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MOMF Deconvolution Method 13 

1. Model 14 

We directly model the count nature of both scRNA-seq data and bulk RNA-seq data through Poisson 15 

models to jointly deconvolute bulk RNA-seq data. Specifically, we denote the expression count matrix for 16 

scRNA-seq data as 𝑿 and denote the expression count matrix for bulk RNA-seq data as 𝐘. 17 

For bulk RNA-seq data, we consider 18 𝒀  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝝁 , 𝑖 = 1,2, ⋯ , 𝑛 ; 𝑗 = 1,2, ⋯ , 𝑝, (1) 19 

where  𝒀  is the number of reads that measure the gene expression levels for 𝑗’ th gene and 𝑖 ’th 20 

individual; 𝑛  is the number of individuals; 𝝁  is an unknown Poisson rate parameter that represents the 21 

underlying mean gene expression level for the 𝑖’th individual and 𝑗’th gene; and 𝑝 is the number of genes; 22 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(∙) represents the Poisson distribution. 23 

For scRNA-seq data, we consider 24 𝑿  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝝁 , 𝑘 = 1,2, ⋯ , 𝑛 ; 𝑗 = 1,2, ⋯ , 𝑝 , (2) 25 

where 𝑿  is the number of reads that measure the gene expression level for 𝑗’th gene and 𝑘’th cell;  𝑛  is 26 

the number of cells; 𝝁  is an unknown Poisson rate parameter that represents the underlying gene 27 

expression level for the 𝑖’th cell and 𝑗’th gene; and 𝑝 is the number of genes; 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(∙) represents the 28 

Poisson distribution. 29 

In above models, we further decompose the unknown parameters 𝝁  and 𝝁  into two low-dimension 30 

matrices, i.e., 31 𝝁 = 𝜳 𝑾 + 𝑬 , 𝑖 = 1,2, ⋯ , 𝑛 ; 𝑗 = 1,2, ⋯ , 𝑝, (3) 32 

where 𝜳  is the cell type specific proportion for the 𝑖’th individual and 𝑐’th cell type; 𝐶 is the number of 33 

cell types. 34 𝝁 = 𝜦 𝑾 + 𝑬 , 𝑘 = 1,2, ⋯ , 𝑛 ; 𝑗 = 1,2, ⋯ , 𝑝, (4) 35 

where 𝜦  is the low-dimension structure for the 𝑘’th cell and 𝑐’th cell type; 𝐶 is the number of cell type; the 36 

parameter 𝑾  is the element in the factor loading matrix that represents the underlying true cell-type 37 

specific gene expression level; the factor loading matrix 𝑾 is shared between bulk RNA-seq and scRNA-38 

seq data, allowing us to jointly model both data types and bypassing the estimation uncertainty inevitably 39 

occur in previous deconvolution methods; 𝑬  and 𝑬  are the residual terms that account for over-40 

dispersion commonly observed in sequencing studies for bulk RNA-seq data and scRNA-seq data, 41 
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respectively. 42 

2. ADMM algorithm 43 

To utilize the ADMM algorithm, we first construct the objective function: 44 

ℒ = 𝐷(𝒀|𝝁 ) + 𝑻𝒓(𝑼 (𝝁 − 𝜳𝑾) ) + 𝜌2 ‖𝝁 − 𝜳𝑾‖ + 𝑻𝒓(𝑼 (𝜳 − 𝜳 ) ) + 45  𝜌2 ‖𝜳 − 𝜳 ‖ + 𝐷(𝑿|𝝁 ) + 𝑻𝒓(𝑼 (𝝁 − 𝜦𝑾) ) + 𝜌2 ‖𝝁 − 𝜦𝑾‖ + 46                              𝑻𝒓(𝑼 (𝜦 − 𝜦 ) ) + 𝜌2 ‖𝜦 − 𝜦 ‖ + 𝑻𝒓(𝑼 (𝑾 − 𝑯) ) + 𝜌2 ‖𝑾 − 𝑯‖ , (5) 47 

where 𝐷(𝑦|𝑥) = 𝑦𝑙𝑜𝑔 − 𝑦 + 𝑥  is the Kullback-Leibler (KL) divergence;   𝑼 , 𝑼 , 𝑼 , 𝑼  and 𝑼  are 48 

element-wise coefficients; 𝜳  and 𝜦  are the non-negative matrix for 𝜳  and 𝜦 , respectively; 𝜌  is the 49 

penalty parameter; 𝑯 is reference gene expression panel; 𝑾 is underlying true gene expression panel; 𝑻𝒓(∙) 50 

denotes the trace of a matrix. . 51 

2.1 Update 𝛍  and 𝛍  52 

When 𝛽 = 1 and 𝐷(𝑦|𝑥) = 𝑦𝑙𝑜𝑔 − 𝑦 + 𝑥, we update  𝝁  and 𝝁 , respectively.  53 

For bulk RNA-seq data, we consider 54 

𝐷 (𝒀|𝝁 ) = 𝒀𝑙𝑜𝑔 𝒀𝝁 − 𝒀 + 𝝁  55 

𝜕𝐷 (𝒀)𝜕𝝁 = − 𝒀𝝁 + 1 + 𝑼 + 𝜌(𝝁 − 𝜳𝑾) = 0 56 

𝝁 = 𝜌𝜳 𝑾 − 𝑼 − 1 + 𝜌𝜳 𝑾 − 𝑼 − 1 + 4𝜌𝒀2𝜌  (6) 57 

For scRNA-seq data, we consider 58 

𝐷 (𝐗|𝛍 ) = 𝐗log 𝐗𝛍 − 𝐗 + 𝛍  59 

∂𝐷 (𝐗)∂𝛍 = − 𝐗𝛍 + 1 + 𝐔 + 𝜌(𝛍 − 𝚲𝐖) = 0 60 

𝝁 = 𝜌𝜦 𝑾 − 𝑼 − 1 + 𝜌𝜦 𝑾 − 𝑼 − 1 + 4𝜌𝑿2𝜌  (7) 61 
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2.2 Update 𝜳 and 𝜦 62 

Taking the derivative of ℒ with respect to 𝚿  and 𝚲 , we have 63 𝜕ℒ𝜕𝜳 = −𝑼 𝑾 − 𝜌[𝒀 − 𝜳𝑾]𝑾𝑻 + 𝑼 + 𝜌(𝜳 − 𝜳 ) = 0 64 

𝜳 = (𝑾𝑾𝑻 + 𝑰) 𝒀𝑾𝑻 + 𝜳 + 1𝜌 [𝑼 𝑾𝑻 − 𝑼 ]  (8) 65 𝜕ℒ𝜕𝜦 = −𝑼 𝑾 − 𝜌[𝑿 − 𝜳𝑾]𝑾𝑻 + 𝑼 + 𝜌(𝜦 − 𝜦 ) = 0 66 

𝜦 = (𝑾𝑾𝑻 + 𝑰) 𝑿𝑾𝑻 + 𝜦 + 1𝜌 [𝑼 𝑾𝑻 − 𝑼 ]  (9) 67 

2.3 Update 𝑾 68 

Taking the derivative of ℒ with respect to 𝐖, we have 69 𝜕ℒ𝜕𝑾 = −𝜳 𝑼 − 𝜌𝜳 [𝒀 − 𝜳𝑾] − 𝜦𝑻𝑼 − 𝜌𝜦𝑻[𝑿 − 𝜦𝑾] + 𝑼 + 𝜌(𝑾 − 𝑾 ) = 𝟎 70 

𝑾 = [𝜳 𝜳 + 𝜦𝑻𝜦 + 𝑰] 𝜳 𝒀 + 𝜦𝑻𝑿 + 𝑾 + 1𝜌 [𝜳 𝑼 + 𝜦𝑻𝑼 − 𝑼 ]  (10) 71 

2.4 Updating 𝜳  and 𝜦  72 

𝜳 = 𝑚𝑎𝑥 𝜳 + 1𝜌 𝑼 , 𝟎 , 𝜦 = 𝑚𝑎𝑥 𝜦 + 1𝜌 𝑼 , 𝟎  (11) 73 

2.5 Updating 𝑼 , 𝑼  and 𝑼  74 𝑼 ← 𝑼 + 𝜌(𝝁 − 𝜳𝑾), 𝑼 ← 𝑼 + 𝜌(𝝁 − 𝜦𝑾), 𝑼 ← 𝑼 + 𝜌(𝑾 − 𝑯) (12) 75 

  76 
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Supplementary Figure 1. The correlation of cell type proportion estimated by MOMF with two 77 

independent runs on CRC data. The scatter plot shows the robustness of MOMF. The square of correlation 78 

coefficient (𝑅 ) of the cell type proportion matrix is displayed within the scatter plot. 79 

 80 

  81 
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Supplementary Figure 2. An example to show the distortion of normalized gene expression caused by 82 

logarithm transformation. We used the histogram of gene expression for gene ENSG00000180725 from CRC 83 

scRNA-seq data to show the artificial difference from the logarithm transformation. (A) the histogram of 84 

raw counts of gene ENSG00000180725. (B) the histogram of gene expression after CPM normalization. (C) 85 

the histogram of gene expression after log (𝐶𝑃𝑀 + 1) normalization. 86 

 87 
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Supplementary Figure 3. Simulation results with 2 cell types. (A) The scatter plot of ground truth and cell 

type proportion estimated by MOMF; (B) The boxplot to show the difference between ground truth and 

cell type proportion estimated by MOMF (C) The scatter plot of ground truth and cell type proportion 

estimated by MuSiC; (D) The boxplot to show the difference between ground truth and cell type proportion 

estimated by MuSiC (E) The scatter plot of ground truth and cell type proportion estimated by CIBERSORT; 

(F) The boxplot to show the difference between ground truth and cell type proportion estimated by 

CIBERSORT. R: Pearson correlation.  
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Supplementary Figure 4. Simulation results with 5 cell types. (A) The scatter plot of ground truth and cell 

type proportion estimated by MOMF; (B) The boxplot to show the difference between ground truth and 

cell type proportion estimated by MOMF (C) The scatter plot of ground truth and cell type proportion 

estimated by MuSiC; (D) The boxplot to show the difference between ground truth and cell type proportion 

estimated by MuSiC (E) The scatter plot of ground truth and cell type proportion estimated by CIBERSORT; 

(F) The boxplot to show the difference between ground truth and cell type proportion estimated by 

CIBERSORT. R: Pearson correlation.  

 

 

 


