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Abstract: In contrast to non-canonical ligands, canonical Wnts promote the stabilization of 3-catenin,
which is a prerequisite for formation of the TCF4/(3-catenin transcriptional complex and activation of
its target genes. This pathway is initiated by binding of Wnt ligands to the Frizzled/LRP5/6 receptor
complex, and it increases the half-life of 3-catenin by precluding the phosphorylation of 3-catenin by
GSK3 and its binding to the 3TrCP1 ubiquitin ligase. Other intercellular signals are also activated by
Wnt ligands that do not inhibit GSK3 and increase (3-catenin protein but that either facilitate 3-catenin
transcriptional activity or stimulate other transcriptional factors that cooperate with it. In this review,
we describe the layers of complexity of these signals and discuss their crosstalk with 3-catenin in
activation of transcriptional targets.
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1. Introduction: Wnt Signaling Promotes (3-catenin Stabilization

The relevance of the Wnt/(3-catenin pathway (which we also will refer to as the “canonical” Wnt
pathway) has been well established in embryonic development and in diseases such as cancer [1].
In a Wnt “off” state, cytosolic 3-catenin (thus, not associated to E-cadherin and «-catenin in the
adherens junctions) is bound to a destruction complex formed by the scaffolding proteins APC and
Axin2 and the associated protein kinases GSK3 and CK1«x (see Table 1 for a summary of proteins
mentioned in this article) [1,2]. As a consequence, 3-catenin is phosphorylated by GSK3 at Ser33 and
Ser37, associates with TrCP1 E3 ubiquitin ligase and is targeted for degradation by the proteasome.
Canonical Wnt ligands initiate a series of reactions that lead to 3-catenin stabilization, translocation
of B-catenin to the nucleus where it interacts with TCF4 and other transcriptional factors, such as
FOXO3 or LRH-1 [3-5] and transcription of genes bound by these complexes [2]. However, not all
Wnt ligands signal through this pathway. A subset of these so-called non-canonical Wnts stimulates
different molecular cascades that do not increase {3-catenin protein levels; indeed, some of these
pathways promote 3-catenin downregulation [6]. The best known non-canonical pathway is the planar
cell polarity pathway, which promotes the orientation of cells in vertebrate tissues. Both canonical
and non-canonical Wnts use common receptors of the Frizzled (Fz) family but different co-receptors:
LRP5 and LRP6 proteins, for the canonical ligands, and ROR1, ROR2, and RYK, for the non-canonical
ligands. The goal of this review is to describe reactions triggered by canonical Wnts that are related to
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-catenin transcriptional activity but not to -catenin stability, and to compare them with those also

promoted by non-canonical Wnts.

Table 1. Proteins involved in Wnt or Hippo signaling.

Name

Function

14-3-3

Chaperone proteins binding YAP/TAZ after phosphorylation
by LATS1/2 and promoting their nuclear export

«a-catenin

Linking protein between -catenin-E-cadherin complex that
regulates actin filament assembly.

AMER/WTX
(APC Membrane Recruitment Protein 1)
(Wilms Tumor On The X)

Protein acting in Wnt pathway that facilitates the formation of
complex composed by Axin, GSK3 and LRP.

AP2
(Adaptor protein 2)

Adaptor protein which contributes to clathrin-mediated
endocytosis.

APC
(Adematous polyposis coli)

Negative regulator of the Wnt pathway that controls (3-catenin
degradation. Also regulates the Hippo pathway controlling
TAZ degradation.

ARVCF
(Armadillo Repeat Protein Deleted In
Velo-Cardio-Facial Syndrome)

Member of the armadillo protein family related to p120-catenin
and involved in Racl activation

Axin

Member of the (3-catenin and TAZ destruction complex.
Negative regulator of the canonical Wnt pathway.

BCL9

[3-catenin cofactor relevant for the transcription of canonical
Wnt target genes

B-catenin

Protein involved in the regulation of cellular adhesion and
gene transcription. Acts as an intracellular signal transducer in
the Wnt signaling cascade.

BT:CP1
(Beta-Transducin Repeat Containing E3
Ubiquitin Protein Ligase)

Ubiquitin ligase that regulates the Wnt and Hippo pathways
through (3-catenin and TAZ degradation, respectively.

Caveolin

Membrane protein involved in Wnt-dependent
LRP5/6/Dv12/Axin/GSK3 internalization and required for
[-catenin accumulation.

CKlx
(Casein Kinase 1 alpha)

Protein kinase that associates to Axin and participates in the
[-catenin degradation complex phosphorylating this protein
and Axin

CKly
(Casein Kinase 1 gamma)

Protein Kinase that is recruited to the Wnt signalosome and
promotes LRP5/6 phosphorylation

CKle
(Casein Kinase 1 epsilon)

Protein kinase rapidly activated canonical and non-canonical
Wnt ligands and required for DvI2 association to the
receptor complex.

Daple Protein involved in Racl activation by non-canonical Wnt

DDX3 RNA helicase activated by Wnt signaling relevant for
(DEAD-Box Helicase 3 X-Linked) CKle activation

DKK1

(Dickkopf WNT Signaling Pathway
Inhibitor 1)

Extracellular protein inhibitor of the canonical Wnt pathway.

Dvl2
(Dishevelled 2)

Cytosolic adaptor protein involved in canonical and
non-canonical Wnt pathway. Wnt activation recruits Dvl to the
membrane. It participates in assembling the signalosome. It is

also detected in the nucleus bound to p65, FOXK and c-Jun
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Table 1. Cont.

Name Function
o DYR.Kl . Protein tyrosine kinase that enhances p120-catenin stability
(Dual Specificity Tyrosine Phosphorylation . . -
Regulated Kinase 1A) and relieves Kaiso repression

E- and N-cadherin

Transmembrane proteins directly bound to 3-catenin,
p120-catenin and LRP5/6 at the adherens junctions essential for
intercellular interactions

FOXK1/2 Transcriptional factor involved in the nuclear localization
(Forkhead Box K1) of DvI2
FOXO03 Transcriptional factor that upon binding to 3-catenin behaves
(Forkhead Box O3) as a transcriptional activator
Frodo Dvl2-associated protein that also interacts with p120-catenin
Member of the Src family of protein kinases activated by
Fyn canonical and non-canonical Wnts and required for Stat3
phosphorylation and transcriptional action
Fz Family of membrane receptors involved in canonical and
(Frizzled) non-canonical Wnt signaling.
Gaons Family of heterotrimeric G proteins required for Rho activation
(G Protein Subunits Alpha 12 and 13) and the inhibition of Lats1/2 in the Hippo pathway.
Glis2 Transcriptional repressor bound to p120-catenin in the nucleus
GSK3 Serine/threonine protein kinase which phosphorylates

(Glycogen Synthase Kinase 3)

[-catenin targeting it for degradation. Inhibited by
canonical Wnt

IQGAP1

(IQ Motif Containing GTPase Activating Modulator of DvI2 nuclear localization in Wnt signaling.
Protein 1)

JNK2 Protein kinase activated by canonical Wnt that modifies

(c-Jun N-Terminal Kinase 2)

-catenin and c-Jun facilitating gene transcription

Substrate of JNK2 that interacts with Tcf4/p3-catenin to regulate

cJun gene transcription.
Kaiso Transcriptional repressor of canonical Wnt target genes.
Interacts with TCF4, 3-catenin and p120-catenin.
LATS1/2 Protein kinase that phosphorylates YAP1 and TAZ upon

(Large Tumor Suppressor Kinase 1 and 2)

activation of the Hippo pathway promotes their nuclear export.

LRH1
(Liver Receptor Homolog-1)

Nuclear orphan receptor that interacts with $-catenin
independent of TCF4. Is activated by (-catenin; also promotes
activation of -catenin/TCF4 complex.

(LDL Receptor I:Je Il{alzz{f Protein 5 and 6) Membrane co-receptor involved in canonical Wnt signaling
Mst1/2 Protein kinase stimulated by the Hippo pathway that activates
(Mammalian STE20-Like Protein Kinase 1 y ppop y
and 2) Lats1/2.

p120-catenin

Protein of the armadillo family essential for canonical and
non-canonical Wnt signaling. Interacts and stabilizes in the
plasma membrane Cadherin/LRP and Ror2. Also binds and

regulates CKle, Racl and Kaiso

p65
(Rel A proto-oncogene)

Transcription factor member of the NF- B complex. Binds Dv12
in the nucleus.
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Table 1. Cont.

Name

Function

PAK1
(P21 (RAC1) Activated Kinase 1)

Protein kinase stimulated by Racl in canonical and
non-canonical Wnt. Activates JNK2 and promotes (3-catenin
translocation to the nucleus.

PKC-A . . .
(Protein Kinase C-A) Atypical PKC that interacts with DvI2
PRé61¢ Regulatory subunit of the PP2A phosphatase. Required for the

(Protein Phosphatase 2, Regulatory Subunit
B (B56), Epsilon Isoform)

activation of CKle at the initiation of the canonical and
non-canonical Wnt signaling.

Pygo
(Pygopus Family PHD Finger)

Transcriptional factor that binds to Bcl9 enhancing 3-catenin
transcriptional activation

Racl

Small GTPase activated by canonical and non-canonical Wnts.
Activates PAK. Inhibits LATS1/2 up-regulating YAP1/TAZ
transcriptional activity

REST/CoREST
(RE1 Silencing Transcription Factor)

Transcriptional complex modulated by p120-catenin

RhoA

Small GTPases that inhibits LATS1/2 activity in the
Hippo pathway

Rorl,2
(Retinoid-Related Orphan Receptor)

Tyrosine kinase-like orphan transmembrane co-receptor
required for non-canonical Wnt signaling

Transmembrane co-receptor involved in the non-canonical

Ryk Wnt pathway.
Savl Regulator of Mst1 in the Hipo pathway required for LATS1
(Salvador Family WW Domain Containing & pop yred
. phosphorylation and activation
Protein 1)
SIAH2 E3 ubiquitin-protein ligase stimulated by non-canonical Wnt

(Seven In Absentia (Drosophila) Homolog 2)

involved in 3-catenin degradation independent on GSK3

Snaill

Transcription factor activated by canonical and non-canonical
Wnt that induces epithelial to mesenchymal transition.

Src

Non-receptor tyrosine protein kinase that binds to Wnt
co-receptors LRP5/6 and Rorl and is stimulated by canonical
and non-canonical Wnts.

STAT3
(Signal Transducer And Activator Of
Transcription 3)

Transcription factor stimulated by canonical and non-canonical
Wnts through the Fz/Fyn branch that activates genes involved
in EMT and cell invasion.

TAZ

Transcriptional factor repressed by the Hippo pathway.

TBX5
(T-Box 5)

Transcriptional factor that interacts with 3-catenin and YAP1
in the nucleus and promotes transcription of genes related to
colon tumorigenesis

TCF4
(T-cell factor 4)

Transcription factor involved in canonical Wnt signaling which
binds to DNA and recruits 3-catenin.

TEAD
(TEA Domain Transcription Factor)

Transcription factor. Forms a complex with YAP1 and TAZ in
the nucleus and promotes the expression of proliferative genes.

TIAM1
(T Cell Lymphoma Invasion And
Metastasis 1)

Racl Guanosine exchange factor involved in Wnt-dependent
Racl activation.

TMEM59
(Transmembrane Protein 59)

Protein that potentiates the formation of the Wnt signalosome
interacting with Fz and LRP.

TORC1
(mTOR complex 1)

Complex involved in the regulation of protein synthesis.
Wnt-induced GSK3 inhibition activates TORC1 and
protein translation
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Table 1. Cont.

Name Function

GTPase activating protein that modulates Rheb and TORC1
activity; Wnt-induced GSK3 inhibition blocks TSC2
phosphorylation and activates TORCI.

TSC2
(TS complex subunit2)

Racl Guanosine exchange factor (GEF) involved in canonical

Vav2 Wnt-dependent Racl activation.
Wnt Family of extracellular factors that bind to specific membrane
(Wingless-Type MMTYV Integration receptor complexes to activate canonical or non-canonical
Site Family) signaling pathways
YAP Transcriptional factor negatively regulated by the Hippo
(Yes Associated Protein) pathway that promotes its nuclear export. Binds to (3-catenin.
Yes Protein kinase of the Src family. It phosphorylates YAP1

regulating the activity of the YAP1/TBX5/3-catenin complex.

Receptor signaling is initiated by binding of the specific ligand and leads to the formation of
protein aggregates known as signalosomes, which incorporate or release different factors along the
progression of the pathway. Canonical Wnt signaling is initiated by the binding of factors such as
Wnt3a or Wntl to a receptor complex comprising Fz and LRP5/6. As a first reaction, Wnt-induced
assembly of the complex activates CK1e by promoting the interaction of CK1e, which is indirectly
bound to LRP5/6 through E-cadherin/p120-catenin, with the Fz-associated PRé61¢, a subunit of PP2A
phosphatase that controls its activity (Figure 1a) [7,8]. This promotes dephosphorylation of the CK1e
C-terminal tail and activation of this protein kinase (Figure 1b). Wnt also promotes CKle binding to
the RNA helicase DDX3, an interaction that stimulates CK1e activity [9,10]. Curiously, CK1¢ is also
activated by non-canonical Wnt ligands [11,12]; in this case, CK1e associates to the complex through
its direct interaction with the non-canonical Wnt co-receptor ROR2 [13]. The role of DDX3 in the
non-canonical activation of CK1e has not yet been studied.

As a consequence of CKle activation, Dishevelled 2 (Dvl2) is recruited to the receptor complex by
interacting with Fz (Figure 1c) [14,15]. As both canonical and non-canonical Wnts activate CKle, DvI2
is recruited to Fz by both types of ligands. Besides interacting with other factors, Dv12 polymerizes
through its DIX domain [16]. Thus, binding of DvI2 to the receptor/co-receptor complex allows
assembly of the signalosome (Figure 1d). This process is enhanced by proteins such as TMEM59,
which interacts with Fz and LRP5/6 [17]. DvI2 also binds and activates phosphatidylinositol 4-kinase
Il and phosphatidylinositol 4-phosphate 5-kinase 1f3, generating PtdIns(4,5)P; [18]. PtdIns(4,5)P,
favors receptor aggregation through the AP2 clathrin adaptor complex [19] and also promotes
AMER/WTX-mediated association of CK1ly with LRP5/6 [20]. CKlvy is also required for the
non-canonical PCP pathway [21]. This is the diverging point of the two signaling pathways, as CK1y
phosphorylates LRP5/6 in Thr1479, creating a docking site for axin and enhancing the interactions of
axin and the associated protein kinases CK1x and GSK3 with the LRP5/6 complex (Figure 1d) [22,23].
The precise substrates of CK1y in the non-canonical PCP pathway have not yet been characterized.

Axin association with LRP5/6 causes GSK3 inhibition and precludes 3-catenin phosphorylation
at Ser37, 3-catenin binding to BTRCP1 ubiquitin ligase and [3-catenin targeting to the proteasome.
However, the mechanism behind the GSK3 inhibition is still a matter of discussion, and several have
been proposed [24,25]. According to one model, Wnt signaling promotes axin dephosphorylation
by the PP1 phosphatase and reduces axin binding to (3-catenin and GSK3, thereby preventing the
action of this kinase on (3-catenin [26-28]. Another proposal is that axin oscillates between two
states: either an open state that is permissive for 3-catenin binding, or a closed state that prevents
-catenin association and degradation [29]. The switch between these two states would depend on
axin’s interaction with the signalosome (and specifically, with DvI2), which decreases its capability to
polymerize [30], as well as on axin’s phosphorylation state, which is a consequence of the combined
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actions of GSK3, CK1a and PP1 phosphatase. A third mechanism proposes a direct inhibition of
GSK3 by LRP5/6: axin-bound GSK3 catalyzes the LRP5/6 phosphorylation of PPPSPXS motifs (such as
Ser1490) to create an inhibitory site for GSK3 [31-34]. This site would then compete for interactions with
other substrates, such as 3-catenin. Another model suggests that the important step is not inhibition of
-catenin Ser37 phosphorylation by Wnt signaling but rather the Wnt signaling-induced degradation
of phosphorylated-{3-catenin [35]. According to this model, access of BTrCP1 to phosphorylated
(-catenin is hindered upon Wnt stimulation.

A distinct type of mechanism based on the endocytic sequestration of GSK3 has also been
proposed [36]. This model is supported by previous results indicating that caveolin-dependent LRP5/6
internalization is required for 3-catenin accumulation [37-39]. According to this model, the Wnt
signalosome, comprising LRP5/6, Dv12, axin and GSK3, is endocytosed into acidic vesicles, called
multivesicular bodies (MVB) [36]. Therefore, GSK3’s access to its cellular substrates (including (3-catenin)
would be prevented. Internalization of LRP5/6 in MVB requires the release of N or E-cadherin from
the signalosome; notably, inhibition of this internalization affects -catenin stabilization but does
not totally prevent it, leading to speculation that several of the mechanisms mentioned above may
co-exist [40].

If axin-bound GSK3 indeed constitutes a relevant part of the total kinase present in the cell
(which still needs to be verified), GSK3 inhibition would be expected to modulate the half-life of many
of its substrates, and not only 3-catenin. Indeed, Wnt increases the stability of many proteins [36,41].
This process of extensive stabilization of proteins by Wnt has been named Wnt/STOP [42] and is
an example of a Wnt effect that is independent of (3-catenin stabilization. Moreover, as GSK3 is a
pleiotropic protein kinase, its inhibition produces many other effects that are not necessarily due
to degradation of its substrates. For instance, GSK3 phosphorylates TSC2, thereby promoting its
binding to, and inhibition of, the mTOR complex 1 (TORC1); in agreement with this, Wnt-induced
GSK3 inhibition blocks TSC2 phosphorylation and activates TORC1 and protein translation [43].
Although these Wnt effects are independent of 3-catenin, they are due to GSK3 inhibition and will not
be further addressed in this review.

2. STAT3 Transcriptional Activity is Stimulated by Canonical and Non-Canonical Wnts

Even though canonical and non-canonical Wnts have opposite effects on the level of (3-catenin
(by up- or downregulating it, respectively) [6], both canonical and non-canonical Wnt ligands stimulate
migration and invasion in several cellular systems. This apparent conundrum can likely be resolved
by attributing these effects to other signals commonly activated by Wnt factors, such as RAC1/JNK2
kinase (see below). Moreover, similar to non-canonical ligands [44], canonical Wnts such as Wnt3a
rapidly stimulate Fyn activation, STAT3 phosphorylation and the transcription of genes involved in
the epithelial-to-mesenchymal transition and acquisition of invasiveness (Figure 1g) [45]. This effect is
inhibited by DKK1 and mimicked by ectopic expression of LRP5/6, indicating that it happens through
the receptor of canonical Wnts [45]. Mechanistically, Fyn activation is rapid, precedes 3-catenin
accumulation and is dependent on Fyn binding to the Fz-receptor phosphorylated at Tyr552 in its
C-terminal tail [44] (Figure 1g). Src is the Tyr protein kinase responsible for phosphorylation of this
residue, which is present only in three Fz receptors (Fz1, -2 and -5) (Figure 1f) [45]. Consequently,
Src kinase activity is activated both by canonical and non-canonical ligands (Figure 1e) [45-47].
Src co-immunoprecipitates with the co-receptors of both canonical (LRP5/6) and non-canonical (ROR2)
Whts [45,48,49], suggesting that it also participates in both signalosomes, although its interaction
with ROR2 seems to be more direct than with LRP5/6. It is remarkable that activation of this
Src/Fyn/STAT3 pathway by Wnt is independent of CKle activity and DvI2 [45]. This indicates that
extensive polymerization of the receptor complex is not required for Src activation. However, binding
of Wnt ligands promotes dimerization of the receptor complex, as Wnt interacts with Fz with 1:2
stoichiometry [50,51]; this receptor dimerization might promote the intermolecular phosphorylation
and activation of Src protein (Figure le). Accordingly, ectopic overexpression of either LRP6 or ROR2
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promotes Src activation and STAT3 phosphorylation [45]. In any case, we cannot discard that a
Fz-bound factor is also relevant for Src activation.

The interaction between Fz2 and Fyn does not require Dv12 and is incompatible with the association
between Fz2 and Dvl2, further demonstrating that these two interactions (Fz2-Fyn and Fz2-Dvl2)
define two distinct, mutually antagonistic arms of Wnt signaling [45] (Figure 1). Previous results have
suggested that Src tyrosine kinases interfere with canonical Wnt signaling. For instance, Src activation
blocks {3-catenin—dependent transcription caused by LRP5/6 ectopic expression or by Wnt3a [49];
while this might be due to the direct phosphorylation of LRP5/6 by Src, it could also be a consequence
of an enhanced Fz phosphorylation at Tyr552 blocking the Dvl2-dependent molecular cascade.

a Cadh (A,

9/Sd¥1

|
c cadh @f )

- &g

g

Figure 1. Canonical Wnt ligands induce two mutually exclusive DvI2- and Fyn-dependent arms.
(a) In Wnt OFF, LRP5/6 co-receptor interacts through p120-catenin and E-cadherin with inactive CK1e
and Src (both inactive kinases are shown in yellow). (b) Wnt3a promotes that PP2A phosphatase,
associated to Fz2 through the PR61¢ regulatory subunit, moves closer to CK1e, and dephosphorylates
and activates CKle (in orange). (c) CKle increases DvI2 phosphorylation and its binding to Fz2.
(d) DvI2’s association leads to signalosome assembly, axin recruitment, and further responses of this
pathway. (e) LRP5/6 dimerization promotes Src activation and (f) Src-dependent phosphorylation of
Tyr552 in Fz2. (g) Phospho-Tyr552 binds and activates Fyn, promoting the phosphorylation of Stat3.
Fyn also phosphorylates 3-catenin Tyr142, releasing (3-catenin from «-catenin and cadherin and thereby
facilitating its transcriptional activity.

Although Fyn controls the transcription of many canonical Wnt target genes, full activation of
the Wnt3a pathway depends not only on activation of DvI2 but also of Src/Fyn/STAT3-dependent
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branch [45]. This likely is due to an additional action of Fyn: the phosphorylation of Tyr142 in 3-catenin
disruptsits interaction with x-catenin and helps to mobilize 3-catenin [52]. This PTyr142—{3-cateninhasa
stronger affinity for Pygo/BCL9 and contributes to its transcriptional activation [53,54]. This mobilization
of 3-catenin might be relevant for genes whose transcription require a high number of (3-catenin/TCF4
complexes or 3-catenin bound to other cofactors. In contrast, other genes might only need the action
of newly synthetized [3-catenin.

Moreover, through STAT3 phosphorylation, Fyn activates genes containing STAT3-responsive
elements in their promoters. A requirement for STAT3 in the transcription of 3-catenin targets has
been described [55]. However, by mobilizing STAT3, canonical Wnt ligands can activate genes that do
not contain f3-catenin/TCF binding sites in their promoters, such as SNAII [45].

Activation of Fyn and STAT3 phosphorylation requires phosphorylation of Fz at Tyr552, which is
only present in the Fz receptor members Fz1, -2 and -7 [45]. Thus, this pathway is exclusively activated
by Wnt in cells that express these receptors, introducing the concept of Fz receptor selectivity, which not
only refers to its binding to different ligands as previously shown [56], but also to the specific activation
of signaling pathways. In this respect, modulation of other responses of Wnt, such as YAP1/TAZ
activity, is differentially sensitive to the presence of Fz1, -2 or -5 in the receptor complex [57].

3. JNK2 and PAK Dependent Activation of 3-Catenin Nuclear Transport

Besides requiring protein stabilization, transcriptional activity of 3-catenin involves its transport
to the nucleus. This traffic requires the activity of the small GTPase Racl, which is up-regulated
by canonical Wnt ligands [58-60]. When activated and bound to GTP, Racl stimulates PAK protein
kinase, which subsequently phosphorylates and activates JNK2 (Figure 2) [59]. Racl and JNK2 are
also stimulated by non-canonical Wnt ligands [61]. It has been proposed that in canonical Wnt,
JNK2 promotes (3-catenin translocation to the nucleus by phosphorylating Ser191 and Ser605 [59].
Additionally, PAK1 also directly phosphorylates 3-catenin at Ser675, contributing to its stabilization
(Figure 2) [62]. Some have questioned whether phosphorylation of Ser191 and Ser605 in 3-catenin has
an impact on 3-catenin nuclear translocation, suggesting that instead it stimulates (3-catenin presence
in the nucleus by enhancing its interaction with LEF1 as well as potentially with other transcription
factors [63]. Alternatively, or additionally, 3-catenin traffic to the nucleus might be boosted by its
phosphorylation at Tyr654 and Tyr142, two modifications that decrease its affinity for E-cadherin and
a-catenin, respectively [52,64].

Several mechanisms of Racl activation by Wnt have been proposed. One of the first mechanisms
suggested that DvI2 and phosphatidylinositol 3-kinase are required for Racl activity, although no
precise mode of activation was described [59]. Indeed, reports have now shown that Dvl2 interacts
with Racl [58,65] as well as with the Racl guanine nucleotide exchange factor TTAM1 [65]. TIAM1 is
necessary for the activation of Racl by the non-canonical Wnt5a and likely also for the interaction of
Racl with Dv12. Wnt5a enhances the TITAM1-DvI2 interaction; surprisingly, this increased binding is
associated to DvI2 dephosphorylation, a modification opposite to that detected upon Wnt activation [65].
Another Dvl2-associated protein, Daple, is also involved in Racl activation by non-canonical Wnt5a,
in this case by enhancing the interaction of DvI2 with PKCA/t [66].

An alternative mechanism for Racl activation by canonical Wnts depends on Racl’s interaction
with p120-catenin that is discharged from the signalosome [67]. Upon Wnt stimulation, p120-catenin is
phosphorylated by axin-bound CK1«x at Ser268 and Ser269, which disrupts its interaction with cadherin
and releases it to the cytosol [68,69]. Cytosolic p120-catenin binds to Vav2 and Racl and promotes
Racl activation (Figure 2) [67,70,71]. Besides increasing the local concentration of Racl and favoring
Vav2/Racl binding, it is possible that interaction with p120-catenin releases the Vav2 catalytic Dbl
homology domain from the coordinated inhibition by the acidic and calponin homology domains [72],
mimicking the effect of Vav2 phosphorylation in the acidic domain. This mode of Rac1 activation by
p120-catenin might be also shared by other members of the family, such as the ARVCF (armadillo
repeat gene deleted in velo-cardial-facial syndrome) protein, as this closely related protein can rescue
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the effects of p120-catenin depletion in Xenopus laevis development [73]. Moreover, depletion of both
proteins can be compensated by a dominant-active form of Racl [73]. The possible interaction of
TIAM1 with p120-catenin also deserves to be studied.

© P12
oy
= P120 /
av-2 == ac
GDP. — :aDCP

nucleus

p-catenin-dependent promoter

Figure 2. Racl activation by p120-catenin/Vav2. p120-catenin released from the association with
E-cadherin binds to Rac1-GDP and Vav2. The p120-catenin interaction facilitates Racl activation by
increasing the local concentration of this protein in the vicinity of Vav2 as well as by eliminating
the restriction caused on Vav2 activity by the acidic and calponin-homology domains. Racl-GTP
activates the PAK kinase, which upregulates the activity of the Ser/Thr JNK2 kinase. Both PAK
and JNK2 phosphorylate B-catenin, thereby favoring either its translocation to the nucleus and/or
its nuclear retention. Moreover, JNK2 also phosphorylates c-Jun and promotes its nuclear import,
thereby facilitating its interaction with the 3-catenin/Tcf4 complex and the transcriptional activation.

Finally, the Racl/PAK/JNK2 pathway has been implicated in 3-catenin phosphorylation and
trafficking to the nucleus; however, this is not the only activity of this molecular axis in Wnt signaling.
Another substrate of JNK2, c-Jun, interacts with TCF4 and cooperates with -catenin to regulate
gene transcription (Figure 2) [74]. Accordingly, c-Jun is required for a full response to canonical
ligands in cells and zebrafish embryos [75], suggesting that activation of Racl might control gene
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transcription not only by promoting 3-catenin nuclear localization. Curiously, the interaction of c-Jun
with 3-catenin/TCF4 in the nucleus is mediated by Dv12, which is also detected to be associated to gene
promoters [75]. The basis of this nuclear localization of Dv12, and its possible regulation by Wnt, has not
yet been characterized; it has only been reported that it is promoted by Forkhead box transcriptional
factors FOXK1 and FOXK2 and by IQGAP1, all of which are proteins that directly interact with
Dvl12 [76,77]. Besides activating 3-catenin/TCF4/c-Jun dependent transcription, nuclear DvI2 also binds
p65 and represses NF«kB function [78].

4. Canonical Wnts Prevent the Action of the Kaiso Inhibitor

The transcriptional factor kaiso inhibits the expression of many canonical Wnt target genes.
This was initially attributed to its direct interaction with 5'-CTGCNA-3" motifs present in Wnt target
promoters, such as Matrilysin [79-81]. However, other authors have demonstrated that kaiso binds to
these motifs but with low affinity [82], and they have proposed alternative mechanisms of inhibition.
For instance, inhibition of the Wnt pathway by kaiso may be dependent on its association with TCF3/4,
which precludes the binding of this factor to DNA (Figure 3a) [82]. Kaiso also interacts with 3-catenin,
thus preventing its interaction with TCF4 (Figure 3a) [83]. Finally, kaiso also represses the expression
of other genes that are not transcriptionally dependent on f3-catenin, through kaiso’s interaction with
methylated CpG sequences in their promoters [84-86]. Therefore, in non-activated cells, kaiso is
present in the nucleus, where it interacts with TCF4 and precludes its binding to DNA, as well as with
any residual 3-catenin that might have escaped from APC-mediated degradation. Thus, kaiso prevents
[-catenin from associating with TCF4, as well as the binding of TCF4 to DNA.

Upon canonical Wnt stimulation, the kaiso inhibition is eliminated mainly through the action
of p120-catenin that becomes phosphorylated, is released from cadherin and translocates to the
nucleus through the action of nuclear localization sequences present in the Armadillo domain
(Figure 3b) [87,88]. Besides disrupting p120-catenin interaction with E-cadherin, Wnt-induced Ser268
and Ser269 phosphorylation enhances p120-catenin binding to kaiso [83]. The interaction with
p120-catenin precludes the association of kaiso with TCF4 and [3-catenin and permits the formation of
the 3-catenin-TCF4 complex and its binding to DNA (Figure 3c). Remarkably, p120-catenin does not
alter kaiso interaction with methylated DNA sequences [83] probably as consequence of the different
kaiso amino acid sequences involved in binding to DNA and Tcf-4 [82,84]. Therefore, disruption of
TCF4/kaiso complex by p120-catenin, besides enabling TCF4 to activate its transcriptional targets also
facilitates kaiso interaction with promoters containing CpG islands, such as CDKN2A (Figure 3d).
Adding a further level of complexity, kaiso can be converted from a repressor to an activator by
sumoylation [89].

It should also be taken into consideration that, in the nucleus, p120-catenin not only associates with
kaiso but also with other transcription factors, such as Glis2 [90] and REST/CoREST [91]. p120-catenin
binding to REST/coREST prevents this complex from binding its target promoters and thus from
repressing the corresponding genes. Therefore, canonical Wnt signaling might also regulate the
repressive action of REST/coREST.

This nuclear function of p120-catenin, and likely also its action on Racl, is controlled by canonical
Wnt ligands that not only promote its release from cadherin but also enhance the stability of the cytosolic
p120-catenin protein. This effect is dependent on frodo, a Dvl2-associated protein that also interact
with p120-catenin [92]. Wnt controls p120-catenin stability also by inhibiting its phosphorylation in its
N-terminal domain by CK1a and GSK3, in a manner analogous to that of 3-catenin [93] (Figure 3b).
Thus, these two catenins exhibit several similarities: both are present in the cell junctions and,
once released to the cytosol, they need to be stabilized in order to translocate and function in the
nucleus. Moreover, p120-catenin stability is also enhanced by DYRK1-mediated phosphorylation,
further facilitating binding to kaiso and preventing kaiso’s repression of its target genes [94].
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Figure 3. Wnt controls kaiso transcriptional repressor through p120-catenin. In the Wnt “off” state
(a), kaiso represses (3-catenin/TCF4 transcription through its interactions with TCF4, which precludes
its binding to DNA, as well as with -catenin, which inhibits its interaction with TCF4. Upon Wnt
stimulation (b), p120-catenin and f-catenin that are released from the signalosome through their
phosphorylation at Ser268/269 and Tyr142, respectively, are stabilized by the Wnt-induced inhibition
of GSK3; this then prevents p120-catenin and 3-catenin degradation. In the nucleus (c), p120-catenin
binds kaiso and disrupts TCF4/kaiso and [3-catenin/kaiso interactions, allowing the -catenin/TCF4
complex to bind its target promoters (d). Note that kaiso binding to methylated CpG sequences is not
prevented by p120-catenin.

5. Wnt Ligands Modulate YAP/TAZ Transcriptional Activity

The canonical Wnt pathway also presents a high degree of crosstalk with Hippo signaling that
controls gene transcription through the actions of YAP1 and TAZ. When Hippo is not active, YAP1
and TAZ are present in the nucleus and associate with DNA through the TEAD transcription factor,
promoting the expression of proliferative and survival genes (Figure 4a) [95,96]. In the nucleus,
YAP1 also interacts with -catenin when Wnt signaling is “on” and forms a complex with the
TBX5 transcription factor that is essential for expression of genes related to colon tumorigenesis
(Figure 4b) [97]. YAP also controls the transcription of several members of the JAK2/STAT3 pathway
including several cytokines; accordingly, repression of YAP by the Hippo kinases Mst1/2 decreases
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STAT3 phosphorylation [98,99]. The activity of the YAP1/TBX5/(3-catenin complex is controlled through
YAP1 phosphorylation by the tyrosine kinase Yes; this phosphorylation facilitates its localization to the
promoters of its target genes. Moreover, methylation of YAP1 at Lys494 enhances {3-catenin’s binding
and nuclear localization [100].

Activation of the Hippo pathway represses the transcriptional activity of YAP1 and TAZ, promoting
its export from the nucleus. Stimulation of the pathway by growth inhibitory signals activates the
Sav1/Mstl1/2 protein kinase complex, which then promotes the phosphorylation and activation of
another protein kinase, LATS1/2 (Figure 4c). LATS1/2-dependent phosphorylation of YAP and TAZ
causes their nuclear export mediated by their binding to 14-3-3 proteins; in the cytosol, YAP1 and TAZ
are further phosphorylated by GSK3, inducing their binding to TrCP1 and their degradation [96].
LATS1/2 activity on YAP1 and TAZ is inhibited by Racl or RhoA, increasing the transcriptional activity
of the YAP1/TAZ/TEAD complex [57]. This upregulation in YAP1 activity mediated by Racl, and the
above-mentioned stimulation of this GTPase by Wnt, suggest that canonical ligands mightenhance
YAP1-dependent transcription.

Other results also provide evidence for the antagonism between Wnt signaling, which causes
-catenin-dependent transcription, and Hippo activation, which inhibits the YAP1/TAZ/TEAD
complex. For instance, phosphorylated YAP1 interacts with 3-catenin in the cytosol, preventing
its translocation to the nucleus and activation of its target genes (Figure 4c,d) [101]. The member of the
-catenin—destruction complex APC participates in Hippo signaling, acting as a scaffold protein for
Savl and LATS1/2 [102]; consequently, APC mutations activate Wnt signaling bypreventing 3-catenin
degradation and also inhibit Hippo as they preclude YAP1 phosphorylation. Moreover, degradation of
the 3-catenin and YAP/TAZ proteins is also interdependent. The TAZ protein is degraded through
the same destruction complex that acts on 3-catenin; in the absence of Wnt, TAZ is maintained at low
levels by the coordinated action of APC, Axin, GSK3 and phosphorylated (3-catenin, which facilitates
PTrCP1’s interaction with TAZ and proteasomal degradation [103]. Wnt signaling prevents 3-catenin’s
phosphorylation and degradation and also impairs TAZ’s destruction (Figure 4d). Some authors have
proposed that the effect is reciprocal, and that the presence of YAP/TAZ in the complex also enables the
recruitment of BTrCP1 and (-catenin inactivation [104].

YAP1 also interacts physically and functionally with Dvl proteins (Figure 4). Some authors have
proposed that the YAP1-Dvl association restricts Dvl activity by preventing its nuclear translocation [105].
As described above, nuclear DvI2 facilitates -catenin/TCF4 interaction with ¢-Jun, an association
required for the expression of its canonical target genes [75]. Conversely, Yook and others have reported
that Dvl is responsible for the nuclear export of phosphorylated YAP1 (Figure 4c and d); inhibition of
Dvl nuclear export leads to an increase in nuclear YAP as well as in TEAD transcriptional activity [106].
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Figure 4. Antagonism between Wnt and Hippo signaling pathways. (a) In cells with inactive Hippo
signaling (and therefore inactive LATS1/2 protein kinase), Hippo YAP/TAZ is present in the nucleus and
interacts with the TEAD transcriptional factor, thereby inducing transcription of sensitive promoters.
[-catenin is degraded by the proteasome after GSK3 phosphorylation, dependent on 3-catenin binding
to APC/axin complex. Inactive protein kinases are depicted in yellow, and active ones, in orange.
(b) Wnt activation stabilizes 3-catenin and promotes its translocation to the nucleus. Once in the
nucleus, B-catenin associates not only with TCF4 and other transcriptional factors but also to a complex
formed by TBX5 and YAP1/TAZ, thereby promoting the transcription of proliferation-related genes.
(c) When Hippo is induced, active Mst1 kinase bound to the Sav1 scaffolding protein phosphorylates and
activates the protein kinase LATS1/2. This protein kinase then modifies YAP1/TAZ, facilitating its export
from the nucleus through the action of the 14-3-3 chaperone and likely also DvI2. Cytosolic YAP1/TAZ
also interacts with -catenin, precluding its transport to the nucleus. In the cytosol, YAP1/TAZ is
further phosphorylated by GSK3, creating a phosphodegron for the BTrCP1 ubiquitin ligase and
targeting YAP1/TAZ for proteasomal degradation. Interactions with (3-catenin, axin, and APC are also
required for YAP/TAZ phosphorylation by GSK3. (d) Wnt activation precludes 3-catenin and YAP/TAZ
phosphorylation and degradation, but it does not prevent YAP export from the nucleus and does not
(at least not more than minimally) activate TEAD- or TBX5-sensitive promoters.
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YAP and TAZ are also controlled by the non-canonical or alternative Wnt pathway. Acting through
the Fz/ROR complex, Wnt ligands prevented YAP1 phosphorylation through a signaling pathway
involving Gaz/13 and Rho that promote the inhibition of LATS1/2 [57]. Both Ge2/13 and Rho are known
inhibitors of LATS1/2[107,108]; however, their involvement in Wnt signaling remains controversial [109].
Wntba also interferes with Hippo signaling at another level, as it induces transcription of SIAH2, a gene
encoding a ubiquitin ligase that targets LATS2 and prevents YAP1 phosphorylation [110]. Interestingly,
as a consequence of LATS1/2 inhibition and YAP1 activation, non-canonical Wnt5a increases the
synthesis of DKK1 and other inhibitors of canonical 3-catenin-dependent Wnt signaling and thereby
prevents the effects of canonical Wnts [57].

These results also demonstrate a general antagonism between the actions of Wnt ligands triggering
the canonical and non-canonical pathways; for instance, through the stimulation of STAH?2, that besides
LATS1/ also targets b-catenin for degradation [6], non-canonical Wnt5a down-regulates 3-catenin
and represses [3-catenin-dependent transcription [6]. However, the effects of STAH2 expression are
more complex: it also promotes YAP1 transcriptional activity, which cooperates with (3-catenin in the
nucleus [97] and even enhances 3-catenin signaling through the degradation of axin when this protein
is not bound to the destruction complex [111]. It is possible that the action of SIAH2 on the different
substrates is mediated post-translationally. Nonetheless, the cooperation or antagonism between
canonical and non-canonical Wnts likely depends on the different pathways triggered by these factors,
for instance in the extent of activation of common (STAT3 activation) versus specific responses.

6. Concluding Remarks

Although the best studied response to canonical Wnts is 3-catenin stabilization, the signaling
pathways triggered by these factors are not limited to this effect. A full transcriptional response
requires other reactions necessary for a proper [3-catenin translocation to the nucleus (such as the
activation of Racl and JNK?2), for the inactivation of negative cofactors (such as kaiso), and for the
stimulation of additional transcriptional factors that cooperate with the (3-catenin/TCF4 complex (such
as STAT3). Moreover, Wnt signaling impacts the stability of other proteins, such as TAZ, indicating the
pleomorphic effect of this pathway. Finally, these effects of canonical Wnt ligands are in some cases
shared by other Wnts that stimulate the non-canonical pathway: for instance, both types of ligands
stimulate Racl and STAT3. In any case, many different aspects of this transduction cascade remain to
be clarified to better explain the crosstalk with other pathways and to fully characterize the molecular
reactions underlying them.
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