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Abstract: The cellular slime mold Dictyostelium discoideum is an excellent model organism for the 

study of cell and developmental biology because of its simple life cycle and ease of use. Recent 

findings suggest that Dictyostelium and possibly other genera of cellular slime molds, are potential 

sources of novel lead compounds for pharmacological and medical research. In this review, we 

present supporting evidence that cellular slime molds are an untapped source of lead compounds 

by examining the discovery and functions of polyketide differentiation-inducing factor-1, a 

compound that was originally isolated as an inducer of stalk-cell differentiation in D. discoideum 

and, together with its derivatives, is now a promising lead compound for drug discovery in several 

areas. We also review other novel compounds, including secondary metabolites, that have been 

isolated from cellular slime molds. 
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mitochondria; cancer; diabetes; Trypanosoma cruzi 

 

1. Introduction 

Natural products have been used as medicines and for drug development since ancient times 

and natural product chemistry remains important in the fields of drug discovery, structure 

elucidation and chemical synthesis. Among the current sources of lead compounds for drug 

discovery, microorganisms such as the fungi ascomycetes, basidiomycetes and deuteromycetes and 

the bacteria actinomycetes, have provided many useful drugs (e.g., antibiotics) [1–3]. Currently, in 

the field of medicine there are several major issues that need to be addressed, such as the 

development of drugs with improved adverse effect profiles; drugs to treat currently incurable 

diseases; and drugs against refractory bacteria, protozoans and cancer cells [1–4]. Thus, novel 

sources of lead compounds are needed. 

The cellular slime molds are a group of soil microorganisms that belong to the eukaryotic 

kingdom Amoebozoa, which, according to recent taxonomic research, is distinct from the fungus 

kingdom Mycota (Figure 1) [5–7]. For about 80 years, the cellular slime mold Dictyostelium discoideum 

has been used as a model organism for the study of eukaryotic cell functions (e.g., division, 

differentiation, chemotaxis, autophagy and death) [8–19] mainly because of its simple life cycle and 

ease of handling. Recently, D. discoideum has also been used as a model organism for the study of 

human diseases and estimation of drug effects [17,20–24]. (See the other reviews in this special 

issue.) Our group has been examining the use of cellular slime molds as a source of natural 

compounds and we have isolated several novel biologically significant compounds from several 

species of cellular slime molds [25–34]. 
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Figure 1. Proteome-based eukaryotic phylogeny (adapted with permission from Eichinger et al. [6]). 

The phylogenetic tree was constructed from a database of 5279 orthologous protein clusters that 

were drawn from 17 eukaryotic proteomes, including that of Dictyostelium discoideum, which was 

rooted on 159 protein clusters that had representatives from six archaebacterial proteomes: 

Plasmodium falciparum, malaria parasite; Chlamydomonas reinhardtii, green alga; Oryza sativa, rice; Zea 

mays, maize; Fugu rubripes, fish; Anopheles gambiae, mosquito. 

Genome analyses of Dictyostelium cellular slime molds have revealed that D. discoideum has 

approximately 43 polyketide synthase genes [6] and that D. purpureum has 50 predicted polyketide 

synthase genes [35]. These numbers of polyketide synthase genes are greater than those in 

Streptomyces avermitilis, which is a bacterium known to produce many secondary metabolites; here, 

secondary metabolites are organic compounds biosynthesized from primary metabolites by 

taxonomically restricted spectrum of organism and not directly necessary for their growth and 

reproduction. This suggests that Dictyostelium cellular slime molds and possibly other genera of 

cellular slime molds [30,32], also produce an abundance of secondary metabolites that could be used 

as novel lead compounds for drug discovery. 

Among the data on the candidate lead compounds our group has reported to date, we have 

made most progress regarding elucidation of the biological and pharmacological activities of the D. 

discoideum differentiation-inducing factors. 

2. Biological and Pharmacological Activities of DIF-1 and Its Derivatives 

2.1. Functions of DIF-1, DIF-2 and DIF-3 in D. discoideum 

DIF-1 (differentiation-inducing factor 1), DIF-2 and DIF-3 (Figure 2A) are chlorinated 

alkylphenones that were originally isolated from D. discoideum as inducers of stalk-cell 

differentiation [36,37]. Of the three compounds, DIF-1 is the most active so that DIF-1 at nanomolar 

levels dose-dependently induces stalk-cell differentiation in vitro; DIF-2 has only around 40% of the 

specific activity of DIF-1 [37–40] and DIF-3 has only around 4% of the activity of DIF-1 [40,41], 

although DIF-3 is the initial metabolite of DIF-1 in vivo [40,42]. Stalk cell differentiation is a sort of 

programmed cell death [43] and can be categorized as a type of autophagic cell death [11,44]. 

Therefore, DIF-1-induced stalk-cell differentiation is a good model system for the study of 

autophagy, autophagic cell death and programmed cell death [45–47]. 

In addition to having differentiation-inducing activities, DIFs 1 and 2 at nanomolar levels 

function as modulators for Dictyostelium chemotactic cell movement toward cyclic adenosine 

monophosphate (cAMP) [48,49]. Importantly, the mechanisms for the modulation of chemotaxis by 
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DIFs differ, at least in part, from those for the induction of stalk-cell differentiation [48–50]. Since the 

discovery of DIFs 1 and 2, the mechanisms underlying their functions have been examined 

[11,41,44–57] but remain to be fully elucidated; most importantly, their receptors have not been 

determined. 

It is important to note that DIFs 1 and 2 are endogenous polyketide factors in D. discoideum and 

DIF-3 is a metabolite [40,42,58]; they were not identified as drugs against human diseases such as 

antibiotics at first. 

 

Figure 2. (A) Chemical structures of DIFs 1–3 and differanisole A. The order of the stalk-cell 

differentiation-inducing activity in D. discoideum in vitro is DIF-1 > DIF-2 >> DIF-3 [39,40]. (B) 

Chemical structures of 11 representative DIF derivatives. 

2.2. Discovery of the Antitumor Activities of DIFs 

Two years before the discovery of DIF-1, Oka et al. [59] isolated a compound called 

differanisole A (DA) (Figure 2A) from the fungus Chaetomium (RB-001). DA induces growth arrest 

and re-differentiation of mouse erythroleukemia (B8) cells into hemoglobin-producing cells. On the 

basis of the structural similarity of DIF-1 and DA, it has been shown that DA (at high enough 

concentration) has the same effects as DIF-1 in D. discoideum [60], and, conversely, that DIF-1 at 

micromolar levels induces growth arrest and re-differentiation of mouse B8 cells into 

hemoglobin-producing cells in a dose-dependent manner [61]. Since the antitumor activity of DIF-1 

is slightly higher than that of DA (unpublished observation), our group started to develop antitumor 

agents, utilizing DIF-1. 

DIFs 1 and 3—especially DIF-3—have strong anti-proliferative activity and induce or promote 

cell differentiation in various mammalian tumor cell lines in vitro, including human leukemia K562 

cells, human myeloid leukemia HL-60 cells, human gastric cancer cells and human cervical cancer 

HeLa cells [61–66]. In addition, under certain conditions (e.g., at high concentrations), DIFs 1 and 3 

can induce cell death [67–69]. Note that the anti-proliferative and differentiation-inducing effects of 

DIFs are not limited to transformed cells (see Section 2.4.1.) [66,70–72]; however, the 

anti-proliferative effect of DIFs in transformed cells is stronger than that in mouse 3T3-L1 fibroblasts 

(a model non-transformed cell) [71,72]. 
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Our group has investigated the chemical structure–activity relationship of more than 30 

chemically synthesized DIF derivatives (Figure 2B) and has found several DIF-3 derivatives (e.g., 

DIF-3(+1) and Bu-DIF-3) that are potent suppressors of cell growth and are therefore promising 

compounds for the development of anti-cancer drugs (Figure 3) [72–75]. 

 

Figure 3. Effects of DIFs on the growth of K562 human leukemia cells (adapted from Gokan et al. 

[73]). Cells were incubated at 37 °C for 3 days in the presence of 0.15% EtOH (vehicle; Control) or 15 

µM of one of the DIF derivatives and then the relative cell number was assessed. Means and SD 

(bars) of three independent experiments are shown. * p < 0.05 versus Control (by t-test; two-tailed, 

unpaired). DIF-3 and its derivatives but not DIF-1 and its derivatives, showed strong 

anti-proliferative activity in K562 cells. 

The mechanisms underlying the antitumor activities of DIFs 1 and 3 and their derivatives have 

been partially elucidated (Figure 4); for example, it has been reported that (1) they rapidly increase 

intracellular calcium concentration in several tumor cell lines [62–64,68,69]; (2) they directly inhibit 

the activities of calmodulin-dependent cAMP/cGMP phosphodiesterase (PDE1) [76] and 

p21-activated kinase 1 (PAK1) [74]; (3) they function as mitochondrial uncouplers and disrupt 

mitochondrial functions, possibly resulting in the induction of mitophagy and autophagy [69,77]; (4) 

they affect the activities of several crucial enzymes such as phosphatidylinositol 3-kinase (PI3K) and 

Akt kinase (protein kinase B) [78], extracellular signal-regulated kinase (Erk) [65,79] and glycogen 

synthase kinase-3β (GSK-3β) [66,80] in several tumor cell lines; and (5) they suppress the expression 

of cyclins D/E and reduce the phosphorylation of retinoblastoma protein (pRB), resulting in 

cell-cycle arrest at the G1/G0 phase [70,79,81]. 

Recent studies have revealed that the DIFs inhibit cell migration in certain malignant cancer cell 

lines, such as mouse osteosarcoma LM8 cells and mouse (B16BL6) and human (A2058) melanoma 

cells, in vitro and in vivo (in mice) [72,82]. Also, DIF-3 inhibits intestinal tumor growth in vitro and 

in vivo (in mice) [83] and imatinib-resistant K562 leukemia cell growth in xenografted mice [69]. 

These observations suggest that DIFs have therapeutic potential for the treatment of malignant 

metastatic and drug-resistant cancers. 

In the future, our group intends to elucidate the mechanisms underlying the actions of DIFs and 

develop DIF derivatives with more potent activities for use as lead compounds in anti-cancer drug 

discovery. 
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Figure 4. Proposed scheme of the antitumor effects of DIFs. After the addition of one of the DIFs to 

tumor cells, the DIF rapidly (within several minutes) disturbs mitochondrial function [69,77], 

increases reactive oxygen species (ROS) production [69] and intracellular calcium concentration 

([Ca2+]i) [63,64,69,77] and inhibits the activities of p21-activated kinase 1 (PAK1) [74] and 

calmodulin-dependent cAMP/cGMP phosphodiesterase (PDE1) (resulting in an increase in cAMP 

levels) [76]. Over time (from several minutes to hours) the DIF also affects the activities of 

extracellular signal-regulated kinase (Erk), signal transducer and activator of transcription 3 

(STAT3), phosphatidylinositol 3-kinase (PI3K)–Akt, glycogen synthase kinase-3β (GSK-3β) and the 

Wnt/β-catenin pathway, which suppresses the expression of cyclins D/E (and promotes the 

degradation of cyclin D1) and the subsequent reduction of phospho-pRB [65,66,74,77–81]. At 

appropriate concentrations the DIFs have been found to induce growth arrest in all the tumor cell 

lines tested to date in vitro and in vivo and at higher concentrations they have induced 

caspase-independent cell death [67–69]. Also, the DIFs induce differentiation of murine and human 

leukemia (B8 and K562) cells in vitro [61,64] and promote retinoic acid-induced differentiation of 

human leukemia HL-60 cells in vitro [63]. In addition, the DIFs suppress the migration of some 

cancer cells in vitro and in vivo [72,82]. Chemical structure–activity relationship analyses have 

revealed that DIF-3(+1) and Bu-DIF-3 are promising lead compounds for the development of 

anti-cancer drugs [72–74]. 

2.3. Glucose Uptake-Promoting Activity of DIF-1 

As the first step to assessing the potential of using DIF-1 as a lead compound for anti-cancer 

drug development, our group investigated the toxic effects of DIF-1 in vitro by using confluent 

mouse 3T3-L1 fibroblasts and rat gastric mucosal RGM-1 cells, which are model non-transformed 

cell lines [84]. DIF-1 at 5–20 µM dose-dependently promoted glucose uptake without affecting cell 

morphology and cell number in the confluent 3T3-L1 fibroblasts and RGM-1 cells and also in 3T3-L1 

adipocytes [84]. Chemical structure–activity relationship analysis revealed that some DIF 

derivatives, such as DIF-1 and DIF-1(3M), increased glucose uptake by two to three times in confluent 

3T3-L1 fibroblasts in vitro (Figure 5) [71,84]. Since the glucose uptake-promoting activity of DIFs 

(Figure 5) is not necessarily correlated with their anti-proliferative activity (Figure 3), the 

mechanisms underlying the actions of DIFs in promoting glucose uptake should differ from those 

through which the compounds suppress tumor cell growth. 
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Figure 5. Effects of DIFs on glucose consumption (uptake) by confluent 3T3-L1 fibroblasts. Confluent 

3T3-L1 fibroblasts were incubated at 37 °C for at least 8 h in the presence of 0.2% EtOH (vehicle; 

Control) or 20 µM of one of the DIF derivatives. The glucose concentration in each incubation 

medium was measured and the approximate rate of glucose consumption was calculated relative to 

that in the Control medium; the rate of glucose consumption corresponds well with that of 

tritium-labeled 2-deoxy-glucose uptake promoted by DIF-1 [84]. The means and SD (bars) of three 

independent experiments (A) or triplicate experiments (B) are shown (adapted from Omata et al. [84] 

and Kubohara et al. [71], respectively). * p < 0.05 versus Control (by t-test; two-tailed, unpaired). 

The mechanism underlying the glucose uptake-promoting activities of DIF-1 and DIF-1(3M) has 

been partially elucidated (Figure 6); DIF-1 induces translocation of glucose transporter 1 (GLUT1) 

from intracellular vesicles to the plasma membrane via a PI3K–Akt-independent pathway, thereby 

promoting glucose uptake [84]. Note that DIF-1 (like insulin in 3T3-L1 adipocytes) was found to 

activate the PI3K–Akt pathway in all of the cell lines tested [84]. However, since DIF-1 promotes 

glucose uptake even in the presence of the PI3K inhibitors wortmannin and LY294002 in 3T3-L1 

fibroblasts and 3T3-L1 adipocytes [84], the glucose uptake-promoting effect of DIF-1 is likely 

PI3K−Akt-independent. Also, DIF-1 and DIF-1(3M) disturb mitochondrial activity, possibly by acting 

as uncouplers and promote cellular glucose metabolism in vitro [77,85]. During analysis of the 

antitumor activity of DIF-3, Dubois et al. [69] found that DIF-3 at 20 µM induces a loss of 

mitochondrial membrane potential, possibly by acting as an uncoupler and decreases cellular ATP 

levels in K562 leukemia cells. However, the glucose uptake-promoting activity of DIF-3 is 

considerably lower than those of DIF-1 and DIF-1(3M) in 3T3-L1 fibroblasts (Figure 5) and neither 

DIF-1 nor DIF-1(3M) at 20 µM significantly affects cellular ATP levels in 3T3-L1 fibroblasts [85]; our 

group is currently examining the mechanism underlying DIF-induced translocation of GLUT1. 

In vivo analyses have shown that intraperitoneal injection of DIF-3(3M) lowers blood glucose 

levels (after a meal) in KK-Ay diabetic mice [71] and that oral administration of DIF-1 lowers blood 

glucose levels in streptozotocin-induced diabetic rats without any apparent adverse effects [85]. 

These results suggest that DIF-1 and its derivatives may have therapeutic potential for the treatment 

of obesity and diabetes—especially of insulin-resistant diabetes. 
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Figure 6. Proposed scheme for the glucose uptake-promoting effect of DIFs. Stimulation with a DIF 

induces glucose transporter 1 (GLUT1) translocation from intracellular vesicles to the plasma 

membrane (PM) via a PI3K–Akt-independent pathway, resulting in the promotion of glucose uptake 

by confluent mammalian cells [84]; the DIFs activate PI3K and Akt but this is not related to the DIF 

glucose uptake-promoting activity [84]. The DIFs also function as mitochondrial uncouplers, 

promoting oxygen consumption [77] and glucose metabolism (glycolysis and subsequent 

degradation in the tricarboxylic acid (TCA) cycle) [85] by mitochondria; this further increases GLUT1 

translocation and promotes glucose uptake into the cells. Chemical structure-activity relationship 

analysis revealed that DIF-1 and DIF-1(3M) are promising lead compounds for the development of 

anti-diabetes and anti-obesity drugs [71,84,85]. 

2.4. Other Biological Activities of DIFs 

2.4.1. Differentiation-Inducing and -Promoting Activities 

As already mentioned, DIFs 1 and 3 at 10–30 µM dose-dependently induce cell differentiation 

in vitro in murine (B8) and human (K562) leukemia cells [61,64]. Also, DIF-1 at low concentrations 

(1−5 µM) dose-dependently promotes retinoic acid-induced granulocyte differentiation in human 

HL-60 leukemia cells in vitro but it does not affect vitamin D-induced monocyte differentiation in 

HL-60 cells [63]. In addition, DIF-1 at 30 µM induces re-differentiation of de-differentiated vascular 

smooth muscle cells (non-transformed cells) isolated from human umbilical arteries in vitro [70]. 

Dimethyl sulfoxide at 1% (v/v) induces cardiomyocyte differentiation in vitro in P19CL6 embryonic 

carcinoma cells and the activity of dimethyl sulfoxide is promoted in the presence of Br-DIF-1, a 

chlorine-to-bromine substituted derivative of DIF-1, at 1–3 µM [86]. In contrast, DIF-1 at 5–30 µM 

suppresses osteoblast differentiation markers in human osteosarcoma SaOS-2 cells in vitro [87]. 

Together, these results suggest that DIFs could be useful as differentiation-inducing (or promoting) 

factors for obtaining various types of objective cells from embryonic or induced pluripotent stem 

(iPS) cells and as lead compounds for the development of anti-cancer chemotherapies. 

2.4.2. Anti-Meiotic Activity 

Xenopus oocytes are a good model for investigating the mechanisms of meiosis and the 

associated signal transduction system. Maturation of Xenopus oocytes can be induced in vitro with 

progesterone, which subsequently induces germinal vehicle breakdown. DIF-1 at 10–40 µM 

dose-dependently suppresses progesterone-induced germinal vehicle breakdown in Xenopus 

oocytes in vitro, at least in part, by inhibiting a mitogen-activated protein kinase cascade [88]. 
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2.4.3. Immunomodulatory Activities in Jurkat T Cells 

Since DIFs 1 and 3 and their derivatives have been shown to exhibit multiple biological 

activities in D. discoideum, Xenopus oocytes and mammalian cells, we hypothesized that DIF 

derivatives may have additional biological activities in other mammalian and eukaryotic cells. 

We then investigated the effects of DIFs 1 and 3 and their derivatives on interleukin-2 (IL-2) 

production in vitro in human Jurkat T cells, a model cell line suitable for the study of T lymphocytes 

[89,90]. In Jurkat T cells, IL-2 production can be induced in vitro by stimulation with mitogens such 

as concanavalin A (ConA) and ConA-induced IL-2 production can be suppressed with the 

immunosuppressive drug cyclosporin A (CsA) (Figure 7). Our group found that some DIF 

derivatives, including TH-DIF-1, TM-DIF-1 and Bu-DIF-3, at low doses (e.g., 5 µM) significantly 

suppressed ConA-induced IL-2 production, whereas other DIF derivatives, including DIF-1(+1) and 

DIF-3(3M), significantly promoted ConA-induced IL-2 production in Jurkat T cells, with little effect 

on cell viability (Figure 7) [89,90]. Since IL-2 production in T cells is an index of immune system 

activity in vivo, these results suggest that DIF derivatives could be developed as novel 

immunosuppressive (and anti-inflammatory) or immunopromotive drugs. 

 

Figure 7. Effects of DIFs on ConA-induced IL-2 production in human Jurkat T cells. Jurkat T cells 

were pre-incubated at 37 °C for 0.5 h in the presence of 0.1% EtOH (vehicle; Control), 1 µM 

cyclosporin A (CsA), or 5 µM of one of the DIF derivatives. After the addition of ConA (as a 

mitogen), the cells were further incubated at 37 °C for 3 h and assayed for IL-2 mRNA expression (A), 

whereas another set of cells were incubated for 12 h (A, B) and assayed for IL-2 protein secretion (A) 

and for viability by using an MTT assay (B). The means and SD (bars) of three independent 

experiments are shown (adapted from Takahashi et al. [89]). * p < 0.05 versus Control (by t-test; 

two-tailed, unpaired). ConA-induced IL-2 production was significantly suppressed by the known 

immunosuppressive drug, CsA and by TH-DIF-1, TM-DIF-1 and Bu-DIF-3 but it was significantly 

promoted by DIF-1(+1) and DIF-3(3M); cell viability at 12 h was not affected by any of the compounds, 

except for TH-DIF-1. 

2.4.4. Anti-Trypanosoma Activity 

Trypanosoma cruzi is the protozoan parasite that causes Chagas disease (human American 

trypanosomiasis). Despite the large number of deaths each year (>15,000) [91], therapeutic options 

for acute cases are limited (e.g., benznidazole and nifurtimox) [92,93] and there is no effective 

therapy for chronic cases. 

To assess the pharmacological potential of DIFs 1 and 3 and their derivatives for the 

development of anti-T. cruzi drugs, our group examined the effects of these compounds on the 

infection rate and growth of T. cruzi in an in vitro assay system utilizing human fibrosarcoma 

HT1080 cells as host cells [94]. We found that DIF-3 derivatives such as DIF-3(+1) and Bu-DIF-3 at 10 

µM possessed strong anti-T. cruzi activities in vitro (Figure 8) and that intraperitoneally 

administered Bu-DIF-3 suppressed the increase in blood T. cruzi concentration in mice [94]. 

Interestingly, we also found that the DIF-3 derivatives that had strong anti-T. cruzi activity (Figure 8) 
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also had strong anti-proliferative activity in tumor cells (Figure 3), suggesting that the activities of 

these derivatives in the two cell types may have similar underlying mechanisms. 

 

Figure 8. Effects of DIFs on the infection and growth of Trypanosoma cruzi in HT1080 cells. 

Trypanosoma cruzi (A: 1 × 105 cells/well, B: 5 × 106 cells/well) were incubated at 37 °C for 3 days in vitro 

with human fibrosarcoma HT1080 cells (host cells) in the presence of 0.1% EtOH (vehicle: Control) or 

10 µM of one of the DIF derivatives. Then, the infection rate (parasite-infected HT1080 cells/total 

HT1080 cells) (A, B) and the number of amastigotes (intracellular form of T. cruzi) in the HT1080 cells 

(B) were assessed microscopically [94]. The means and SD (bars) of three independent experiments 

are shown (adapted from Nakajima-Shimada et al. [94]). * p < 0.05 versus Control (by t-test; 

two-tailed, unpaired). DIF-3 and some of its derivatives strongly suppressed T. cruzi infection and 

growth in the host cells. 

2.4.5. Anti-β-Amyloid Activity 

Alzheimer’s disease is a form of dementia that is broadly characterized by memory loss and 

cognitive deterioration. During the progression of Alzheimer’s disease, extracellular plaques of 

β-amyloid and neurofibrillary tangles form in specific regions of the brain. Since β-amyloid is 

produced physiologically from amyloid-b protein precursor (APP) by most cells but particularly by 

neurons, it is thought that abnormal processing of APP in neurons results in the abnormal β-amyloid 

formation that characterizes Alzheimer’s disease [95,96]. 

Myre et al. [97] have shown that DIF-1 at 30 µM reduces amyloidogenic processing of APP in 

CHO-7W cells stably expressing human APP in vitro; this suggests that DIF-1 could be a novel 

anti-β-amyloid drug. However, since DIF-1 at 10–40 µM is toxic to rat cortical neurons in primary 

culture in vitro [98], clinical use of DIF-1 would likely have adverse effects associated with the 

cortical neurons. Further investigation into the effects of the other DIF derivatives on APP 

processing and neuronal functions is warranted. However, for now, DIF-1 is a promising lead 

compound for the development of anti-β-amyloid and thus anti-Alzheimer’s disease, drugs. 

2.4.6. Conclusions on the Activities of DIFs 

Figure 9 summarizes the physiological functions of DIF-1 and DIF-2 in D. discoideum and the 

biological activities of DIF derivatives in other organisms. Considering that DIFs possess a range of 

biological activities in various eukaryotic cells, the DIFs and their derivatives likely have some 

undiscovered biological and pharmacological activities. Why DIFs possess such a range of biological 

activities is unknown; however, elucidation of the mechanisms underlying these 

activities—especially identification of the target molecules—will help in answering this question. 

Since DIFs possess various biological activities, there would be multiple target molecules of the 

DIFs; some candidate targets of DIFs that may be involved in the functions of DIFs have been 

reported (Table 1). Direct inhibition of PDE1 and PAK1 by DIFs may cause antitumor effects [74,76], 

whereas uncoupling of mitochondrial activity by DIFs may cause antitumor effects and/or promote 

glucose consumption in mammalian cells [72,77,85]. Matsuda et al. [99] have reported that DIF-1 but 

not DIF-3, directly inhibits mitochondrial malate dehydrogenase (mMDH), which may affect 

glucose consumption. 
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Figure 9. Summary of the physiological functions of DIFs 1 and 2 in Dictyostelium discoideum and the 

biological activities of DIF derivatives in other organisms. DIFs 1 and 2 function as inducers of 

stalk-cell differentiation (autophagic cell death: ACD) and as modulators of chemotactic cell 

movement in D. discoideum (purple rectangles). DIF derivatives have various biological activities in 

mammalian cells (yellow, orange and green ellipses) and in Xenopus oocytes and Trypanosoma cruzi 

(pale yellow rectangles). 

Table 1. Targets of DIFs found in mammalian cells. 

DIF Species Examined Target of DIF Biological Activities Reference 

DIF-1, DIF-3 PDE1 Direct inhibition of PDE1 activity [76] 

DIF-1 mMDH Direct inhibition of mMDH activity [100] 

DIF-1, DIF-3, & their derivatives Mitochondria Uncoupling of mitochondrial activity [72,77] 

DIF-3 derivatives (e.g., DIF-3(+1)) PAK1 Direct inhibition of PAK1 activity [74] 

The data obtained to date strongly suggest that by modifying the side chains of the reported 

DIF derivatives we may be able to obtain compounds that have specific biological or 

pharmacological activities and that these compounds will be useful lead compounds for the 

development of anti-cancer, anti-obesity/diabetes, anti-T. cruzi and immunomodulatory agents. 

The fact that DIF-like molecules such as DIFs 1–3 and DA (Figure 2) are produced by species in 

different kingdoms suggests that various DIF-like molecules are produced by all of the organisms 

belonging to Amoebozoa and Mycota. Furthermore, DA, which was found as an anti-tumor agent, 

may have a physiologic function, such as the induction of cell differentiation, in the organism in 

which it was first identified, namely Chaetomium. 

3. Novel Biologically Active Compounds Found in Cellular Slime Molds 

3.1. Dictyopyrones 

While searching for biologically active secondary metabolites, Takaya et al. [100] isolated two 

novel α-pyronoids, dictyopyrones A and B (Figure 10A), from methanol extracts of the fruiting 

bodies of D. discoideum and D. rhizoposium and another α-pyronoid, dictyopyrone C (Figure 10A), 

from methanol extracts of the fruiting bodies of D. longosporum. Later, dictyopyrone A was also 

isolated from D. longosporum, dictyopyrone B was isolated from D. magnum and D. mucoroides and a 

new α-pyronoid, dictyopyrone D, was isolated from D. magnum (Figure 10A) [101]. Furthermore, 

Kikuchi et al. [29] isolated dihydrodictyopyrones A and C from D. firmibasis (Figure 10A). Although 

there are several known α-pyronoids with a hydroxyl group at the C-4 position, the dictyopyrones 

bear a unique α-pyrone moiety (3-acyl-4,6-dialkyl-α-pyrone ring) with a side chain at the C-3 

position. This indicates that Dictyostelium cellular molds possess one or more unique biosynthetic 

pathways, providing further evidence that they are potentially valuable sources of lead compounds. 
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Recently, the production of dictyobispyrones B and E, alongside the production of 

dictyopyrones B and E, was induced in D. giganteum in the presence of zinc (II) ion (Figure 10A) 

[102]. The dictyobispyrones contain an α,α-bispyrone skeleton that can be biosynthesized from two 

distinct polyketide chains and therefore they could be biosynthetic precursors for the production of 

dictyopyrones through hydration and decarboxylation reactions. 

By using chemically synthesized dictyopyrones [100,101], we have shown that dictyoypones 

A–D at micromolar levels promote morphogenesis of D. discoideum [100,101] and that dictyopyrones 

A and B at micromolar levels inhibit spore formation and promote stalk-cell formation in vitro in  

D. discoideum [103]. Also, we have reported that dictyopyrones and their derivatives suppress cell 

growth in human leukemia K562 cells in vitro [101]. 

 

Figure 10. Chemical structures of secondary metabolites isolated from cellular slime molds. (A) 

dictyopyrones; (B) furanodictines; (C) Brefelamide, MPBD and Monochasiols; (D) AB0022A, Pf-1 and 

Pf-2. 

3.2. Amino Sugar Derivatives: Furanodictines and Dictyoglucosamines 

Kikuchi et al. [25] isolated two novel amino sugar derivatives, furanodictines A and B (Figure 

10B), from methanol extracts of the fruiting bodies of D. discoideum. These compounds are 

derivatives of N-acetylglucosamine and N-acetylmannosamine, respectively and were the first 

3,6-anhydrosugars isolated from a natural product. The unique structures of the furanodictines are 

intriguing and four research groups have reported four different synthetic pathways [25,104–106]. 

Two other amino sugar derivatives, dictyoglucosamines A and B (Figure 10B), were isolated 

from methanol extracts of D. purpureum and D. discoideum, respectively [26]. These compounds are 

characteristic in that the amino sugar is connected directly to the fatty acid. 

The biological activities of these amino sugar derivatives were investigated and it was found 

that (1) furanodictine B but not furanodictine A, at 20 µM increases neurite formation in vitro in rat 

pheochromocytoma PC-12 cells, which are a model of neuronal differentiation; (2) furanodictine A 

and furanodictine B at 0.5–5 µM dose-dependently promote neurite formation in the presence of 

nerve growth factor (NGF) [25]; and (3) dictyoglucosamine A and dictyoglucosamine B at 1–10 µM 

dose-dependently induce neurite formation in PC-12 cells [26]. Thus, these amino sugar derivatives 
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may be good lead compounds for the development of novel nerve-rejuvenation drugs for treating 

neurodegenerative diseases such as Alzheimer’s disease. 

3.3. Brefelamide 

Brefelamide (Figure 10C) is an aromatic amide that was isolated from methanol extracts of the 

fruiting bodies of D. brefeldianum and D. giganteum [27,107]. The 

2-amino-3-hydroxy-β-aminopropiophenone moiety of brefelamide, which could be biosynthesized 

from tryptophan, is a rare structure in natural compounds. 

Brefelamide at 1–100 µM dose-dependently suppresses cell growth in human astrocytoma 

1321N1 cells in vitro through reduced glial cell line-derived neurotrophic factor (GDNF) receptor 

expression, reduced GDNF secretion and reduced phosphorylation of Erk, Akt and c-Jun N-terminal 

kinases [27,107]. Also, brefelamide at 12.5–50 µM suppresses the growth of and invasion by, A562 

lung cancer cells in vitro, at least in part by inhibiting osteopontin expression [108]. In addition, 

brefelamide and its O-methyl derivative suppress osteopontin production in dengue serotype 3 

virus-infected THP-1 cells, indicating that these compounds can prevent exacerbation of the illness 

to dengue hemorrhagic fever or dengue shock syndrome [109]. 

3.4. MPBD 

MPBD (4-methyl-5-n-pentylbenzene-1,3-diol) (Figure 10C) is a polyketide that was isolated 

independently by two research groups as a secondary metabolite from D. mucoroides [28] and as an 

endogenous differentiation-inducing factor from D. discoideum [110]. Although the physiologic 

functions of MPBD in these organisms are unclear, MPBD at low nanomolar concentrations 

promotes both stalk-cell differentiation (albeit slightly) and spore differentiation in D. discoideum 

under some in vitro culture conditions [28,110]. At 20–80 µM, MPBD dose-dependently suppresses 

the growth of human leukemia K562 and HL-60 cells in vitro [28]. In addition, MPBD and its 

synthetic derivatives possess antimicrobial activities against Escherichia coli and Bacillus subtilis [111]. 

3.5. Monochasiols 

Monochasiols A–H (Figure 10C) are chlorinated alkylresorcinols (and also polyketides) isolated 

from the fruiting bodies of D. monochasioides [33]. Although elucidation of their biological activities is 

ongoing, it has been shown that monochasiol A at 5–20 µM suppresses ConA-induced IL-2 

production in Jurkat T cells without affecting cell viability [33]. 

Since the monochasiols can potentially be biogenetically synthesized by combining biosynthetic 

enzymes related to the principal polyketides DIF-1 and MPBD produced by D. discoideum, 

Dictyostelium cellular slime molds may produce a diverse range of monochasiol-based secondary 

metabolites. 

3.6. Dibenzofurans: AB0022A, Pf-1 and Pf-2 

AB0022A (Figure 10D) is an antimicrobial agent that is produced by D. purpureum and inhibits 

the growth of several Gram-positive but not Gram-negative, bacteria (minimal inhibitory 

concentration, 0.39–50 µg/mL; 0.85–109 µM) [112]. Recently, two other chlorinated dibenzofurans, 

Pf-1 and Pf-2 (Figure 10D), were isolated from the fruiting bodies of Polysphondylium filamentosum 

[32]. Although the antimicrobial activities of Pf-1 and Pf-2 are unknown, Pf-1 at 0.1–2 µM, like DIF-1, 

dose-dependently induces stalk-cell formation in D. discoideum in vitro, whereas AB0022A and Pf-2 

at up to 2 µM do not [32]. AB0022A and Pf-1 but not Pf-2, at low micromolar concentrations suppress 

the growth of human leukemia K562 and HL-60 cells in vitro [32]. These findings suggest that, like 

DIF derivatives, the chlorinated dibenzofurans and their derivatives may possess multiple biological 

activities and that Polysphondylium species are also promising sources of lead compounds for natural 

product chemistry. 

3.7. Prenylated and Geranylated Aromatic Compounds: Pt-1–5 and Ppc-1 
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The novel aromatic compounds Pt-1–5 and Ppc-1 (Figure 11A) were isolated from 

Polysphondylium tenuissimum and P. pseudo-candidum, respectively [30]. These compounds bear 

prenyl or geranyl groups. Pt-4 and Pt-5, which also each bear a butanoyl group, can be 

biosynthesized via the analogous polyketide DIF-1 (Figure 2A), which contains a hexanoyl group. 

The difference in length of the acyl groups may account for the chemotaxonomic differences 

between the genera Dictyostelium and Polysphondylium. 

Pt-1, Pt-5 and Ppc-1 at 15 µM suppress the growth of human leukemia K562 cells in vitro and 

Ppc-1 suppresses the growth of HeLa cells in vitro [30]. Ppc-1 at 20 µM, like DIF-1, promotes glucose 

consumption by 3T3-1 cells in vitro [30] and intraperitoneally administered Ppc-1 induces weight 

loss in mice, possibly by uncoupling mitochondrial function [113]. Furthermore, Ppc-1 and its 

derivative, PQA-18 (Figure 11A), suppress IL-2 production in Jurkat T cells in vitro [114]. Another 

Ppc-1 derivative, PQA-11 (Figure 11A), has potent neuroprotective activities in vitro and in vivo, 

possibly via the inhibition of mitogen-activated protein kinase kinase 4 (MKK4) [115]. 

 

Figure 11. (A) Chemical structures of Pt-1–5 and Ppc-1 isolated from Polysphondylim tenuissimum and 

P. pseudo-candidum and two derivatives of Ppc-1, PQA-11 and PQA-18. (B) Chemical structures of 

dictyobiphenyls A and B and dictyoterphenyls A and B, isolated from Dictyostelium polycephalum. 

3.8. Dictyobiphenyls and Dictyoterphenyls 

Dictyobiphenyls A and B and dictyoterphenyls A and B, are novel aromatic compounds (Figure 

11B) that were isolated from the fruiting bodies of D. polycephalum [13]; note that dictyoterphenyl A 

was the first nitrogen-containing natural m-terphenyl isolated. Dictyoterphenyl A at 1–10 µM can 

suppress the growth of several cancer cell lines in vitro, such as the K562, HeLa and LM8 cell lines 

[13]. 

4. Conclusions 

In this review, we have shown that DIFs 1 and 3 and their derivatives possess multiple 

biological activities in a variety of eukaryotic cells and the data suggest that they will be useful lead 

compounds for the development of anti-cancer, anti-obesity/diabetes, anti-T. cruzi and 

immunomodulatory agents. Moreover, our group has isolated various novel and unique 

compounds from Dictyostelium and Polysphondylium cellular slime molds and we have shown that 

some of these compounds have biological activities in mammalian cells in vitro and in vivo, which 

are summarized in Table 2. Together, the data strongly suggests that cellular slime molds are 
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excellent sources of lead compounds for natural product chemistry and the development of 

next-generation drugs. 

Table 2. Origins and biological activities of the compounds that were found in cellular slime molds. 

Compound 
Source 

Organism 
Biological Activities Reference 

Dictyopyrone A 

D. discoideum 

D. rhizoposium 

D. longosporum 

Promotion of morphogenesis & stalk cell 

differentiation, & inhibition of spore formation in  

D. discoideum 

[100,101,103] 

Anti-proliferative activity in K562 cells [101] 

Dictyopyrone B 

D. discoideum 

D. rhizoposium 

D. magnum 

D. longosporum 

Promotion of morphogenesis & stalk cell 

differentiation, & inhibition of spore formation in  

D. discoideum 

[100,101,103] 

Dictyopyrone C D. longosporum 
Promotion of morphogenesis in D. discoideum [100,101] 

Anti-proliferative activity in K562 cells [101] 

Dictyopyrone D D. magnum Promotion of morphogenesis in D. discoideum [101] 

Dihydrodictyopyrones 

A & C 
D. firmibasis N.D. [29] 

Dictyobispyrones B & E D. giganteum N.D. [102] 

Furanodictine A D. discoideum 
Promotion of NGF-induced neurite formation in PC-12 

cells 
[25] 

Furanodictine B D. discoideum 

Induction of neurite formation in PC-12 cells [25] 

Promotion of NGF-induced neurite formation in  

PC-12 cells 
[25] 

Dictyoglucosamine A D. purpureum Induction of neurite formation in PC-12 cells [26] 

Dictyoglucosamine B D. discoideum Induction of neurite formation in PC-12 cells [26] 

Brefelamide  

(& derivatives) 

D. brefeldianum 

D. giganteum 

Anti-proliferative activity in 1321N1 cells  [27,107] 

Anti-proliferative & anti-metastatic activities in  

A562 cells 
[108] 

Inhibition of GDNF secretion in astrocytoma cells [27,107] 

Anti-dengue viral activity [109] 

MPBD (& derivatives) 
D. discoideum D. 

mucoroides 

Promotion of cell differentiation in D. discoideum [110] 

Anti-proliferative activity in K562 and HL-60 cells [28] 

Antimicrobial activities vs. E. coli and B. subtilis [111] 

Monochasiol A 
D. 

monochasioides 
Inhibition of IL-2 production in Jurkat T cells [33] 

Monochasiols B–H 
D. 

monochasioides 
N.D. [33] 

AB0022A D. purpureum Antimicrobial activities vs. Gram-positive bacteria [112] 

Pf-1 P. filamentosum Anti-proliferative activity in K562 and HL-60 cells [32] 

Pf-2 P. filamentosum Stalk-cell-inducing activity in D. discoideum [32] 

Pt-1 P. tenuissimum Anti-proliferative activity in K562 cells [30] 

Pt-2, Pt-3, Pt-4 P. tenuissimum N.D. [30] 

Pt-5 P. tenuissimum Anti-proliferative activity in K562 cells [30] 

Ppc-1 (& derivatives) 
P. pseudo- 

candidum 

Anti-proliferative activity in K562 and HeLa cells [30] 

Promotion of glucose consumption in 3T3-L1 cells & 

mitochondrial uncoupling 
[30,112] 

Inhibition of IL-2 production in Jurkat T cells [114] 

Neuroprotective activities in vitro and in vivo [115] 

Dictyobiphenyls A & B D. polycephalum N.D. [31] 

Dictyoterphenyl A D. polycephalum Anti-proliferative activity in K562, HeLa and LM8 cells [31] 

Dictyoterphenyl B D. polycephalum N.D. [31] 

Footnote: N.D., not detected. 

5. Patents 

Patents related to our work on DIFs and other compounds: 

Kubohara, Y.; Shibata, H. Agents that promote glucose metabolism and a method for screening 

anti-obesity and anti-diabetes drugs. Japanese Patent No. 4534039, Jun. 25, 2010. 
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Kubohara, Y.; Shimada, J. Anti-Trypanosoma agents and drugs for trypanosomiases. Japanese 

Patent No. 5610433, Sep. 12, 2014. 

Kubohara, Y.; Murakami, M.; Takahashi, K.; Oshima, Y.; Kikuchi, H. Inhibitors of interleukin-2 

production. Japanese Patent No. 5630751, Oct. 17, 2014. 

Kikuchi, H.; Oshima, Y.; Hattori, T.; Kubohara, Y.; Yamada, O.; Zhang, J.; Matsushita, Y.; Kida, 

S. Osteopontin production inhibitor with dictyopyrone or dihydrodictyopyrone derivatives as the 

active ingredient. Japanese Patent No. 5716140, Mar. 20, 2015; Australian Patent No. 2013380489, Jan. 

14, 2016; Korean Patent No. 1593018, Feb. 2, 2016; Canadian Patent No. 2,896,446, Jun. 28, 2016; US 

Patent No. 9,463,188 B2, Oct. 11, 2016; Chinese Patent No. ZL201380069437.4, Jun. 9, 2017; EU Patent 

No. 2965758, Jan. 3, 2018. 

Honma, Y.; Suzuki, T.; Ogura, M; Oshima, Y.; Kikuchi, H. Prenyloxyquinoline carboxylic-acid 

derivative. Japanese Patent No. 6348845, Jun. 8, 2018. 
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