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Abstract: The concept of leukocyte-tumor cell fusion as a significant driver of cancer progression
has been around a long time, and has garnered growing support over the last several years.
The underlying idea seems quite simple and attractive: Fusion of tumor cells (with their inherent
genetic instability) with leukocytes, particularly macrophages, could produce hybrids with high
invasive capabilities, greatly facilitating their metastatic dissemination, while potentially accelerating
tumor cell heterogeneity. While there are a number of attractive features with this story on the surface,
the various studies seem to leave us with a conundrum, namely, what is the fate of such fusions?
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Introduction and Discussion

The concept of leukocyte-tumor cell fusion as a significant driver of cancer progression has been
around a long time, and has garnered growing support over the last several years, with numerous
reports describing what appear to be hybrid cells. There are a variety of potential mechanisms by
which such hybrid cells could arise. However, while other processes such as trans-differentiation,
and developmental mimicry, etc. could give rise to similar apparent hybrid cells, these processes
provide no explanation for the highly abnormal ploidy of the hybrid cells, leaving fusion as the most
likely explanation [1]. There are a few specific examples in human cancers in which fusion has been
demonstrated convincingly [2–4], which were documented in bone marrow transplant recipients.
The underlying idea seems quite simple and attractive: Fusion of tumor cells (with their inherent
genetic instability) with leukocytes, particularly macrophages, could produce hybrids with high
invasive capabilities, greatly facilitating their metastatic dissemination, while potentially accelerating
tumor cell heterogeneity. While there are a number of attractive features with this story on the surface,
at present there is little actual documented support for it, and in fact it creates a conundrum. In the
end, we wind up wondering what the fate of fusion is?

There are a considerable number of reports over the years describing leukocyte-tumor cell fusions
(LTFs), most often macrophage-tumor cell fusions (MTFs), in human cancers [2,4–11]. In general, the
mechanism(s) by which the apparent hybrid cells arose were not clearly delineated for various reasons.

In a recent study [12], Gast et al. clearly documented a fusion mechanism for production of MTFs,
both in vitro and in a mouse model. Gast et al. [12] went on to identify apparently analogous MTFs in
human cancers, particularly pancreatic ductal adenocarcinoma (PDAC), and in addition, using a small
cohort of PDAC patients, they found that circulating high levels of MTFs were associated with patient
stage, and with a statistically significant decrease in survival time [12].

Perhaps the most surprising aspect of MTFs is their sheer prevalence. In our initial report, we
used a microfabricated filter device to capture circulating tumor cells (CTCs) [13]. With melanoma
CTCs, approximately 50% of captured CTCs showed dual-staining for leukocyte-tumor cell markers
(i.e., apparent MTFs). Further work showed that these MTFs appeared to be macrophages both
morphologically and ultrastructurally, yet they showed highly abnormal DNA contents and contained
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melanoma-specific mutations in the B-Raf gene in patients whose melanomas contained such
mutations [10]. However, nearly all CTCs captured from PDAC (and colorectal cancer) patients
dual-stained for macrophage and tumor cell markers [11], quite consistent with the 90% hybrid
cells in PDAC patients reported by Gast et al. [12]. In addition, we consistently found that large
subpopulations of cells appear to be MTFs in human melanomas ([10]; both primary and metastatic
lesions) and PDACs [11], analogous to findings by Gast et al. [12] in primary PDACs.

However, these findings actually raise a number of concerns regarding the role of MTFs in
cancer progression, and particularly metastasis, which really need to be addressed. Metastasis is
generally thought to occur as a “cascade” with sequential steps. Phase 1 basically encompasses the
physical journey of the CTC to distant tissues, while phase 2 (which is even more complicated and
less well understood) encompasses adaptation of translocated CTCs to their new environments, with
subsequent proliferation to produce a typical metastatic cancer lesion [14–16]. While on the surface,
production of leukocyte-tumor cell hybrids seems to provide a convenient explanation for metastasis,
the assumption that such hybrids are responsible for production of metastatic lesions in turn seems to
lead to inconsistencies. Firstly, metastasis is an inherently inefficient process [17–22], but one would
assume that these motile, highly invasive MTFs would be very effective at producing metastatic foci,
at least at the phase I stage This is compounded by the fact that circulating MTFs in PDAC and other
cancers seem to be an order of magnitude more plentiful than “conventional” CTCs, as determined by
CellSearch. Considering “conventional” CTCs for example, if there are 5 CTCs/7.5 ml of a patient’s
blood, a simple calculation using a CTC circulation half-life of 1–2 h [23] would imply that 40–80,000
conventional CTCs circulate every day (manuscript in preparation), yet very few if any metastatic
foci (even phase 1) develop from them. However, with MTFs approximately an order of magnitude
higher than conventional CTCs, that would mean something like 500,000 MTFs are unsuccessful at
accomplishing even a “phase 1” landing on any given day, even given their high motility and invasive
capabilities. This doesn’t seem to make any inherent sense. There is also another issue regarding
CellSearch: CellSearch has established prognostic value clinically in a variety of cancers, in spite of
variety of recognized shortcomings (like loss of the epithelial marker EpCam expression on CTCs
after the epithelial-to-mesenchymal transition, etc.), and even problems with definition of CTCs [24],
and conventional CTC measurement seems to have clinical value even in PDAC [25–29]. However,
CellSearch eliminates MTFs by definition, thus, is there just an accidental stochastic relationship
between MTFs and conventional CTCs to explain this? In general, the detection of CTCs in PDAC
patients is surprisingly low in many cases [26,29], perhaps because nearly all CTCs are actually MTFs.

Another issue would seem to be the prevalence of MTFs in primary vs. metastatic lesions.
Although the literature on this matter is sparse at best, metastatic lesions do not seem to be enriched
for MTFs vs. primary tumors. In human melanoma samples, for example, there wasn’t any notable
difference in the proportion of MTFs in primary melanomas vs. their metastases (it was surprisingly
high in both), although this is anecdotal and no quantitation was done [10].

There are a number of experimental reports indicating that tumor cell fusions may promote more
aggressive behavior [30–33], although this is not universal [34]. We have performed transplantation
experiments in nude mice using MTFs cultured from the blood of melanoma and PDAC patients.
Melanoma MTFs were transplanted subcutaneously, and after a few weeks no tumor was found at
the inoculation site. We observed occasional MTFs in adjacent subcutaneous tissue (although not at
the injection site) and in various stromal locations, as well as foci of cells growing in the pancreas [10].
However, the pancreatic islands of cells were very odd, not recapitulating melanomas at all, but rather
consisting of what appeared to be well circumscribed collections of well-differentiated cells (sometimes
pigmented) which expressed a number of human-specific markers, including melanocytic markers
(MLANA, ALCAM) and M2-macrophage markers (CD206, CD208). Transplantation experiments
with MTFs cultured from PDAC patient blood [11] produced similar results, in that no tumor was
found at the orthotopic injection site (which was intra-pancreatic). Mice also showed analogous
well-differentiated islands of cells in the pancreas which stained for human pancreatic, stem cell, and
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M2-macrophage markers (since the MTFs were transplanted orthotopically into the pancreas in these
experiments, it cannot be concluded that they were “metastatic”). However, the pancreatic foci did not
grow or progress over time (4–12 weeks). The only other MTFs found in the mice were single cells or
clusters of a few cells found focally in the liver, spleen, lungs, and subcutaneous tissues. There was no
development of metastatic lesions over time. Thus, although they clearly disseminated, MTFs did not
form overtly cancerous metastatic lesions in the traditional sense, and no primary tumors developed
at the transplantation sites.

There are a couple of caveats which could complicate these experiments. For one, the MTFs we
transplanted had been grown in culture for 4 weeks or so. The culture conditions could have affected
their subsequent behavior in vivo. However, to this point, others have found that even large numbers
of CTCs harvested by leukapheresis, which presumably contained substantial numbers of MTFs, were
surprisingly unable to form metastatic foci [35].

The other point which certainly merits consideration is the use of immune-compromised mouse
models. The immune system should be expected to have a major impact on formation of metastatic
foci, yet it was lacking in this context. In an “immune-competent” context, the nature of the MTFs is
undoubtedly important; in particular, it is noted that the M2 polarization observed in MTFs is generally
considered to have anti-inflammatory (immune suppressive) effects, and many recent studies have
documented such effects (for example, [36] and see [37]).

These considerations, therefore, seem to leave us in a conundrum. Large numbers of highly
motile, highly invasive MTFs in primary tumors and blood would seem to be extremely inefficient at
producing metastatic lesions, even phase 1 foci of individual cells, and they were unable to accomplish
phase 2 progression of any lesions.

The nature of metastasis-initiating cells (MICs) is not clear, but many would argue that MICs are
likely to be derived from cancer stem cells. The MICs could be cancer stem cells, or perhaps represent
fusions of prototypical cancer stem cells with macrophages, which would thus represent a very small
subset of the surprisingly prevalent overall MTF populations in various tumors. There are certainly
many reports which describe development of more aggressive phenotypes upon LTF fusions [30,31,38],
although it seems that the properties of the LTFs may be determined very soon after fusion, probably
reflecting clonal “soil” selection rather than a continuing phenotypic plasticity [39]. Results with
tumor-stem cell fusions have been mixed: With hepatocellular carcinoma cells, fusion with human
embryonic stem cells produced tumor-initiating cells [40], whereas fusion of hematopoietic stem cells
with esophageal carcinoma cells did not [34], and potential LTFs were not tumorigenic in mouse
models even at very high inoculation numbers [35].

It still seems reasonable to propose that MTFs may not actually produce progressive metastatic
lesions per se but rather may actually produce an expanded number of phase 1 “niches” suitable for
subsequent colonization by MICs [41], whatever they actually are. The most likely mechanism would
seem to be secretion of cytokines and chemokines to alter their microenvironment. In particular, with
pancreatic ductal adenocarcinoma, macrophage migration inhibitory factor appears to be a prominent
component found in primary and metastatic tumors, and it has important functional interactions with
CXCR4 (which is a non-cognate receptor) and CD44 stem cell markers [11].
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