; ROS; mitochondria; endoplasmic reticulum; biosensors;
photodynamic therapy

1. Introduction

PS photoactivation is a well-established therapeutic approach used to promote cell killing based
on the interaction between visible light and matter [1,2]. The use of PS drugs in the clinic is termed
“photodynamic therapy” (PDT), which is successfully targeted to cutaneous cancers, infections,
and other pathologies [3–7]. In PDT, wavelength-selective light exposure of cells loaded with a PS
promotes the inert PS molecule to a relatively long-lived excited state in which it interacts with
molecular oxygen (O2). Primary products of PS activation are singlet oxygen (1O2) and O2

−·, which
in turn initiate a cascade of secondary reactions, leading to the formation of H2O2, hydroxyl radical
(OH·), and oxidation of substrates [8,9]. These events are followed by activation of numerous cellular
pathways, including signaling by Ca2+ and nitric oxide (NO), terminating with cellular damage or
demise [10].

The damage caused by PS excitation propagates from directly irradiated cells to surrounding
nonexposed cells, a phenomenon that occurs also in radiotherapy and in both cases is referred to as

Cells 2019, 8, 1175; doi:10.3390/cells8101175 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0003-3751-1691
http://dx.doi.org/10.3390/cells8101175
http://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/8/10/1175?type=check_update&version=2


Cells 2019, 8, 1175 2 of 18

“bystander effect” [11,12]. Primary ROS produced by PS excitation are short-lived molecules which are
unlikely to act as molecular messengers at distance [13,14]. On the contrary, secondary ROS byproducts,
Ca2+ and NO have the potential to mediate bystander responses via paracrine pathways and/or direct
cell–cell communication through gap junction channels [15–20]. In particular Ca2+, a long-range
cellular messenger, is thought to be responsible for regeneration of ROS at distance (hundreds of
microns) following PS activation [21]. In addition, membrane-permeant secondary ROS such as H2O2,
which has a half-life of ~1 ms [22], can diffuse over distances of the order of the cell size, accumulate in
the extracellular medium, and trigger intercellular signaling pathways [23].

Although the major molecular players of cellular responses to PS-mediated insults have been
identified [20,21], a comprehensive understanding of their interplay in the induction of cell death
at distance is currently missing. Of note, interorganellar Ca2+ signaling plays a crucial role in the
activation of cell death pathways [24], but little attention has been paid so far in tracking the kinetics of
PS excitation-induced Ca2+ mobilization at the subcellular level. Significant knowledge advancement
is required in order to provide novel insights into the mechanisms of cytotoxicity regeneration in
bystander cells, which can ameliorate treatment and reduce unwanted side effects.

In a prior study using the PS Aluminum Phthalocyanine Chloride, we characterized some of
the downstream effects elicited by its focal activation in a single cell, which caused the propagation
of an intercellular cytosolic Ca2+ wave and the execution of cytochrome c-dependent apoptosis in
bystander cells [16]. Here, we extended those results by investigating interorganellar Ca2+ signaling
using genetically encoded fluorescent biosensors targeted to the ER or mitochondria. In parallel,
we tracked the kinetics of H2O2 in bystander cells and investigated the dependence of mitochondrial
Ca2+ uptake and ROS production on the PS activation-induced Ca2+ efflux from the ER.

2. Materials and Methods

2.1. Cell Culture Preparation for Live-Cell Imaging

The B16-F10 mouse melanoma cell line was purchased from American Type Culture Collection (Cat.
No. CRL-6475, ATCC, Manassas, VA, USA). Cells were cultured in RPMI 1640-GlutaMAX (Cat. No.
61870-010, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with heat-inactivated fetal bovine
serum (FBS, 10% v/v, Cat. No. 10270-106, Thermo Fisher Scientific) and Penicillin/Streptomycin (100 U/mL,
Cat. No. 15070-063, Thermo Fisher Scientific) and routinely tested using 4′,6-diamidino-2-phenylindole
(DAPI, Cat. No. D1306, Thermo Fisher Scientific) staining to exclude mycoplasma contamination.

Cells were plated on 12 mm round glass coverslips treated with Poly-L-lysine (0.01%, Cat. No.
P2636, Sigma-Aldrich, St. Louis, MO, USA). For cell viability assays or live-cell imaging with fluorescent
cell permeant indicators, cells were plated at 50% confluence and used the following day. For transient
expression of genetically encoded fluorescent biosensors, cells were plated at 30% confluence and
transfected with the biosensor plasmid using Lipofectamine 2000 (Cat. No. 11668-027, Thermo Fisher
Scientific) after 24 h. Experiments were performed the next day.

2.2. Focal PS Activation in Sensitized Cells

B16-F10 cell cultures were incubated with the PS Aluminum Phthalocyanine Chloride (10 µM,
Cat. No. 362530, Sigma-Aldrich) for 1 h at 37 ◦C in serum-free RPMI medium complemented with
Pluronic F-127 (1% v/v, Cat. No. 20053, AAT Bioquest, Sunnyvale, CA, USA). PS-loaded cultures
were transferred to the microscope stage and incubated with a normal extracellular medium (NES)
containing: 138 mM NaCl, 5 mM KCl, 2 mM CaCl2, 0.4 mM NaH2PO4, 6 mM D-Glucose, 10 mM
HEPES (all from Sigma-Aldrich), pH 7.3.

For PS excitation (Figures 1–7), we used a fiber-coupled 671 nm diode-pumped solid-state laser
(Shanghai Dream Lasers Technology Co., Shanghai, China). The same photoactivation system, when
needed, was adapted to the optics and electronics of two different upright microscopes: a custom
spinning disk confocal microscope [25] and a partially custom-made two-photon microscope based on
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the Bergamo II architecture (Thorlabs, Inc., Newton, NJ, USA). In both cases, the 671 nm laser light
emitted from a multimode fiber optics was recollimated using an achromatic doublet, and the beam
was injected into the microscope optical path just above the objective via reflection at 45◦ off a dichroic
mirror (650 nm shortpass dichroic, Cat. No. 69-217, Edmund Optics, Barrington, NJ, USA, for the
spinning disk microscope, 600–750 nm notch dichroic custom-made by Semrock, Rochester, NY, USA,
for the two-photon microscope). The recollimated laser beam was focused by the objective into a 10 µm
diameter spot (see Supplementary Materials, Figure S1), which allowed spatially confined irradiation
of a single cell in the culture (i.e., “focal” irradiation). Photostimulation consisted in delivering a
series of photoactivation flashes in the time interval between consecutive frames. To this end, laser
emission was controlled electronically by transistor—transistor logic (TTL) commands generated by a
programmable electronic platform (Arduino Uno Rev3, Cat. No. A000066, Arduino, Somerville, MA,
USA, code available in Supplementary Materials). The overall duration of the irradiation protocol
was 100 s. Standard laser exposure was set at 250 ms per second, corresponding to a total exposure of
25 s and a total optical energy of 100 mJ (corresponding to ~3·1017 photons per irradiated cell) at an
irradiance f ~5·106 mW/cm2. Hereafter, we refer to these irradiation conditions as standard stimulation
(SS) conditions. All the results described in this article were obtained in SS conditions, except for data
shown in Figure 3, Figure 4, and Video 1 (see Supplementary Materials), where we modulated the
delivered optical energy by tuning both laser power and photoactivation flash duration. We defined
three other stimulation conditions that we refer to as: high irradiance (HI) conditions, ~7·106 mW/cm2

(~6·1017 photons per irradiated cell), medium irradiance (MI) conditions, ~4·106 mW/cm2 (~2.5·1017

photons per irradiated cell), and low irradiance (LI) conditions, ~7·103 mW/cm2 (~6·1014 photons per
irradiated cell).

Hereafter, to describe bystander effects triggered by focal PS photoactivation, we refer to the
nearest neighbors of the irradiated cell as “cells of the 1st order”, to the second neighbors as “cells of
the 2nd order”, and so on. The single-cell analysis was limited to cells of the 5th order by the size of
the field of view (~200 µm in diameter).

2.3. Cell Viability Assays

PS-loaded B16-F10 cell cultures were focally irradiated using the spinning disk microscope setup.
After PS activation, cells were incubated at room temperature with cell viability assay solutions,
as detailed hereafter.

2.3.1. Live/Dead Assay

At different time points from the end of photostimulation, cultures were incubated for 15 minutes
in NES supplemented with the components of the LIVE/DEAD Viability/Toxicity Kit (Cat. No. L3224,
Thermo Fisher Scientific), therefore, green fluorescent Calcein acetoxymethyl ester (AM, 5 µM) and red
fluorescent Ethidium homodimer-1 (8 µM). Thereafter, the staining medium was replaced by NES, and
fluorescence images were acquired.

2.3.2. Apoptosis Assay

For this assay, we used the Polarity Sensitive Indicator of Viability Apoptosis (pSIVA) Microscopy
Kit (Cat. No. NBP2-29382, Novus Biologicals, Centennial, CO, USA). The assay solution consisted of
pSIVA conjugated to the green fluorescent IANBD dye (pSIVA-IANBD) and red fluorescent propidium
iodide (PI, 5 µM) dissolved in NES. Time-lapse fluorescence microscopy was performed for 2 h after
the end of laser irradiation.

2.4. Imaging of Ca2+, O2
−
·, H2O2, and Caspase-3 Activation

Cytosolic Ca2+ was monitored with green fluorescent Fluo-4 AM Ca2+ dye (5 µM, Cat. No. F14201,
Thermo Fisher Scientific). Mitochondrial O2

−· signals were visualized by red fluorescent MitoSOX Red
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(5 µM, Cat. No. M36008, Thermo Fisher Scientific). Indicators were dissolved in NES together with the
PS and loaded into cells just before laser irradiation (see Section 2.2., above).

Intraorganellar Ca2+, H2O2 production, and caspase-3 activation were visualized using genetically
encoded fluorescent biosensors (all plasmids were purchased from Addgene, Watertown, MA, USA).
Ca2+ signaling in the ER was monitored by R-CEPIA1er or G-CEPIA1er (plasmids #58216 and #58215,
a gift from Dr. Masamitsu Iino), respectively a red fluorescent and green fluorescent Ca2+ biosensor
targeted to the ER. Green fluorescent CEPIA2mt (plasmid #58218, a gift from Dr. Masamitsu Iino) was
used to selectively monitor mitochondrial Ca2+. H2O2 production was tracked using red fluorescent
HyPerRed (plasmid #48249, a gift from Dr. Vsevolod Belousov). Caspase-3 activation was detected by
a green fluorescent translocation-based biosensor, GANLS-DEVD-BNES (plasmid #50835, a gift from
Dr. Robert Campbell).

Fluo-4, MitoSOX Red, G-CEPIA1er, CEPIA2mt, and GANLS-DEVD-BNES were excited by a
488 nm diode laser (Cat. No. COMPACT-150G-488-SM, World Star Tech, Markham, Ontario, Canada).
R-CEPIA1er and HyPerRed were excited by a 565 nm light emitting diode (LED, mounted, Cat. No.
M565L3, Thorlabs, Inc.) filtered by a suitable optical density (OD) 6 excitation filter (Cat. No. 67-019,
Edmund Optics). Green fluorescence emission signals were collected though a 535/30 nm band-pass
filter (Cat. No. ET535/30M, Chroma Technology Corp., Bellows Falls, VT, USA); red fluorescence
emission signals were collected through a 590 nm long-pass filter (Cat. No. E590lpv2, Chroma
Technology Corp.).

Images were acquired at 3–7 frame/s by a sCMOS camera (pco.edge, PCO AG, Kelheim, Germany),
using a water immersion objective (NIKON FLUOR 60×WATER, NA = 1.0, Nikon Corporation, Tokyo,
Japan) coupled to the spinning disk confocal microscope (see Section 2.2 above).

2.4.1. Depletion of ER Ca2+ Store and PS Activation

Depletion of ER Ca2+ store was performed in G-CEPIA1er-expressing cells using Thapsigargin (Tg,
3 µM; Cat. No. T9033, Sigma-Aldrich) dissolved in NES. Tg was administered through a micropipette
attached to a pneumatic Pico Pump (Cat. No. PV820, World Precision Instruments, Sarasota, FL,
USA). Micropipettes were fabricated from glass capillaries (Cat. No. G85150T-4, Harvard Apparatus,
Holliston, MA, USA) using a double-stage vertical puller (Cat. No. PP-830, Narishige Group,
Tokyo, Japan). The kinetics of Ca2+ efflux was monitored by imaging the cells under the spinning
disk microscope until ER Ca2+ concentration ([Ca2+]ER) reached a steady state (see Supplementary
Materials, Figure S5; average time constant τ = 206 ± 58 s, n = 6 cells).

PS-loaded cells (expressing G-CEPIA1er or CEPIA2mt or loaded with MitoSOX Red) were
superfused with Tg-containing NES for 6 minutes and then focally irradiated and imaged as
described above.

2.5. Simultaneous Two-Photon Imaging of ER and Mitochondrial Ca2+ in Cells Co-Expressing R-CEPIA1er
and CEPIA2mt Biosensors

Two-photon excitation of both biosensors was provided by the beam of an optical parametric
oscillator (MPX Chameleon Compact OPO, Coherent, Inc., Santa Clara, CA, USA) tuned to
1025 nm, coupled to the Bergamo II microscope (Thorlabs, Inc.) and fed by a femtosecond pulsed
Titanium-sapphire pump laser (Chameleon Ultra II Laser, Coherent, Inc.). The microscope was
equipped with a water immersion objective designed for multiphoton imaging (XLPLN25XWMP2,
25×, NA 1.05, Olympus Corporation, Tokyo, Japan). Fluorescence emission signals were selected by
band-pass filters (612/69 nm, Cat. No. FF01-612/69-25, Semrock, for R-CEPIA1er; 525/40 nm, Cat. No.
FF02-525/40-25, Semrock, for CEPIA2mt) and detected by cooled GaAsP photomultiplier modules (Cat.
No. H7422-40, Hamamatsu Photonics K.K., Shizuoka, Japan). Images were acquired simultaneously in
these two emission channels at 3 frames/s (Hz).
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2.6. Data Analysis and Statistics

Image processing and data analysis were carried out using Matlab (R2019a, The MathWorks, Inc.,
Natick, MA, USA) and the open-source software ImageJ/Fiji (ImageJ-win64). Fluorescence signals
were extracted from sequences of recorded frames as the average pixel values within selected regions
of interest (ROIs) after uniform background subtraction. Image background was computed as the
average pixel value within a square ROI, placed in a region of the image where there were no detectable
fluorophores. Fluorescence traces were computed as relative changes of the instantaneous fluorescence
emission intensity (F(t)) with respect to the average prestimulus value (F0), that is as:

dF/F0 = [F(t) − F0]/F0. (1)

For the irreversible indicator MitoSOX Red, the change in mitochondrial O2
−· concentration was

evaluated as the time derivative of the acquired dF/F0 fluorescence trace using the Matlab function diff.
Photobleaching correction was performed by fitting a single exponential function to the prestimulus
time course (baseline) of each trace, and extrapolating the fitting function to the overall acquisition time
interval. In the graphs, mean fluorescence traces are shown as point-by-point mean ± standard error of
the mean (s.e.m.) for the indicated number of independent experiments. In histograms, mean values
are quoted ± s.e.m.

In order to construct the optimal experimental design and estimate the sample size of the groups
for each type of experiment, we set a probability α = 5% for the type I error in the ANOVA test. Then,
fixing β = 4α = 20% so as to obtain a test power of 1 − β = 80%, we computed the number n of each of
the two samples to be compared using the formula:

n = 2[(zα/2 + zβ)·σ/∆]2, (2)

with zα/2 = 1.96 and zβ = 1.28. We quantified the variability of the data (variance, σ2) and established
the minimum difference ∆ = µ1 − µ2 between averages that had a biological significance. Statistical
comparisons of means were made by ANOVA (independent samples) or by paired sample t-test
(dependent samples), where p-value (P) < 0.05 indicates statistical significance. Asterisks were used to
indicate significant differences as follows: *, P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001.

3. Results

3.1. Focal PS Activation Induces Apoptosis in Bystander Cells

To investigate the effects of PS activation, we exposed B16-F10 cell cultures to focal irradiation
under SS conditions (see Materials and Methods, Section 2.2). At the end of photostimulation, we used
a live/dead colorimetric assay to test the effectiveness of the photoactivation protocol. We detected
impairment of plasma membrane integrity within 15 min both in the directly exposed cell and in
the surrounding nonirradiated (i.e., bystander) cells (see Supplementary Materials, Figure S2). Next,
we performed time-lapse confocal fluorescence microscopy to investigate the occurrence of apoptotic
processes using the pSIVA-IANBD polarity sensitive probe, which binds to phosphatidylserine exposed
on the surface of apoptotic cells, and propidium iodide (PI), which selectively stains the nuclei of
damaged cells. As shown in Figure 1, the irradiated cell and surrounding bystander cells showed
detectable pSIVA green fluorescence signals ~30 min after PS excitation was terminated. After one hour,
PI nuclear staining was detectable in five orders of bystander cells (i.e., within an area of radius ~80 µm
from the irradiated cell). Dead or late apoptotic cells were revealed in the whole field of view (radius
~100 µm) within two hours of photostimulation. In a separate set of experiments, we used B16-F10
cell cultures expressing GANLS-DEVD-BNES (see Materials and Methods, Section 2.1), a genetically
encoded fluorescent biosensor that decreases its fluorescence emission upon activation of caspase-3 [26].
As shown in Supplementary Materials, Figure S3, the fluorescence emission of GANLS-DEVD-BNES
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decreased by 44 ± 1% in bystander cells of the 1st order, by 32 ± 1% in the 2nd order, by 30 ± 1% in the
3rd order, and 28 ± 1% in the 4th order.

Together, these results indicate that PS activation in a single B16-F10 cell triggered pro-apoptotic
stimuli that were transmitted to bystander nonexposed cells, in accord with prior work in different
tumor cell lines [16].
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Figure 1. Apoptosis induction in a PS-loaded B16-F10 cell culture exposed to single-cell irradiation.
(a) The irradiated cell is marked with the yellow asterisk. Time t = 0 corresponds to the end of the
photoactivation protocol (SS conditions, see Materials and Methods, Section 2.2). Green fluorescence
emission indicates pSIVA-IANBD (pSIVA) probe activation in apoptotic cells; red fluorescence emission
indicates propidium iodide (PI), which labels damaged or late apoptotic cells. (b) Control experiment
performed in a cell culture exposed to single-cell irradiation in the absence of PS. PS: photosensitizer.
SS: standard stimulation.

3.2. Focal PS Activation Triggers an Intercellular Cytosolic Ca2+ Wave that Spreads Radially across Bystander
Cells Both in the Presence and in the Absence of Extracellular Ca2+

In prior work, we showed that changes of cytosolic Ca2+ concentration ([Ca2+]c) in C26GM and
MCA-203 tumor cells propagate as a wave from the irradiated cell to bystander cells, while NO diffuses
rapidly out of the irradiated cell [16]. Here, we monitored cytosolic Ca2+ signaling with Fluo-4 in
B16-F10 cultures. As shown in Figure 2, cytosolic Ca2+ responses were detected in all cells of the field of
view (i.e., at least up to the 5th order of bystander cells) within one minute of PS photoactivation under
SS conditions. To determine whether these [Ca2+]c elevations were due to Ca2+ influx and/or release
from intercellular Ca2+ stores, we repeated focal PS activation experiments in a Ca2+-free extracellular
medium (see Materials and Methods, Section 2.2). Data analysis showed no statistically different
[Ca2+]c peaks up to the 4th order of bystander cells (Figure 2b), indicating that the increase of [Ca2+]c

was mainly due to the mobilization of Ca2+ from the internal sources.
However, the kinetics of wave propagation was significantly different in the two experimental

conditions. Namely, in 2 mM extracellular Ca2+ concentration ([Ca2+]e), the propagation speed was
larger (5.4 ± 0.8 µm/s, n = 6 independent experiments) within cells of the 3rd order (i.e., ~50 µm from
the irradiated cell) and lower in bystander cells of higher orders (2.8 ± 0.4 µm/s, n = 6 independent
experiments, P = 0.006). In 0 mM [Ca2+]e, the difference between the wave speeds in 3rd and 5th
order cells approached statistical significance (3.8 ± 0.7 µm/s and 2.1 ± 0.2 µm/s, n = 6 independent
experiments, P = 0.06). To a first approximation, the kinetics of wave propagation were fitted to a
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logarithmic function for the 2 mM condition and to a linear function for the 0 mM condition (Figure 2c).
Moreover, in cells of the 5th order, the peak amplitude of the Fluo-4 signal, the area subtended by the
signal, and the slope of the rising phase of the signal were all significantly larger in 0 mM [Ca2+]e than
in 2 mM [Ca2+]e (Figure 2b; see also Supplementary Materials Figure S4).

In summary, the amplitude of cytosolic Ca2+ signals in 2 mM [Ca2+]e decreased with distance
from the source, whereas in 0 mM [Ca2+]e we observed an opposite trend. This paradoxical effect
supports the notion that intracellular Ca2+ stores play a critical role in the bystander signals triggered
by PS activation.
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Figure 2. Kinetics of cytosolic Ca2+ response to focal PS activation in the presence or in the absence of
extracellular Ca2+. Each single-cell Fluo-4 fluorescence trace was computed as pixel signal average
within a ROI contouring the whole cell area (SS conditions, see Materials and Methods, Section 2.2).
(a) Mean dF/F0 fluorescence traces (solid lines) ± s.e.m. (dashed lines) were computed as average of
n = 6 independent experiments for 2 mM [Ca2+]e (blue traces) or 0 mM [Ca2+]e (green traces) conditions.
At the bottom of each graph, point-by-point p-values between the curves are shown in log scale. Vertical
dashed lines mark the onset of laser exposure. (b) The histogram shows mean peak amplitude of Ca2+

signals as a function of cell order in 2 mM [Ca2+]e (blue bars) or 0 mM [Ca2+]e (green bars) condition
(irradiated cell = 0 order, ** P = 0.006). (c) Average distance of the given bystander cell order from the
irradiated cell vs. average time-to-half-peak. The latter was set to zero (on the x-axis) in the irradiated
cell. Interpolating curves were obtained by logarithmic (2 mM [Ca2+]e, blue) or linear (0 mM [Ca2+]e,
green) least-square curve fitting. ROI: regions of interest. s.e.m.: standard error of the mean.
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3.3. PS Activation Triggers Ca2+ Release from the ER

To determine whether the ER is the main source of the observed cytosolic Ca2+ rise upon PS
activation, we used B16-F10 cells expressing R-CEPIA1er, a red-fluorescent Ca2+ biosensor targeted to
the ER [27]. Imaging of PS-loaded cells revealed a rapid drop of the [Ca2+]ER following photostimulation
under HI conditions (Figure 3a). This characteristic drop was never observed in cells not loaded with
the PS, indicating that the effect was not due to photodamage of either the cell or the R-CEPIA1er
biosensor by the laser used to activate the PS (Figure 3b, black traces). R-CEPIA1er signals from
different subcellular ROIs were superimposable (Figure 3a), indicating homogeneity of Ca2+ release
from the ER in these conditions. We tested also different irradiation levels and determined that HI
conditions compromised irreversibly the refilling capability of the ER (Figure 3b). Partial replenishment
of ER Ca2+ content occurred under MI conditions. LI conditions still induced Ca2+ release from the
ER, albeit at significantly diminished rates. ER Ca2+ release rates under HI and MI conditions were
not significantly different, whereas the rate measured under LI conditions was about 10 times lower
(Figure 3c).
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Figure 3. PS activation triggers Ca2+ release from the endoplasmic reticulum (ER). [Ca2+]ER was
visualized in B16-F10 cells expressing R-CEPIA1er, a Ca2+ biosensor targeted to the ER. (a) Imaging
of a PS-loaded cell exposed to photostimulation at high irradiance (HI, see below and Materials and
Methods, Section 2.2). Top: frames acquired at different time points from the onset of laser irradiation.
Bottom: dF/F0 fluorescence traces were obtained as average pixel signals within the ROIs drawn above.
The experiment shown is representative of n = 9 independent experiments. (b) Mean Ca2+ release
from the ER at different irradiances: high (HI, ~7·106 mW/cm2), medium (MI, ~4·106 mW/cm2) or low
(LI, ~7·103 mW/cm2). Single-cell fluorescence traces were computed as pixel signal average within
ROIs contouring the whole cell area. Shown are average dF/F0 fluorescence traces (solid lines) ± s.e.m.
(dashed lines) from at least n = 7 cells for each experimental condition. The black trace represents
the signal obtained in the absence of PS under HI conditions. Vertical dashed lines mark the onset of
photostimulation. (c) The histogram shows release rates computed as slope of the linear descending
phase of signals under the indicated laser irradiance conditions (*** P < 10−5).

3.4. Mitochondria Attempt to Buffer the Ca2+ Released from the ER Following PS Activation

Release of Ca2+ ions from the ER is expected to activate mechanisms that buffer Ca2+ to avoid
overloading the cytoplasm [28]. Figure 4 shows that LI photostimulation was sufficient to induce a
coordinated mitochondrial Ca2+ uptake which paralleled Ca2+ release from the ER within the first
20 s of laser exposure. For these experiments, we used CEPIA2mt, a green fluorescent mitochondrial
Ca2+ biosensor [27], in combination with multicolor multiphoton imaging of PS-loaded B16-F10 cells
co-expressing R-CEPIA1er and CEPIA2mt (see Materials and Methods, Section 2.5). Note that, after an
initial increase of Ca2+ concentration in the mitochondrial matrix, mitochondria started to leak out
Ca2+ ions, as shown by the dimming of the CEPIA2mt signal (which was not due to photobleaching;
see also Supplementary Materials, Video V1).
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Next, we monitored mitochondrial Ca2+ to determine whether or not uptake occurred in bystander
cells under SS conditions. As shown in Figure 5, the mean mitochondrial Ca2+ concentration ([Ca2+]m)
increased in each order of bystander cells within the field of view and was progressively delayed with
increasing distance from the site of photostimulation (see also Supplementary Materials, Video V2).
In the irradiated cell, [Ca2+]m rose to a peak within ~6 s from the onset of laser irradiation, decreased
toward the baseline level in ~11 s, and thereafter kept following below this level. In cells of the 1st
order, [Ca2+]m fell towards the prestimulus level by the end of observation time window (80 s). At this
time point, [Ca2+]m was still elevated in cells of higher orders (Figure 5).Cells 2019, 8, x FOR PEER REVIEW 10 of 19 
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Figure 4. Simultaneous two-color confocal multiphoton imaging of PS activation-induced Ca2+ transfer
from the ER to mitochondria (MT). PS-loaded B16-F10 cells co-expressing R-CEPIA1er (a red fluorescent
Ca2+ biosensor, here shown in purple color, targeted to the ER) and CEPIA2mt (a green fluorescent
Ca2+ biosensor targeted to mitochondria) were exposed to low-irradiance (LI, ~7·103 mW/cm2)
photostimulation (see Materials and Methods, Section 2.2). Shown results are representative of n = 5
independent experiments. (a) Dual-color images of ER (magenta) and mitochondrial (green) Ca2+

signals, at different time points from the onset of photostimulation (t = 0). At each time point, the detail
within the blue square in panel (a) is shown magnified in (b).
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Figure 5. Focal irradiation of PS-loaded cells triggers an intercellular mitochondrial Ca2+ wave.
PS-loaded B16-F10 cell cultures expressing CEPIA2mt (a green fluorescent Ca2+ biosensor targeted
to mitochondria) were exposed to SS conditions (see Materials and Methods, Section 2.2). The graph
on the left displays mean dF/F0 fluorescence traces (solid lines) ± s.e.m. (dashed lined) computed as
average of n = 4 independent experiments for each bystander cell order. Single-cell traces were obtained
as average pixel signals within ROIs contouring the whole cell area, as shown in the fluorescence image
on the right. The black trace is a representative result obtained in the absence of PS. The vertical dashed
line marks the onset of laser irradiation.

3.5. Mitochondrial Ca2+ Uptake and O2
−
· Production Depend on Ca2+ Release from the ER

The results reported above suggested a dependence of mitochondrial Ca2+ uptake on Ca2+ release
from the ER. In order to test this hypothesis, we performed PS activation under SS conditions in
cells that had been previously treated with Thapsigargin (Tg), a specific and irreversible inhibitor of
sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pumps (see Materials and Methods, Section 2.4.1,
and Supplementary Materials, Figure S5). Ca2+ release from the ER was significantly reduced after the
exposure to Tg compared with control conditions (Figure 6a). Importantly, mitochondrial Ca2+ uptake
was suppressed and fluorescence emission from the mitochondrial Ca2+ biosensor decreased below
the prestimulus level ~5 s (n = 3 cells) after the onset of photostimulation.

Cytotoxic effects due to PS excitation are mainly attributed to downstream ROS cascades [9].
To characterize the dynamics of ROS production under SS conditions, we loaded B16-F10 cells with
MitoSOX Red, a fluorescent indicator selective for mitochondrial O2

−·. The response of MitoSOX Red
was extremely rapid in the irradiated cell, as expected, since O2

−· is a product of primary (type I)
photochemical reactions triggered by PS activation [29]. Surprisingly, we detected O2

−· signals also in
bystander cells up to the 4th order within seconds (see Supplementary Materials, Video V3), indicating
that O2

−· production in these cells proceeded by a different pathway, independent of direct PS activation.
Of note, mitochondrial O2

−· production was considerably inhibited, both in the irradiated cell and
in bystander cells, by pretreatment with Tg, indicating that it depended on Ca2+ release from the ER
(Figure 6b,c).

Together, these results support the notion that mitochondrial Ca2+ uptake spreads cytotoxic effects
triggered by PS activation in the irradiated cell by promoting additional mitochondrial ROS production
in bystander cells. Ca2+ release from the ER is key to this process, and ultimately leads to the spreading
of apoptosis to bystander cells, as shown in Figure 1.
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3.6. Focal PS Activation Promotes H2O2 Production in Bystander Cells 

In cells, spontaneous dismutation or enzymatic reactions convert O2̄̄∙ to H2O2 [30]. To determine 
whether this pathway was activated following PS excitation, we used B16-F10 cells expressing 
HyPerRed, a red fluorescent selective biosensor which can track H2O2 concentration changes [31]. 
Figure 7a shows instantaneous production of H2O2 in the irradiated cell following focal PS activation. 
Similar to mitochondrial Ca2+ biosensors, also HyPerRed fluoresce emission fell below prestimulus 
level after rising to a peak soon after PS activation. Within few seconds, H2O2 production proceeded 
with peculiar bimodal kinetics also in bystander cells from the 1st to the 4th order (Figure 7b). 

Figure 6. The extent of mitochondrial Ca2+ uptake and O2
−
·production following PS activation depends

on Ca2+ release from the ER. (a) Fluorescence signals from photostimulated B16-F10 cells expressing
G-CEPIA1er, a Ca2+ biosensor targeted to the ER (ER Ca2+), CEPIA2mt, a Ca2+ biosensor targeted to
mitochondria (MT Ca2+), or loaded with MitoSOX Red, an irreversible selective mitochondrial O2

−
·

indicator (MT O2
−
·), obtained in the absence (blue traces) or in the presence (red traces) of Thapsigargin

(Tg, 3 µM) under SS conditions (see Materials and Methods, Section 2.2). Single-cell fluorescence traces
were computed as average pixel signals within ROIs contouring the whole cell area. For ER Ca2+ and
MT Ca2+, shown are average dF/F0 fluorescence traces (solid lines) ± s.e.m. (dashed lines), computed
for at least n = 3 independent experiments for each condition. For MT O2

−
·, shown are average time

derivatives of dF/F0 MitoSOX Red signals (solid lines) ± s.e.m. (dashed lines) (see Materials and
Methods, Section 2.6), computed for n = 6 independent experiments for each condition. Vertical dashed
lines mark the onset of laser irradiation. (b) Mitochondrial O2

−
· production in the irradiated and

bystander cells in the absence (left) or in the presence (right) of Tg. (c) The histogram shows mean
values of the area subtended by the curves in (b) in the absence or in the presence of Tg for each order
of bystander cells (* P < 0.05, ** P < 0.01, *** P < 0.001).

3.6. Focal PS Activation Promotes H2O2 Production in Bystander Cells

In cells, spontaneous dismutation or enzymatic reactions convert O2
−· to H2O2 [30]. To determine

whether this pathway was activated following PS excitation, we used B16-F10 cells expressing
HyPerRed, a red fluorescent selective biosensor which can track H2O2 concentration changes [31].
Figure 7a shows instantaneous production of H2O2 in the irradiated cell following focal PS activation.
Similar to mitochondrial Ca2+ biosensors, also HyPerRed fluoresce emission fell below prestimulus
level after rising to a peak soon after PS activation. Within few seconds, H2O2 production proceeded
with peculiar bimodal kinetics also in bystander cells from the 1st to the 4th order (Figure 7b).
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HyPerRed fluorescence change in the irradiated cell; shown are mean (solid trace) ± s.e.m. (dashed 
traces) for n = 6 experiments. (b) HyPerRed fluorescence change in bystander cells: the experiment 
shown is representative of n = 3 independent experiments conducted under SS conditions (which all 
gave similar results). Single-cell dF/F0 fluorescence traces were computed as average pixel signals 
within ROIs contouring the whole cell area. Black traces in (a) and in (b) are representative signals 
obtained in the absence of PS. Vertical dashed lines mark the onset of laser irradiation. 
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It is well known that different mechanisms contribute to the spatiotemporal shaping of cytosolic 
Ca2+ signals [28,36]. Among them, store-operated Ca2+ entry (SOCE) is the major route of Ca2+ influx 
in nonexcitable cells [36,37]. When the ER Ca2+ store is depleted, extracellular Ca2+ ions enter the cell 
through plasma membrane (PM) channels at ER–PM contacts and are rapidly redistributed to the 
whole ER lumen [38]. It has been reported that in the presence of a prolonged Ca2+-mobilizing 
stimulus, external Ca2+ influx by SOCE serves as “driving force” for continuous Ca2+ release in the 
cytoplasm [39]. This process might play a role in cellular response to photodynamic insult. In fact, 
ER could function as a bypass route for Ca2+ from extracellular space to cytosol. If this was the case, 
the extracellular space would provide an additional Ca2+ source that would allow the cell to partially 
save the ER Ca2+ store. On the contrary, in 0 mM [Ca2+]e ER stress would be stronger, resulting in 
delayed reactions towards recovery of Ca2+ homeostasis, larger cytosolic Ca2+ signals, and possibly 
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cellular sensitivity to apoptosis depending on the amount of Ca2+ released following a Ca2+-mobilizing 

Figure 7. H2O2 production following focal PS activation in B16-F10 cells expressing HyPerRed.
(a) HyPerRed fluorescence change in the irradiated cell; shown are mean (solid trace) ± s.e.m. (dashed
traces) for n = 6 experiments. (b) HyPerRed fluorescence change in bystander cells: the experiment
shown is representative of n = 3 independent experiments conducted under SS conditions (which all
gave similar results). Single-cell dF/F0 fluorescence traces were computed as average pixel signals
within ROIs contouring the whole cell area. Black traces in (a) and in (b) are representative signals
obtained in the absence of PS. Vertical dashed lines mark the onset of laser irradiation.

4. Discussion

In the present study, we explored selected signaling pathways triggered by focal PS activation
and the propagation of signals related to these pathways to surrounding nonexposed (bystander) cells.
Our results can be summarized as follows: (i) focal excitation of the PS (Aluminum Phthalocyanine
Chloride) promoted apoptosis in both irradiated and bystander cells; (ii) the cytosolic Ca2+ rise
triggered by photoactivation of the PS was mainly due to Ca2+ release from intercellular Ca2+ stores
both in the irradiated cell and in the bystander cells up to a distance of ~80 µm; (iii) Ca2+ ions
released by the ER following PS activation were partially transferred to the mitochondrial matrix; (iv)
pre-emptying of ER Ca2+ store by the irreversible SERCA pump inhibitor Thapsigargin prevented
both photoactivation-induced Ca2+ uptake and O2

−· production in mitochondria; (v) H2O2 levels rose
with a bimodal kinetics in bystander cells within seconds of PS excitation.

4.1. PS Activation-Induced Ca2+ Signaling in the ER

The excitation of photosensitized cells causes the rise of [Ca2+]c in a plethora of cellular
systems [16,32–35]. Surprisingly, in our system, peak amplitudes of cytosolic Ca2+ signals were
systematically, albeit not significantly, higher in 0 mM [Ca2+]e compared with 2 mM [Ca2+]e in all
cells. In addition, the peak amplitude, the area subtended by the signal, and the slope of the linear
rising signal in furthest bystander cells were all significantly larger in 0 mM [Ca2+]e than in 2 mM
[Ca2+]e., indicating that the propagation of the cytosolic Ca2+ wave was strengthened in the absence of
extracellular Ca2+.

It is well known that different mechanisms contribute to the spatiotemporal shaping of cytosolic
Ca2+ signals [28,36]. Among them, store-operated Ca2+ entry (SOCE) is the major route of Ca2+ influx
in nonexcitable cells [36,37]. When the ER Ca2+ store is depleted, extracellular Ca2+ ions enter the
cell through plasma membrane (PM) channels at ER–PM contacts and are rapidly redistributed to
the whole ER lumen [38]. It has been reported that in the presence of a prolonged Ca2+-mobilizing
stimulus, external Ca2+ influx by SOCE serves as “driving force” for continuous Ca2+ release in the
cytoplasm [39]. This process might play a role in cellular response to photodynamic insult. In fact,
ER could function as a bypass route for Ca2+ from extracellular space to cytosol. If this was the case,
the extracellular space would provide an additional Ca2+ source that would allow the cell to partially
save the ER Ca2+ store. On the contrary, in 0 mM [Ca2+]e ER stress would be stronger, resulting in
delayed reactions towards recovery of Ca2+ homeostasis, larger cytosolic Ca2+ signals, and possibly
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enhanced cellular damage. Several studies support the idea that Ca2+ concentration in the ER controls
cellular sensitivity to apoptosis depending on the amount of Ca2+ released following a Ca2+-mobilizing
stimulus [40,41], including PS activation [35,42]. Hence, it would be interesting to investigate the
amount of Ca2+ released, as well as the extension of Ca2+ wave propagation, in 0 mM [Ca2+]e and
whether inhibition of external Ca2+ influx could enhance cytotoxic stimuli transmission.

Our findings also revealed that Ca2+ release from the ER following PS activation was nonlinearly
dependent on the irradiance. In fact, the lowest irradiance we tested (~7·103 mW/cm2) was
comparatively more efficient at depleting ER Ca2+ store than the medium irradiance, which was 3
orders of magnitude higher (~4·106 mW/cm2), albeit in the first case ER emptying proceeded far more
slowly. The simplest explanation is that efficiency of photochemical reactions triggered by PS excitation
depends on O2 availability, which limits the rate of 1O2 and O2

−· production, and, ultimately, sets an
upper boundary for photodynamic cell-killing efficiency [9,43].

Together, our data suggest a central role for intracellular Ca2+ stores in the bystander signals
triggered by PS activation. Recent work in intact cells by Joseph and colleagues demonstrated that
“sensitization of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release is associated with
oxidative stress” [44]. In particular, both O2

−· and its breakdown product H2O2 directly activate
IP3Rs [45,46]. Therefore, we speculate that ROS produced in primary and secondary photochemical
reactions [29] triggered interorganellar Ca2+ signaling by direct activation of IP3Rs in the ER membrane.
Of note, ER-refilling mechanisms were inhibited at the highest irradiance we used (~7·106 mW/cm2),
which is consistent with the notion that ROS inhibits SERCA pumping activity [47,48].

4.2. PS Activation-Induced Ca2+ Signaling in Mitochondria

Besides ER and extracellular space, mitochondria are known to shape the spatiotemporal
profile of cytoplasmic Ca2+ signals, acting as Ca2+ sinks [28,49]. In our experiments, a fluorescent
biosensor targeted to the inner mitochondrial matrix (IMM) signaled Ca2+ uptake, implying a role
for ER–mitochondria tethering in photoactivation-dependent Ca2+ signaling. At ER–mitochondria
contacts, physical membranous structures named mitochondrial-associated membranes (MAMs) form
bridges which allow dynamic interactions between the two organelles [36]. During IP3R-mediated
Ca2+ release from the ER, Ca2+ concentration at MAMs can locally reach even one order of magnitude
higher values (~10 µM) than average [Ca2+]c, overcoming the opening threshold of the mitochondrial
Ca2+ uniporter (MCU), the main Ca2+-selective channel responsible for fast Ca2+ accumulation in the
IMM [36,50]. We have demonstrated here that mitochondrial Ca2+ uptake is involved in bystander
Ca2+ signaling, generating an intercellular mitochondrial Ca2+ wave. That is, the increase in [Ca2+]m

progressively propagated to nonexposed bystander cells up to a distance of ~80 µm within 30 s of PS
activation. The [Ca2+]m increase lasted more than 60 s in bystander cells. In contrast, it rose to a peak
and subsequently displayed a descending phase decreasing below prestimulus levels in the irradiated
cell. Both Ca2+ overload and ROS elevation in mitochondria promote the opening of mitochondria
permeability transition pores (mPTPs) [51,52]. The mPTP is a high-conductance nonselective channel
in the IMM, the persistent opening of which induces IMM depolarization, cessation of oxidative
phosphorylation, ROS production, Ca2+ efflux, and finally matrix swelling and outer mitochondrial
membrane rupture, with consequent release of cytochrome c and other pro-apoptotic factors [52–54].
In prior work, we found that activation of the same PS used in the present studies causes cytochrome c
release in bystander cells [16]. The mitochondrial permeability transition (PT) promotes apoptosis or
necrosis, depending on the severity of the insult it mediates [53]. Our findings showed that apoptotic
processes were activated in the irradiated and bystander cells. Hence, we hypothesize that PS excitation
involved the mitochondrial PT and triggered the intrinsic or “mitochondrial” apoptotic pathway,
which involves cytochrome c release from mitochondria and activation of caspase-9/-3 [55]. Further
experiments tracking the kinetics of caspases activation in bystander cells are required to clarify the
connection between interorganellar Ca2+ signaling and bystander cell killing.



Cells 2019, 8, 1175 14 of 18

4.3. Ca2+ Signaling and ROS Interplay in PS Activation-Induced Bystander Responses

Ca2+ and ROS signaling pathways are tightly interconnected in a mutual interplay: Ca2+

increase in the mitochondrial matrix drives ROS formation as a product of upregulated oxidative
metabolism [30,48] and, in turn, ROS modulate Ca2+ signaling through interactions with PM Ca2+

channels, activation of intercellular Ca2+ release channels and inhibition of Ca2+ ATPases [48,56,57].
Moreover, they are both involved in cellular responses to PS excitation in cells and are key regulators
of cell death processes. Nonetheless, the signaling scheme leading to the activation of cell death
pathways following photostimulation remains unclear, especially the propagation of cytotoxic stimuli
in bystander effects [21,58]. Several studies proposed ROS as mediators of bystander responses [19,23].
Here, we showed that an intercellular wave of mitochondrial O2

−·production spread from the irradiated
cell towards nearby bystander cells within seconds of PS excitation. Importantly, we determined that
Ca2+ efflux from the ER was required for mitochondrial Ca2+ overload and O2

−· production in both
the irradiated and bystander cells. Therefore, our data indicate that ER–mitochondria Ca2+ transfer
is crucial for the spreading of cytotoxic effects triggered by PS activation by promoting additional
mitochondrial ROS production in bystander cells. It is even more likely to expect exacerbation of
oxidative stress following PS activation because of the hypoxic condition due to photodynamic O2

consumption. In fact, recently published data reported that MCU is targeted by ROS in hypoxia
conditions, stimulating mitochondrial Ca2+ accumulation [59]. Accordingly, we tracked a bimodal
kinetics in the increase of H2O2 level in bystander cells after PS activation.

5. Conclusions

Collectively, our data support the hypothesis of a central role for ER–mitochondria communication
in the induction of a mitochondrial Ca2+-driven second generation of ROS, which can be crucial for the
induction of apoptotic pathways in bystander cells. In this process, ER stress is key to the modulation
of Ca2+ signaling triggered by PS activation and, therefore, to the propagation of cytotoxic stimuli to
nonexposed bystander cells.
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Abbreviations

AM Acetoxymethyl ester NO Nitric oxide
Ca2+ Calcium O2 Molecular oxygen
[Ca2+]c Cytosolic calcium concentration 1O2 Singlet oxygen
[Ca2+]ER Endoplasmic reticulum calcium concentration O2

−· Superoxide anion
[Ca2+]e Extracellular calcium concentration OD Optical density
[Ca2+]m Mitochondrial calcium concentration ·OH Hydroxyl radical
DAPI 4′,6-diamidino-2-phenylindole P p-value
ER Endoplasmic reticulum PDT Photodynamic therapy
FBS Fetal bovine serum PI Propidium iodide
HI High irradiance PM Plasma membrane
H2O2 Hydrogen peroxide PS Photosensitizer
IMM Inner mitochondrial membrane pSIVA Polarity Sensitive Indicator of Viability

Apoptosis
IP3Rs Inositol 1,4,5-trisphosphate receptors PT Permeability transition
LED Light emitting diode ROIs Regions of interest
LI Low irradiance ROS Reactive oxygen species
MAMs Mitochondria-associated membranes s.e.m. Standard error of the mean
MCU Mitochondrial calcium uniporter SERCA Sarco/endoplasmic reticulum calcium

ATPase
MI Medium irradiance SOCE Store-operated calcium entry
mPTPs Mitochondrial permeability transition pores SS Standard stimulation
MT Mitochondria Tg Thapsigargin
NES Normal extracellular solution TTL Transistor-transistor logic
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