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Abstract: The mechanism of intercellular transmission of pathological agents in neurodegenerative
diseases has received much recent attention. Huntington’s disease (HD) is caused by a monogenic
mutation in the gene encoding Huntingtin (HTT). Mutant HTT (mHTT) harbors a CAG
repeat extension which encodes an abnormally long polyglutamine (polyQ) repeat at HTT’s
N-terminus. Neuronal pathology in HD is largely due to the toxic gain-of-function by mHTT
and its proteolytic products, which forms both nuclear and cytoplasmic aggregates that perturb
nuclear gene transcription, RNA splicing and transport as well cellular membrane dynamics.
The neuropathological effects of mHTT have been conventionally thought to be cell-autonomous
in nature. Recent findings have, however, indicated that mHTT could be secreted by neurons,
or transmitted from one neuronal cell to another via different modes of unconventional secretion,
as well as via tunneling nanotubes (TNTs). These modes of transmission allow the intercellular spread
of mHTT and its aggregates, thus plausibly promoting neuropathology within proximal neuronal
populations and between neurons that are connected within neural circuits. Here, the various possible
modes for mHTT’s neuronal cell exit and intercellular transmission are discussed.

Keywords: Huntingtin (HTT); Huntington’s disease (HD); membrane traffic; polyglutamine (polyQ)
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1. Introduction

Age-associated neurodegenerative diseases that affect central nervous system (CNS) neurons
are typically sporadic with only a small fraction traceable to inherited mutations in susceptibility
genes. Huntington’s disease (HD), on the other hand, is a prototypical hereditary monogenic disorder.
The disease is autosomal dominant, typically midlife onset and is presented with movement disorders,
cognitive decline and psychiatric symptoms with progressively fatality [1,2]. Symptoms of the disease
becomes obvious typically in the 30s–40s, and these symptoms gradually worsen over the course of one
or two decades before the eventual demise of the patient. Typical HD symptoms include involuntary,
jerky motions, which are usually preceded by a general lack of movement coordination and unsteady
gait in the earlier years. HD patients also exhibit psychiatric symptoms, progressive cognitive decline
and eventually full-blown dementia. HD is a member of a larger group of trinucleotide repeat
expansion diseases [3], and its underlying mutation is an expansion of the trinucleotide CAG repeat
within exon 1 of the Huntingtin (HTT) gene, which translates into an abnormally long N-terminal
glutamine (polyQ) tract of the mutant HTT (mHTT) protein. Healthy subjects harbor stretches
with 6–35 glutamine residues in length, but this could be extended up to hundreds of residues
in HD individuals. The length of mHTT’s polyQ tracts correlate well with the age of disease onset
and the severity of symptoms in patients. Individuals with >40 CAG repeats would usually be
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considered to harbor a full-penetrance disease allele, and disease symptoms are invariably in place for
these individuals.

The HD susceptibility gene HTT is a vital gene for vertebrate embryonic development, and its
targeted deletion in mice results in early embryonic lethality with gastrulation defects [4–6].
HTT encodes a large 348 kDa polypeptide contains multiple HEAT repeats (named after its presence
in four proteins, Huntingtin, Elongation factor 3, α subunit of protein phosphatase 2A and Target of
rapamycin 1) [7], which forms alpha solenoid structures capable of forming molecular scaffolds [8–10].
Accordingly, HTT has many known cellular binding partners and implicated roles in a large number
of cellular processes [11]. HTT’s interactions with proteins such as Huntingtin-associated protein 1
(HAP1) [12,13] and Huntingtin-interacting protein 1 (HIP1) [14] regulate endocytic transport, while its
engagement of motor proteins of the kinesin family and dynein [15,16] facilitates microtubule-based
cytoplasmic, axonal and dendritic transport. HTT is also localized to the nucleus, where it interacts
with multiple transcription factors in transcriptional complexes [17–19]. HTT is known to have a role
in processes such as mitotic spindle orientation [20] (Godin and Humbert, 2011), biogenesis of the
primary cilium [21–23] and autophagy [10,24]. All the above could be linked to HTT’s function in
neurogenesis and nervous system development [20,22,25,26]. It is therefore possible that the disruption
of normal HTT function by the extended polyQ stretch could have a pathogenic role in HD neurons.

Neuropathology in HD has, however, been principally attributed to the polyQ repeat extension
found in the N-terminus of mHTT, as transgenic mice expressing only the 5′ fragment containing
an expanded repeat recapitulated HD features [27]. Such fragments could be generated in two ways.
The extended CAG repeat could cause aberrant splicing of exon 1 of HTT, resulting in a short
polyadenylated mRNA that is translated into an exon 1-encoded polypeptide [28]. HTT is also
enriched in proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) sequences and is
thus susceptible to cleavage by a number of disease-related or pathologically upregulated proteases,
including calpain, caspases and lysosomal proteases [29–36]. The polyQ-bearing N-terminal fragments
generated are prone to oligomerization and the formation of fibrillary aggregates [37], which may
be resistant to clearance [38]. Transcriptional inhibition when the polyQ tract containing mHTT
fragments is translocated into and aggregates in the nucleus is thus a major pathological mechanism
in HD. Perturbations of cytoplasmic and axonal transport processes as well as nucleocytoplasmic
transport [39,40] also contribute to neuronal pathology. Although aggregation-prone polyQ-containing
mHTT N-terminal fragments could recapitulate the disease in experimental models, the relative roles
of full-length and fragmented mHTT in the human disease are, however, still not fully understood.

The primary neurological symptoms of HD result from the disruption of neural circuits between
the cerebral cortex and the striatum—the corticostriatal pathway. Neurons in the striatum, particularly
the medium spiny projection neurons, are the earliest and most affected by HD pathology. Several
possibilities have been put forth to explain this specific susceptibility. Firstly, striatal neurons are
highly dependent on brain-derived neurotrophic factor (BDNF) from cortical projections, and BDNF
expression [41], as well as its axonal transport and delivery to the cortico-striatal synapses, is dependent
on HTT [42]. Furthermore, endocytosis, axonal retrograde transport and signaling from the
BDNF-bound tropomyosin receptor kinase B (TRKB) receptor-bearing signaling endosome in neurons
are also dependent on HTT [43]. Secondly, a striatum-enriched small GTP-binding protein, Rhes [44],
binds mutant HTT and promotes sumoylation of the latter, thus increasing its toxicity [45,46].
The combined pathological contributions of transcriptional and protein transport disruption by
mHTT could therefore be the primary causes underlying striatal neurons’ particular vulnerability to
mHTT neurotoxicity.

With the above in mind, mHTT pathology has been conventionally thought to be neuronal
cell autonomous, although striatal astrocytes have also been shown to contribute to neuronal HD
pathology [47]. However, accumulating evidence suggests that many toxic oligomers or aggregates
that are associated with different neurodegenerative diseases could be secreted extracellularly
and transferred intercellularly via extracellular microvesicles [48,49] and tunneling nanotubes
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(TNTs) [50,51]. Recent findings have also shown that cytoplasmic mHTT or its aggregates could
exit neurons, or be transmitted from one neuronal cell to another [52–55] via different modes of
unconventional secretion [56] and TNT [57]. Furthermore, secreted or intercellularly translocated
mHTT could initiate or seed mHTT aggregation in recipient neurons, and has been postulated to drive
disease progression in a prion-like fashion [55,58,59]. In the paragraphs below, I shall discuss what is
currently known about how cytoplasmic mHTT could exit a neuronal cell, or be otherwise transmitted
to other neurons or glia.

2. Unconventional Secretion and Intercellular Transport of Neuropathogenic Factors

Most of the common neurodegenerative diseases have unique and well-recognized pathogenic
proteins derived from over-expressed or mutant forms of key proteins, or their proteolytic products.
In general, these are prone to misfolding, olgomerization and the formation of amyloid or fibrillary
aggregates, which could overwhelm the capacities of the ubiquitin–proteasome pathway (UPS) [60]
or the autophagy machinery [61], thus impairing clearance. Interestingly, these pathological proteins
and their oligomers/aggregates can be found extracellularly, independent of neuronal death and cell
lysis. Accumulating evidence over the past decade has suggested that these extracellular secreted
pathological entities could propagate disease when taken up by neighboring neurons and glia.
As these proteins largely exist cytoplasmically upon translation and lack recognizable leader or
signal sequences for targeting to the classical secretory pathway [62,63], their mode of secretion is
necessarily unconventional [64–66], occurring largely via the generation of extracellular vesicles (EVs)
such as exosomes [67,68]. On the other hand, the transfer of such proteins between cells could also
occur via a more direct route—through intercellular tubular connections, termed TNTs [50,69,70].

EVs are a heterogeneous group of membrane-bound vesicles with sizes ranging from 10 nm
to a few µm in diameter [67]. The best studied amongst these in terms of the nervous system and
neurodegenerative diseases, are the exosomes and ectosomes [71,72]. Exosomes are 50–100 nm
vesicles first generated via intraluminal budding into multivesicular bodies (MVBs) and subsequently
released when MVBs fuse with the plasma membrane [67,68]. Ectosomes are larger particles
(typically >100 nm, up to 500 nm) that are shed directly from the plasma membrane sites [73] such
as the cilia [74]. Even larger membrane-bound extracellular structures such as apoptotic bodies
(>500 nm) and oncosomes (1–10 µm) could be generated from dying cells and tumors [75], respectively.
The EVs are known to carry a range of cargo, from small molecules to DNA/RNA to polypeptides,
and are associated with a myriad of physiological as well as pathological transmission roles [48,49].
The TNTs, first described by Gerdes’ laboratory [69], are a heterogeneous bunch of actin-based tubular
extensions that form physical connections between cells. The larger and more sophisticated amongst
these are open-ended conduits and could serve to transfer macromolecules and organelles such as
mitochondria [76,77] and lysosomes [78,79].

Perhaps the most extensively documented extracellular secretion of pathological molecules are those
associated with the most prevailing age-associated neurodegenerative diseases, namely Parkinson’s
disease (PD) and Alzheimer’s disease (AD). α-Synuclein [80], the major component of Lewy bodies found
in PD and other α-synucleinopathies [81] is secreted extracellularly. The unconventional secretion
of α-Synuclein occurs via extracellular vesicles [82,83], with exosomes most likely being the main
vehicle [84,85]. Such secretion is enhanced by mutation [86] and promoted by neuronal activity [84,87,88]
as well as autophagy failure or inhibition [89–91] and stress signaling [92,93]. Secreted α-Synuclein could
be taken up via endocytosis by neighboring cells [85,94,95] and could presumably transmit neurotoxicity
in this manner [90,96]. Intercellular transfer of α-Synuclein via TNTs has also been documented [79,97].
Exosomes could mediate the extracellular release of amyloid beta peptides formed in endosomes [98].
Tau [99], the hyperphosphorylated form of which is a component of the neurofibrillary tangles found
in AD and other tauopathies, is also unconventionally secreted via EVs and exosomes [100,101]. In this
case secretion is enhanced in certain proteolytic products [102] and by neuronal activity [103,104]. Again,
the intercellular transfer of tau via TNTs has been observed [50,105]. Pertaining to AD, another protein that
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is known to be unconventionally secreted is insulin degrading enzyme (IDE) [106,107], which other than
insulin also degrades the amyloid β-peptide (Aβ). IDE secretion via unconventional secretion has been
shown to underlie the effect of statins in reducing the amyloid load [108,109]. Another neurodegenerative
disease with known secreted pathological molecules is amyotrophic lateral sclerosis (ALS). Both wild-type
and ALS mutant forms of the Cu-Zn superoxide dismutase (or SOD1) can be secreted in an unconventional
manner [110–113]. This is likewise the case for two other ALS disease proteins, the RNA-binding
protein transactive response DNA binding protein of 43 kDa (TDP-43) [114] and fused in sarcoma
(FUS) [115], which is secreted via exosomes, with the former also transmitted between neurons across
axon terminals [116] as well as via TNTs [117].

Finally, it should be noted that unconventional secretion via exosomes [118] and other EVs, as well
as intercellular transfer via TNTs [119], has been documented earlier with the prion protein Scrapie
(PrPSc), the pathological agent for transmissible spongiform encephalopathies. Abnormally folded
PrPSc could multiply in cells by interacting with and driving the conformational conversion of cellular
PrPC to PrPSc. The cellular mechanisms responsible for the cell-to-cell spreading of prions has recently
been reviewed in detail by Vilette and colleagues [120].

A summary of the major neurotoxic agents that are unconventionally secreted or otherwise
intercellularly transferred is provided in Table 1.

Table 1. Major neurotoxic agents that are known to be unconventionally secreted in neurodegenerative
diseases. EV—extracellular vesicle; TNT—tunneling nanotubes.

Neurodegenerative Diseases Unconventionally Secreted
Neurotoxic Agent

Known Secretion/Intercellular
Transfer Mechanisms References

Alzheimer’s disease
Aβ peptides Exosomes [98]

Tau
EVs (including exosomes) [100,101]

TNT [50,105]

Parkinson’s disease α-Synuclein Exosomes [84,85]
TNT [79,97]

Amyotrophic lateral sclerosis

SOD1 Exosomes [113]

TDP-43
Exosomes [114]

TNT [117]

FUS Exosomes [115]

Huntington’s disease mHTT
EVs (including exosomes) [55,121]

TNT [57]

Prion disease PrPSc
Exosomes [117]

TNT [118]

3. Externalization and Intercellular Transfer of mHTT

HTT is ubiquitously expressed in human tissues and mHTT can be found in plasma and
cerebrospinal fluid (CSF) [122]. Cytoplasmic mHTT can be translocated extracellularly, and multiple
lines of evidence suggest that it can be transferred from cell to cell and inter-neuronally within the
CNS. Fibrillar polyQ peptide aggregates in the media could be internalized by mammalian cells in
culture, upon which these could gain access to the cytosolic compartment and become co-sequestered
in aggresomes [121]. In a human 293T cell culture model over-expressing HTT-exon 1 polyQ-Green
fluorescent protein (GFP) fusion constructs, both the CAG-repeat containing RNA and the polyQ-GFP
is found incorporated into EVs, and the latter could be taken up by a mouse striatal cell line [123].
In a Drosophila model where a human mutant N-terminal HTT fragment with a 138 residue polyQ
tract was specifically expressed in olfactory receptor neurons (ORNs), polyQ-containing protein
aggregates accumulate at the synaptic terminals, and these progressively spread throughout the fly
brain. These aggregates are internalized via endocytosis and accumulated within the neurons of
neighboring, as well as remote, brain regions, and caused the demise of some of the more susceptible
neurons [53]. Not all polyQ-bearing aggregates spread well in this model, as a polyQ-expanded HTT
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exon 1 fragment and a truncated ataxin-3 with a pathogenic polyQ expansion formed aggregates at
the ORN terminals but did not really go beyond this. Interestingly, genetic analyses also indicated
that the extracellular release and spread of aggregates requires two membrane trafficking components,
namely N-ethylmalemide–sensitive fusion protein 1 (NSF1), a general factor required for soluble
NSF attachment protein receptor (SNARE)-mediated intracellular membrane traffic, autophagy and
synaptic vesicle fusion, as well as dynamin, which is required for endocytosis. Furthermore, the transfer
of mHTT between host and grafted brain tissues appear possible, as mHTT aggregates were found
postmortem in intracerebral fetal neural allografts made previously in several HD patients [124].
The above findings attested to the transfer of mHTT aggregates to neighboring cells, especially those
connected by a neuronal circuit, but also to more remote locations from the source.

In an extensive study using the R6/2 HD mouse model [27], the transneuronal propagation
of mHTT was investigated in several experimental settings, including human embryonic stem cell
(hESCs)-derived neurons integrated within organotypic brain slices of the R6/2 HD mouse, an ex vivo
mixed-genotype cortico-striatal slice culture and transmission within the HD mouse corticostriatal
pathway in vivo [52]. In the first setting, hESCs were differentiated into NPCs, marked by GFP
and microinjected with R6/2 HD mouse brain slices. These appeared to form functional synaptic
connections with neurons from the brain slices. mHTT from R6/2 brain tissues spread to the cytoplasm
and nuclei of human neurons and resulted in pathological manifestations in terms of morphological
changes to cell soma and neurites. Interestingly, this mouse–human interneuronal transfer of mHTT
is inhibited by botulinum toxins, which cleaves the synaptic SNAREs [125], thus suggesting the
involvement of synaptic vesicle release-like mechanisms. Similar observations were also made with
human neurons stereotactically injected into a R6/2 mouse brain. In mixed-genotype corticostriatal
brain slice co-cultures, where tissues from the R6/2 cortex and wild-type mouse striatum were
combined, the formation of an extensive network of corticostriatal connections could be observed (but
such connections failed to form in a mixed culture of R6/2 striatum and wild-type cortex). mHTT
could spread from the R6/2 cortex to wild-type striatal medium spiny neurons (DARPP-32-positive
MSNs) that were remotely located from the corticostriatal contact area. mHTT that had spread
in vivo within the corticostriatal pathway of mice was investigated by co-injection with viral vectors
driving the expression of Q72-Htt-Exon1 and synaptophysin-GFP into the cortex of wild-type mice.
In this way, the presynaptic termini of exogenous mHTT expressing cortical neurons connected to
the striatum could be marked. Areas with and without a synaptophysin-GFP–labeled network of
presynaptic terminals could be discerned in the striatum. Areas with high levels of synaptophysin-GFP
labelling contained a high proportion of DARPP-32-positive MSNs displaying intracellular mHTT
aggregates, whereas those with low synaptophysin-GFP signals had correspondingly low number
of MSNs with mHTT aggregates. mHTT expressed in cortical neurons could therefore spread via its
striatal projections to striatal neurons. In another study, the injection of HD patient-derived fibroblasts
or induced pluripotent stem cells (iPSCs) generated from these resulted in progressive gliosis and
inflammation, striatal neuron loss as well as HD-like motor and cognitive impairment in wild-type
mice [55]. These studies affirmed that transfer of mHTT between tissues is possible and that it could
likely be a mode of disease propagation from affected to healthy neurons.

Interneuronal transfer of mHTT could also occur via TNTs [57]. Aggregates that formed from
mHTT with 68Q repeats, formed after expression by transient transfection, could be efficiently
transferred between differentially-labeled CAD neural cell lines independent of release by dying
cells. This transfer required or was enhanced by cell–cell contact, and fluorescently-labelled aggregates
could be visualized in TNTs that form between cells. Interestingly, the TNT connection between
cells could be moderately enhanced by mHTT-68Q over that of a lower repeat number (mHTT-17Q).
TNT-mediated mHTT-68Q transfer also occurred with cultured primary cerebellar granule neurons and
aggregates, and TNT-like connections were apparently observed between neurons and contaminating
astrocytes. These findings indicate that mHTT, like α-Synuclein and tau, could spread intercellularly,
between neurons and between neurons and glia, via direct physical connections.
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4. Mechanisms Underlying the Extracellular Secretion of mHTT—Exosomal, Autophagic or
Lysosomal Secretion?

How exactly does the unconventional secretion of mHTT peptides or their aggregates occur?
From the findings described above, the exact mechanism of secretion has remained unclear. Although
the involvement of exosomes is always suspected, whether exosomes are a major mode of extracellular
secretion of mHTT remains unclear. There is evidence for mHTT secretion in exosomes. In a study of the
transmission of mHTT from HD patient fibroblasts, mHTT is found within exosome marker-containing
microvesicles that are release by these fibroblasts, and these could be taken up by cultured cells [55].
In another report, tissue transglutaminase 2 was shown to promote the assembly of a protein
complex that included mHTT and the exosomal markers ALG-2-interacting protein X (ALIX), tumor
susceptibility gene 101 protein (TSG101), as well as the BCL2-associated athanogene 3 (BAG3+,
a co-chaperone involved in the clearance) of mHTT. The assembly of this complex may facilitate the
selective recruitment of mHTT into exosomes [126]. On the other hand, mHTT and its aggregates
have also been shown to be absent in exosomes [127]. The requirement for membrane fusion factors
NSF [53] and SNAREs [52] demonstrated in some reports could imply a few different mechanisms.
One possibility would be release by a SNARE-requiring mechanism akin to synaptic vesicle exocytosis.
However, no clearly-defined mechanism that is able to accommodate large mHTT aggregates is
currently known.

Another prominent unconventional secretion mechanism that has emerged recently involves
autophagy [128] and the Golgi reassembly stacking protein (GRASP) [63–65]. This pathway is
responsible for the unconventional secretion of both membrane [129] and cytosolic proteins [130–132].
The exact mechanism underlying this pathway is yet unclear, but it could involve the fusion of
amphisomes generated from autophagosome with the plasma membrane [133]. However, although
mHTT aggregates do induce autophagy [134], there is no evidence that mHTT secretion is dependent on
autophagy. On the other hand, a very recent report on the unconventional secretion of cytoplasmic fatty
acid binding protein 4 (FABP4) has illustrated the existence of another pathway that is independent of
GRASP and autophagy, but involves cargo enclosure within endosomes and secretory lysosomes [135].
Regulated exocytosis based on lysosome-like organelles has been documented extensively in immune
cells [136], but even conventional lysosomes in many cell types could apparently fuse with the
plasma membrane in response to increases in intracellular free Ca2+ concentration in a calcium sensor
synaptotagmin-dependent manner (reminiscent of synaptic vesicles in axon terminals) [137].

In this regard, the importance of an unconventional lysosome secretion pathway for mHTT was
indeed demonstrated recently [56]. Trajkovic and colleagues found that mHTT expressed in Neuro2A
cells is secreted preferentially over wild-type HTT in a manner that is both brefeldin-A and Arf1
dominant-negative mutant insensitive (the latter factors disrupt the endoplasmic reticulum–Golgi
transport required for classical secretion). Interestingly, extracellular mHTT in this case was found
largely in a soluble form (i.e., remaining in the supernatant after a 100,000× g centrifugation). Inside
the cell, a portion of the mHTT was found within membranous compartments, the bulk of which
colocalized with the late endosome/lysosome (LE/Lys) markers, Lysosome-associated membrane
protein (Lamp) 1 and 2. The silencing of synaptotagmin 7 reduced mHTT secretion from Neuro2A
cells as well as a striatal cell line and primary cortical neurons, as did chemical cross-linking-based
ablation of the LE/Lys compartments. The authors found that mHTT is preferentially was targeted to
LE/Lys compared to wild-type HTT, although this lysosomal exocytosis is not likely a major mHTT
clearance pathway. mHTT secretion is sensitive to inhibitors of neutral sphingomyelinase (NS) and
phosphatidylinositol 3-kinase (PI3K), both of which appeared to be important for the endosomal
targeting of mHTT. Therefore, other than the TNTs, lysosomal-based secretion is the most-documented
mode of mHTT unconventional secretion.
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5. Prion-Like Spread of mHTT Aggregates?

Prion protein (PrP) [138] could propagate disease by the transmission of their aberrant folding
states, which are usually due to an increase in β-sheet structures that promote aggregation
to other cellular proteins [139]. Prion-like propagation has been proposed for many of the
neurodegenerative-disease-unique neurotoxic factors that are secreted extracellularly, including
α-Synuclein [140], β-amyloid [141], tau [142] and TDP-43 [143]. mHTT has been likewise associated
with a prion-like mode of propagation and interneuronal transmission [55,58]. In cultured cells,
internalized and cytoplasmically translocated polyQ aggregates could selectively recruit the soluble
cytoplasmic proteins with which they share homologous amyloidogenic sequences, with these being
co-sequestered in aggresomes (which are basically aggregates of misfolded proteins) together with UPS
components and cytoplasmic chaperones [122]. Structural analyses indicate that the expanded polyQ
region of mHTT adopts a β-sheet structure [144]. In a Drosophila model of phagocytic glia clearance
of engulfed neuronal mHTT aggregates, these appeared to effect a prion-like conversion of soluble,
wild-type HTT in the glial cytoplasm in a manner that is dependent on the glial scavenger receptor,
Draper [58]. Both synthetic polyQ oligomers as well as CSF from HD transgenic rats and human HD
subjects were shown to seed mHTT aggregation in intact cells and lysates. The synthetic seeds were
shown by light and ultrastructural analysis to nucleate and enhance mHTT aggregation, which is
reflective of a prion-like propagation mechanism [54]. Of course, like the prion protein [119,145],
mHTT could be transferable intercellularly in experimental models through both exosomes and
TNTs. However, although mHTT aggregates could potentiate further aggregation and wild-type HTT
could be included in these aggregates, there is no clear evidence that mHTT or its aggregates are
able to impart a conformation change to wild-type HTT in a classic, prion protein-specific manner.
Of course, there is also no evidence that HD could be transmissible in a prion disease-like manner
between individuals.

Despite the suggestive evidence above, whether the spread of mHTT from some initiating neurons
to others plays a significant role in HD pathology remains questionable. The prion disease family
member, Creutzfeldt–Jakob disease (vCJD) in humans is usually fatal within a short timespan upon
onset of neurological symptoms (although others, like Kuru, have a much longer period of incubation).
On the other hand, HD, particularly the adult onset form, has a typically long disease survival
timespan of 10–20 years upon symptom onset. The transmission of human mHTT and the HD disease
from human tissues to experimental animals has been demonstrated [55], but human-to-human
transmissions via transplantation have not yet been known to occur. The notion of a prion-like
propagation of tau has recently been critically appraised and questioned [146] and the notion of mHTT
transmission in a prion-like manner would likewise need to be appraised.

6. Epilogue

In the paragraphs above, I outlined and discussed the current knowledge with regards to the
unconventional secretion and intercellular transfer of mHTT. As for several other pathological factors
of other prominent neurodegenerative disorders, cytoplasmic mHTT and its aggregates could be
exported via exosomes (or other yet-unconfirmed forms of EVs), lysosome-based exocytosis and
could also be transported intercellularly via TNTs. These possibilities are summarized in Figure 1.
Importantly, emerging evidence suggests that mHTT aggregates, originating in a few neurons, perhaps
with functional impairments, could potentially be propagated within the CNS via such intercellular
transfer mechanisms. In the case of mHTT aggregates seeding the misfolding or aggregation of other
mHTT oligomers or even wild-type HTT in a prion-like fashion, pathological transmission could be
amplified. The latter notion would require further investigations to establish its true significance in
the human disease etiology. Such investigations may benefit from the development of HD models
with mutant HTT knock-in in large animals [147]. From another perspective, investigations could
also benefit from the development of human brain organoids, particularly those that might eventually
recapitulate some form of corticostriatal connections. Mosaic organoids developed from a mixture of
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normal and HD patient-derived induced pluripotent stem cells harboring mHTT could potentially
allow a better gauge of the contribution of intercellular transfer and propagation of mHTT aggregates
from diseased neurons to healthy neighbors (harboring either wild-type HTT or mHTT) and of
HD pathology.

How would our accumulated knowledge on the unconventional secretion of mHTT and
intercellular propagation help with therapeutic development for HD and other neurodegenerative
diseases? If mHTT intercellular transport and seeding of neighboring neurons leads to mHTT
accumulation that overwhelms the cellular clearance machineries, perhaps preventing such
unconventional secretions could be beneficial. In this regard, we have seen how the NS and PI3K
inhibitors could effectively reduce LE/Lys targeting and lysosome-based exocytosis. These and
perhaps other compounds could be developed as alternatives, or as complements, to compounds that
dissolve or clear mHTT aggregates. These compounds could be effectively tested in mouse HD models
for possible protective effects in terms of behavioral readouts, MSN demise, as well as survival end
points. In their investigations, Trajkovic et al. concluded that lysosomal secretion is not the main
clearance mechanism of mHTTs [56], but lysosomes constitute a compartment in aging cells where
aggregates like those of mHTT could accumulate [148]. Enhancing lysosomal function and clearance
has been shown to restore the youthfulness of neural stem cells and enhance the latter’s ability to be
activated. Promoting and enhancing lysosomal function could conceivably also prolong the survival
of non-dividing neurons.

Figure 1. A schematic diagram illustrating the various modes of mutant Huntingtin (mHTT)
unconventional secretion and intercellular propagation. Secretion from one neuron (I) could occur via
exosomes when luminal vesicles from the multivesicular body (MVB) fuse with the plasma membrane.
These exosomes could be taken up endocytically by another neuron (II). Secretion could also occur
via a lysosome-based mechanism, with the release of non-vesicular mHTT. Interneuronal transfer,
particularly between neurons (I and III) connected within a neural circuit, could occur via vesicles
generated at the synaptic terminals. Intercellular transfer of mHTT aggregates could also occur via
tunneling nanotubes (TNTs). N—nucleus. See text for more details.
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