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Abstract: Innate immune cells form an integrative component of the tumor microenvironment (TME),
which can control or prevent tumor initiation and progression, due to the simultaneous processing of
both anti- and pro-growth signals. This decision-making process is a consequence of gene expression
changes, which are in part dependent on post-transcriptional regulatory mechanisms. In this context,
microRNAs have been shown to regulate both recruitment and activation of specific tumor-associated
immune cells in the TME. This review aims to describe the most important microRNAs that target
cancer-related innate immune pathways. The role of exosomal microRNAs in tumor progression and
microRNA-based therapeutic strategies are also discussed.
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1. Introduction

In the last decade, local immune response has emerged as key factor in the modulation of the multistep
process of cancer progression (reviewed in [1,2]). Innate and adaptive immune cells not only infiltrate
tumors themselves, but also the tumor milieu. The highly heterogeneous tumor microenvironment (TME)
consists of fibroblasts, immune cells, endothelial cell progenitors, extracellular matrix components,
blood, and lymphatic vessels (reviewed in [3,4]). Altogether, these different cell types contribute to
tumor initiation and progression, by regulating a fine balance between anti- and pro-growth signals.
Indeed, the immune system and tumor cells constantly engage each other in a dynamic process that
can have synergistic or opposite outcomes. These include eradication of the tumor, according to
the “tumor surveillance hypothesis”, coined by Burnet and Thomas in 1957 [5-7], or the escape of
tumor from immune recognition [1,8]. Evidence supporting the involvement of the immune system
in the recognition and eradication of developing tumors was provided by in vivo experiments on
immunodeficient mice, including Rag2~/~, TENy~/~ or Prf~/~ genetic backgrounds [9-13]. These studies
showed higher incidence of spontaneous and carcinogen-induced solid tumors as well as an increased
incidence of lymphomas [13]. However, cancer cells can also generate their own immunosuppressive
microenvironment that can be traced to the transcriptional regulatory level [14].

In this review we will focus on the role of miRNAs as molecular determinants in tumor progression
and macrophage-mediated immune surveillance.

1.1. MiRNA Biogenesis and Maturation: A Brief Overview

MicroRNAs (miRNAs) are small noncoding RNAs endogenously expressed in almost all
eukaryotes, and are considered major epigenetic factors in post-transcriptional regulation of gene
expression [15-18]. These 20-2 nucleotide (nt) molecules are mainly transcribed by RNA polymerase
IT as primary miRNA transcripts, termed pri-miRNAs [19,20]. They are then subjected to an extensive
processing in the nucleus as substrates of a large protein complex called the microprocessor, that includes
the RN Ase Il enzyme Drosha and its partner DiGeorge syndrome critical region 8 (DGCRS8) [16,21-23].
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This first maturation step transforms pri-miRNA into stem-loop-structured miRNA precursors
(pre-miRNAs), which are then exported to the cytoplasm through the Exportin 5 (Xpo5) system [21,24,25].
There, another RNAse III protein, called Dicer, cuts pre-miRNA molecules into mature miRNAs [16,21,26].
Suitably processed, mature miRNA molecules are finally incorporated into the RN A-induced silencing
complex (RISC) [27,28]. The core component of RISC is a member of the Ago protein family
(most commonly Ago2), which brings together the templating miRNA and its target mRNA [16,29].
miRNA-loaded RISC specifically recognizes short sequences of 6-7 nt, located in the 3’ untranslated
region (UTR) of target mRNAs, that are complementary to the so-called “seed region”, located in
the 5" end of the miRNA molecule [30-32]. MiRNAs can either induce mRNA degradation or
inhibition of translation, depending on the degree of complementarity between the 3'UTR and the
seed region [31,33,34].

1.2. Dysregulation of miRNA Expression and Biogenesis in Cancer

It has been estimated that approximately 30-60% of human protein-coding genes are regulated by
miRNAs [35-40]. MiRNAs participate in modulating several biological processes, including differentiation,
apoptosis, cell cycle, proliferation, and the immune response [41,42]. Alterations in miRNA expression
profile have been associated with several diseases, including cancer [43—46].

Deregulated miRNA expression favors acquisition of cancer hallmarks as well as affects the tumor
microenvironment, leading to development and progression of tumor.

Both genetic and epigenetic mechanisms have been involved in miRNA expression deregulation
in cancer; including amplification or deletion of miRNA genes, acetylation and methylation of miRNA
promoter, aberrant transcriptional control and defects in the miRNA biogenesis machinery [47-49]
(Figure 1).
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Figure 1. Deregulation of microRNA (miRNA) biogenesis during cancer initiation and progression.

During cancer initiation and progression, deregulation of miRNA expression can occur at
different steps of miRNA biogenesis. Gene duplication of the miRNA promoter can lead to enhanced
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transcription of the pri-miRNA molecule. Aberrant methylation of the miRNA promoter, and reduced
expression of factors involved in miRNA processing and mutation of the seed site in the 3'UTR of
mRNA targets can abrogate miRNA maturation or functional activity.

1.2.1. Amplification and Deletion of miRNA Genes

More than 50% of miRNA genes are located in fragile sites or cancer-associated genomic
regions [47,50]. The first study of altered miRNA expression in cancer showed that miR-15 and
miR-16, targeting the anti-apoptotic factor B cell lymphoma 2 (BCL2), are located at a chromosomal
region (13q14), frequently deleted in the majority of chronic lymphocytic leukemia (CLL) cases [50].
Since then, other studies in both human and mice cells demonstrated the association between genomic
location of miRNA and cancer susceptibility [50,51]. In 2010, Lagana et al. investigated the location
of more than 700 miRNA loci at chromosomal fragile sites and found that 44% of them were located
in genomic regions frequently translocated in cancer. The most frequent deleted miRNAs were the
miR-204 and the let-7 family, both reported as onco-suppressor miRNAs [52-54].

1.2.2. Epigenetic Alterations

miRNA loci are frequently amplified or deleted in concert with epigenetic alterations. In some cases
they show aberrant epigenetic marks, such as DNA hypo/hypermethylation and hypo/hyperacetylation
at the promoter of miRINAs, or repressive histone marks, that lead to the silencing of the miRNA
gene [55-59] (Figure 1). Genome-wide screening studies in cancer cells identified specific epigenetic
patterns associated with active or repressed miRNA promoter. In particular, tri-methylation of histone
H3 lysine 4 (H3K4me3) and acetylation of histone H3 lysine 9 or 14 (H3K9ac and H3K14ac, respectively)
are hallmarks of active miRNA gene promoters. By contrast, H3K9me2, H3K9me3 and H3K27me3 are
marks of repression [33,43]. The characterization of specific epigenetic marks on miRNA promoters
enabled the identification of epigenetically dysregulated miRNAs in both solid and hematological
malignancies [60,61].

Aberrant DNA methylation is another frequent epigenetic mechanism of miRNA gene silencing.
In normal cells, the CpG island is unmethylated and the chromatin is associated with active histone
modifications (H3K4me3, H3K3me2, H3K9ac and H3K14ac). In cancer cells, miRNAs that exert a
tumor suppressor function are downregulated via CpG island hypermethylation of the corresponding
gene, while miRNAs with a pro-tumoral activity are often upregulated via hypomethylation of
their CpG island. For instance, hypermethylation of CpG island at the promoter of members of
the miR-34 gene family (miR-34a, miR-34b, and miR-34c), frequently occurs in multiple cancer
types, refs. [55,61] and the aberrant methylation of miR-34 has also been associated with increased
frequency of cancer metastasis and invasion [16,31]. Another miRNA epigenetically silenced in both
solid and hematological malignancies is the miR-124 family (miR-124-1, miR-124-2, and miR-124-3),
a tumor suppressor miRNA, which targets RAC1 and cyclin-dependent kinase 6 (CDK®6) [47,48,62,63].
Its reduced expression in all patients results in the activation of CDK6 and the phosphorylation of
retinoblastoma (Rb) protein [44].

1.2.3. Defects in the miRNA Biogenesis Pathway

Downregulation of enzymes and cofactors involved in the miRNA maturation process can
also lead to dysregulated miRNA expression in cancer cells. Evidence reported in the last decade
demonstrates that many proteins involved in miRNA processing function as haplo-insufficient tumor
suppressors. For instance, mutations of Xpo5 that trap miRNA transcripts in the nucleus correlate
with carcinomas characterized by microsatellite instability [64,65]. Similarly, partial deletions of Dicerl
and Drosha have been shown to promote tumorigenesis in vitro and in vivo [62,66]. Moreover, recent
findings demonstrated that two subunits of the microprocessor: the DEAD-box RNA helicase p68
(DDX5) and p72 (DDX17), required for the recruitment of the microprocessor to some pri-miRNAs,
are also substrates of the tumor suppressor p53 [67]. In response to DNA damage, p53 interacts
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with p68 and enhances the post-transcriptional maturation of miRNAs with growth-suppressive
function [67,68]. Conversely, mutant versions of p53 have been shown to inhibit post-transcriptionally
the maturation of a subset of onco-suppressor miRNAs, by sequestering the RNA helicase p72/82
from the microprocessor complex [68]. These findings suggest that p53 governs a tumor suppressive
program that affects miRNA biogenesis in a transcription-independent fashion.

1.2.4. Mutations of miRNA Target Genes

A few studies also reported genetic alterations in miRNA target sites in the 3'UTR of
onco-suppressor genes [69,70]. In particular, two different papers published in 2007 described
the presence of chromosomal rearrangements at the 3'UTR of the HMGAZ2 locus, resulting in the
escape of HMGA2 from let-7 regulation and the consequent promotion of tumor formation [70,71].
Additionally, a clinical study of 87 non-small cell lung cancer patients published by Chin et al. [72]
identified a single nucleotide polymorphism (SNP) in the 3'UTR of the KRAS oncogene. This variant
allele caused the disruption of let-7e-mediated regulation of KRAS and the consequent upregulation of
KRAS expression correlating with increased cancer risk [72].

2. Role of miRNAs in Macrophage Polarization

Macrophages are key players at the interface between innate and adaptive immunity, acting as
antigen-presenting cells, phagocytes and able to promote inflammation and also its resolution through
differentiated immune lineages. One of the most remarkable characteristics of macrophages is their
plasticity and heterogeneity. According to their responsiveness to specific environmental cues, they are
generally classified into two main types: M1 (classically activated) and M2 (alternatively activated)
macrophages, with each displaying a characteristic gene expression profile and functional phenotype.
M1-polarized macrophages are potent antimicrobial effector cells, specialized in the defense against
intracellular pathogens. They are responsive to pro-inflammatory stimuli like interferon-y (IFNv)
and lipopolysaccharide (LPS). Both IFNvy- and LPS-mediated activation of TLR4 converge on the
activation of: nuclear factor kappa-B (NF-«kB), activator protein 1 (AP-1) and activator of transcription
1 (STAT1), leading to the release of pro-inflammatory cytokines (i.e., TNF«, IL-12, IL-1, IL-6) and
chemokines (i.e., chemokine (C-C motif) ligand 2, CCL2, chemokine (C-X-C motif) ligand 10, CXCL10).
By contrast, M2-polarized macrophages are specialized in defending against extracellular pathogens
and are induced by a broader range of stimuli, including IL-4, IL-10, IL-13, and glucocorticoids.
M2 macrophages are reviewed in [73] (Table 1).

Several studies have profiled the expression of miRNAs in M1- and M2-polarized human
and murine macrophages, by using microarray and quantitative polymerase chain reaction (QPCR)
techniques. A report published in 2013 by Zhang et al. [74] showed the expression profile of murine
bone marrow-derived macrophages (BMdM), identifying 109 miRNAs differentially expressed between
M1- and M2-polarized conditions. More specifically, miR-155, miR-181 and miR-451 were significantly
upregulated in M1 macrophages, whereas miR-125a-5p, miR-146a, miR-145-5p, miR-143-3p were
more highly expressed in M2 macrophages. Later studies confirmed the upregulation of miR-155
in classically activated macrophages and the increased expression of miR-146a, miR-125b-5p and
miR-127 in M2 macrophages [75]. Other miRNAs associated to M2 polarization were also identified;
in particular miR-223 and let-7c [76].

miR-155 is one of the first miRNAs characterized as involved in both innate and adaptive
immunity [77-80]. It plays a central role in the acquisition and modulation of M1/M2 profile, as
it affects the expression of several genes important for the immune balance. miR-155 directly targets
the expression of the IL-13 receptor «1 (IL13Roc1), thereby inhibiting STAT6 activation and promoting
M1 polarization [81]. Genes related to M2/pro-Th2 phenotype in macrophages indirectly regulated by
miR-155 include CCL18, SERPINE, CD23 and DC-SIGN [81].
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Table 1. MiRNAs expressed in myeloid cells having an impact on tumorigenesis. MiRNAs having a role in macrophage polarization, tumor invasion and

immunosuppression are here listed (1 = increased; | = decreased).

miRNA Expression Targets Phenotype

Reprograms pro-tumoral M2/TAM
miR-155 1 M1 macrophages C/EBPg, SHIP1, IL13R«1, SMAD2/3 macrophages to M1
pro-inflammatory macrophages

miR-125b 1 M1 macrophages IRF4 T responsiveness to IFNy 1 tumor killing

miR-127 1 in M2 macrophages | by inflammation DUSP1 1T M1l- and | M2-related genes Macrophage Polarization

1 M2 polarization and inflammation

miR-146a 1 M2 macrophages NOTCHI, INHBA, PPARy, 1 M1 polarization
miR-223 } TAM IL1B3, IL-6 T M2 polarization
let-7¢c 1 in M2 macrophages | by inflammation C/EBPS, PAK1 1 M2- and | Ml-related genes
miR-511-3p + TAM ROCK?2 } pro-tumoral gene signature of TAMS and
J tumor growth . .
- - Tumor invasion
miR-155 4 M1 macrophages SHIP1 T anti-tumor immunity. MiR-155 KO myeloid

cells induce faster tumor growth

Required for tumor growth and the generation
miR-155 T MDSC SOCSs1 of CD4* Treg cells. MiR-155 KO mice are
resistant to carcinogenesis

Regulates cell cycle progression; it induces arrest

miR-494 TMDSC PTEN in G2/M and increased inflammation
- | MDSC-dependent suppression of CD4* and
miR-20a TMDSC STAT3 CD8" T cell response .
Immune suppression (MDSC)
. Suppresses differentiation of tumor induced-
miR-223 L MDSC MEF2C CD11bGr14+MDSC
miR-21 1T MDSC SHIP1 1 proliferation and survival
- 1T MDSC expansion and proliferation
miR-690 TMDSC C/EBPa J terminal differentiation
—— 1 MDSC ability to suppress Ag-specific CD4*
miR-17-5p TMDSC STAT3 and CD8* T cell response
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Other miRNAs that promote M1 polarization are miR-125b and miR-127. Taganov et al.
demonstrated that miR-125b overexpression enhanced responsiveness to IFNYy, through the targeting
of IRF4 and increased expression of pro-inflammatory cytokines [82]. These alterations in cell signaling
and gene expression also resulted in increased killing of EL4 tumor cells both in vitro and in vivo [82].

Promotion of the M1 phenotype by miR-127 is mechanistically related to the inhibition of Bcl6
expression, which inhibits the phosphatase Duspl. Reduction of Duspl levels lead to increased
phosphorylation of JNK and the consequent induction of the inflammatory response. Accordingly,
knockdown of miR-127 suppressed the expression of M1 signature genes and promoted the
transcription of M2-related genes [83].

One of the first miRNA showing anti-inflammatory properties associated with M2 polarization
is miR-146a. Transfection of peritoneal macrophages with miR-146a reduced the expression of M1
phenotype markers (e.g., iNOs, CD86, TNF«, IL-12 and IL-6), and increased the production of M2 marker
genes (e.g., Argl, CCL17, CCL22 and CD206) [84]. Mechanistically, miR-146a promotes M2 polarization
at least in part by targeting Notch1, PPARy and inhibin BA subunit of activin A (INHBA) [84,85].

miR-223 and let-7c have been shown to initiate M2 polarization in murine RAW264.7 macrophages.
Enforced expression of miR-223 lead to the inhibition of LPS-dependent release of IL-13 and IL-6 [86].
Similarly, overexpression of let-7c reduced the expression of M1-related genes (i.e., iNOS and IL-12)
and increased levels of M2 markers (i.e., FR-$3), via targeting of C/EBP-5 [87] and PAK1 [88].

3. The Fine Balance of the Innate Imnmune Tumor Response

While the importance of adaptive immunity in tumor surveillance is recognized, the role of innate
immune cells in this context has been subject to extensive debate. Evidence demonstrates that innate
immune response can be critical in tumor prevention, but also in its initiation and progression. The final
outcome of pro- versus anti-tumoral innate immune response is dependent on the TME, which first
primes and then reinforces the differentiation and response of leukocytes recruited or already present
in situ. Tumor milieu composition is not static, but dynamically evolves with tumor progression
to promote growth and metastatic potential of cancer cells. Increasing evidence indicates that the
majority of solid tumors are strictly linked to a chronic inflammation that reciprocally affects the
cellular and molecular composition of the TME. Chronic inflammation is induced by pro-inflammatory
mediators, released by myeloid cells. During the first stages of tumor formation, pro-inflammatory
macrophages (e.g., M1 macrophages) represent the predominant type of myeloid cells involved.
M1 macrophages not only release pro-inflammatory mediators, but are also characterized by increased
phagocytic ability [89]. However, chronic inflammation can create a mutagenic microenvironment,
causing genomic instability in the cells present. Due to this genetic instability, cancer cells acquire
features that render them resistant to pro-inflammatory immune response and able to evade tumor
immunosurveillance, promoting M2 macrophages for that purpose [90,91]. An example of an immune
escape mechanism exploited by cancer is the upregulation of CD47 expression on tumor cells of patients
affected by myeloid leukemia. CD47 is a pentaspanin, ubiquitously expressed on mammalian tissues,
also known as integrin-associated protein (IAP) [92]. The engagement of CD47 with signal regulatory
protein alpha (SIRPx) expressed on macrophages, leads to inhibition and evasion of phagocytosis [93-95].

A second step in cancer progression is the infiltration of malignant tumors by pro-tumor macrophages:
a heterogeneous population predominantly composed by tumor-associated macrophages (TAMs) and
myeloid-derived suppressor cells (MDSCs). They both play a critical role in malignancy by promoting
tumor growth, angiogenesis, and lymph node metastasis [96]. The dual role of macrophages in both
preventing and promoting cancer progression reflects the complexity of the innate immune system in
tumor development. Emerging evidence shows that this is apparent dualism is not due to recruitment
of distinct differentiated cell types, but is rather from the result of extracellular stimuli as well as
genetic and epigenetic changes that dynamically shape the innate immune cells [97]. Quality and
duration of the innate immune response will ultimately dictate the fate of cancer development and the
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consequent clinical prognosis. In this context, the molecular mechanisms of crosstalk between cancer
and immune cells are object of extensive studies and still remain to be extensively elucidated.

4. miRNAs Involved in Tumor Immunosurveillance

Tumor immunosurveillance is a well-established mechanism for regulation of tumor growth.
In this regard, most studies have focused on the role of T- and NK-cells as critical immune effector
cells (reviewed in: [98-100]). However, TAM play a major role in the recognition and clearance of
foreign and damaged cells. They can infiltrate solid tumors and modulate T cell activity within the
TME [101-104]. The general consensus is that TAM are usually pro-tumorigenic [105]. They are recruited
by tumor-derived chemokines and produce low levels of inflammatory cytokines, promote Th2-T cell
response, favor wound healing, and increase angiogenesis and metastases [106-108].

MDSCs are among the major myeloid cells responsible for cancer immune evasion [109].
They represent a heterogenic population of immature myeloid cell progenitors, macrophage precursors,
granulocytes and dendritic cells (reviewed in [110,111]). They can promote tumor growth by enhancing
angiogenesis or suppressing innate and adaptive immune responses [112-114]. In particular,
MDSCs suppress T-cell responses by secretion of immune modulatory factors [75,115], restriction of T cell
homing [116], induction of Tregs [117], suppression of NK cell cytotoxicity [118,119], promotion of M2
macrophage differentiation [120], and modulation of the priming activity of mature dendritic cells.
Although TAMs and MDSCs are often regarded as separate entities, they share many characteristics
in terms of gene expression profile [121]. For instance, they both require CCL2/CCR2 signaling for
their recruitment to tissue sites [122,123]. Extensive studies provided evidence relative to aberrant
expansion and accumulation of MDSCs in tumor models, and the molecular mechanism involved has
started to be elucidated [124-126].

Recently, miRNAs have been identified as important determinants of TAM pro-tumoral activity
as well as for the accumulation, expansion and tumor promoting function of MDSCs. A paradigmatic
example is represented by miR-155, which mediates the antitumor potential of myeloid cells in early
stages of breast cancer carcinogenesis [87]. miR-155 knockdown in myeloid cells induces faster tumor
growth, reduction of M1-macrophages and enrichment of pro-tumor cytokines within tumor milieu.
The proposed molecular mechanism to explain the observed phenotype involves the regulation of
SHIP1, a major negative regulator of the pro-inflammatory PI3K/AKT pathway. The inhibition
of this pathway was demonstrated to revert the common pro-inflammatory and pro-tumor events
mediated by AKT activation [77,127]. miR-155 is also fundamental in the recruitment of MDSCs
to the tumor site. In particular, it has been recently demonstrated to mediate the recruitment of
MDSCs in glioma [128]. Similarly, miR-494, whose expression is induced by tumor-derived factors,
enhances CXCR4-mediated chemotaxis of MDSCs and also modulates the intrinsic apoptotic pathway
by targeting phosphatase and tensin homolog (PTEN) [82]. This results in increased activity of
the Aktl pathway and upregulation of MMPs, involved in tumor invasion and metastasis [82,129].
Other miRNAs such as miR-223, miR-21, and miR-690, have been recently described as important
factors that affect differentiation and functional activity of MDSCs [130,131]. miR-223 is largely
expressed in myeloid cells and downregulated in tumor associated MDSCs. It was first characterized
as negative modulators of granulocytes differentiation and activation [132], and then demonstrated
to suppress differentiation of tumor-induced CD11b*Gr1* MDSC [133]. miR-21 is upregulated in
bone marrow-derived and splenic MDSCs. It regulates STAT3 activation by targeting phosphatase
and tensin homolog (PTEN) protein [134]. miR-690 is upregulated in EL-4 tumor-elicited MDSCs.
A study published in 2013 by Hedge et al. demonstrated that miR-690 maintains MDSCs at their
immature immunosuppressive state by targeting CEBP/ «, a transcription factor involved in cell cycle
progression and terminal differentiation of myeloid cells [135].
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5. TAM-Derived miRNAs in Cancer-Related Inflammation

Inflammation has been defined in 2009 as a hallmark of cancer [136]. Chronic and persistent
inflammation can predispose cells to carcinogenesis and contribute to cancer development.
Cancer-associated inflammation is characterized by the presence of infiltrating leukocytes, cytokines,
chemokines, matrix-degrading enzymes and growth factors. This persistent inflammatory state can
be initiated by microbial, viral or parasitic infection, and is responsible for the pathogenesis of about
15-20% of human tumors [137]. However, even tumors that are not epidemiologically linked to
pathogens are characterized as having inflammatory infiltrates. Two general molecular pathways
have been proposed to describe the interaction between inflammation and cancer: the intrinsic and
the extrinsic pathways (reviewed in [131,137,138]). The intrinsic pathway consists of a series of
genetic events (e.g., activation of oncogenes, inactivation of tumor suppressor genes) leading to
neoplastic transformation that initiates inflammation-related programs. In the extrinsic pathway,
tumor-infiltrating leukocytes, in particular macrophages, establish a state of chronic inflammation.
Thus, both pathways converge in the activation of pro-inflammatory transcription factors in cancer
cells and in the subsequent production of inflammatory mediators (i.e., cytokines, chemokines and
prostaglandins) [139]. Evidence suggests that the inflammatory microenvironment so created further
induces genetic instability in developing tumor cells, and promotes further infiltration by resident
immune cells such as macrophages [139,140], MDSCs [141], neutrophils [142], and mast cells [143,144].
In this context, TAMs represent a central linker between chronic inflammation and cancer [139,145].
Regardless of their origin, these immune signals present in the TME play a crucial role in all stages
of cancer evolution, from initiation to metastasis [101,146,147]. The release of pro-inflammatory
mediators represents a central step in the cross talk between immune and cancer cells. It is driven
by the activation of key transcription factors in response to different upstream stimuli (e.g., infection
and pro-inflammatory cytokines) [145]. Among them, NF-kB and signal transducer and activator
of transcription 3 (STAT3) have been shown to modulate the activation of numerous oncogenic
pathways [148-153].

Notably, the regulation of these critical proteins and their relative pathways is extensively
regulated at a post-transcriptional level by miRNAs (Figure 2). NF-«kB is a major regulator of
innate immunity and inflammation [150]. Downstream effects of NF-«B are cell-type dependent,
consisting of induction of pro-inflammatory gene expression in immune cells, and of anti-apoptotic
genes in tumor cells, favoring tumor development. A study published in 2009 by Bazzoni et al. [154]
demonstrated the direct targeting of the NF-«B1 transcript by miR-9, with consequent reduction of
pro-inflammatory cytokines. Due to the inflammatory microenvironment and oncogenic mutations,
a significant number of human cancers have constitutive NF-«kB activity that results in increased
tumor proliferation and angiogenesis [155]. miR-9 deregulation in colon cancer cells has been
consistently shown to suppress apoptosis and promote proliferation and tumor survival [156,157].
Other miRNAs have also been linked to the regulation of NF-kB signaling. In particular, miR-146a is
involved in the control of inflammatory response. In particular, NF-kB-dependent miR-146a
expression is induced in monocytes and macrophages upon triggering of TLR4 by LPS or other
pro-inflammatory stimuli [128]. It downregulates the expression of the two adaptor proteins IRAK1
and TRAF6 (downstream of toll-like and cytokine receptors) and represses NF-«B signaling [128].
The miR-146a/NF-«B axis has been investigated in gastric and breast cancer cells, confirming the
targeting of IRAK1 and TRAF6, and the consequent reduction of metastatic potential [133]. Two of
the most important activators of NF-«kB signaling are IL-6 and TNF«x, which bind to their specific
receptors (i.e., IL-6R and TNFR1/2, respectively) expressed by immune or cancer cells [158]. IL-6 and
TNFo« are both pro-inflammatory cytokines, exerting pro-tumoral functions, including the promotion
of angiogenesis and metastasis [159-162]. They are downregulated in human macrophages by several
anti-inflammatory miRNAs, such as miR-187 [163], miR-146a [128], let-7e [164], and miR-92a [165]
as a functional consequence of the direct targeting of molecular components participating in TLR
signaling (Figure 2). STAT3 is constitutively activated in both tumor and immune cells by IL-6.
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STAT3 signaling is required for immunosuppressive and pro-tumorigenic function of both innate
(MDSCs, TAMs) [166] and adaptive (Treg and Th17 lymphocytes) immune cells [167]. One of the
first miRNAs described as an important regulator of STAT3 expression is miR-21. Expressed in both
immune and cancer cells, miR-21 displays pro-inflammatory and pro-tumoral activity, respectively.
miR-17-5p and miR-20a are two other important modulators of STAT3 expression, downregulated in
MDSCs by tumor associated factors [168]. Ectopic expression of either miR-20a or miR-17-5p decreases
MDSCs’ ability to suppress antigen-specific CD4 and CD8 T cell responses [168]. Immunosuppressive
and anti-inflammatory signals derive also from the actions of IL-10 and transforming growth
factor 3 (TGF-B), which have a general role in tumor suppression by inhibiting the production of
pro-inflammatory cytokines [169-172]. They activate a negative feedback loop mechanism that induces
the expression of other anti-inflammatory miRNA, such as miR-146b and miR-511-5p/3p [101,145,162].
These miRNAs have been recently described as part of the complex immune regulatory network of
macrophage-derived anti-inflammatory response. Their specific role in in vivo tumor models has not
been explored yet. Further investigations are needed to fully elucidate how miR-146b and miR-511
contribute to the antitumor immune response.

Anti Pro
inflammatory Inflammatory
miR-146a/b miR-155
miR-187 miR-21
miR-511-5p/3p miR-494
miR-9 \
let7e
miR-92a

M2 macrophages, TAM M1 macrophages

Figure 2. MiRNAs expression in macrophages modulates inflammation and carcinogenesis.
MiRNAs modulate macrophage polarization from a pro-inflammatory M1 to an anti-inflammatory
phenotype that inversely correlates with the tumorigenic potential of macrophages during carcinogenesis.

Altogether, this evidence strongly supports the notion that miRNAs participate in MDSCs and
TAM-mediated modulation of the local inflammatory tumors. Our improved understanding of the
connection between miRNAs, inflammation and cancer may provide novel preventive, diagnostic and
therapeutic strategies.

6. Exosome-Derived miRNAs in Cancer Progression and Metastasis

Apart from their unique role as cytoplasmic regulators, recent evidence suggests that miRNAs
are also components of a complex mechanism of indirect cell-to cell communication. They act as
intercellular messengers transferred from donor to recipient cells through extracellular vesicles such
as exosomes, altering gene expression in neighboring and even distant cells. Exosome-derived
miRNAs are thought to play an important role in cell-to-cell communication, particularly in the
cross talk between immune and tumor cells within the TME [173]. They are released from immune and
non-immune cells, and are able to positively and negatively regulate the immune response (Table 2
and Figure 3).
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Table 2. Exosomal miRNAs functional activities in cancer. Exosomal miRNAs are secreted by macrophages and cancer cells and affect tumor initiation and progression
by targeting key factors involved in survival, proliferation, invasion, and angiogenesis. Macrophage- and tumor-derived exosomal miRNAs recently described in the

literature are reported here.

miRNA Donor Cells Recipient Cells Phenotype
miR-21 TAM gastric cancer cells 1 cell proliferation | chemosensitivity and apoptosis
miR-223 TAM breast cancer cells 1 cell migration capacity and invasiveness TAM-di:ii‘Il{eNd:;(osomal
miR-9 TAM endothelial cells 1 cell migration and angiogenesis
miR-940 epithelial ovarian cancer TAM 1 M2 polarization
miR-203 colorectal carcinoma monocytes 1 M2 polarization
miR-21 solid tumor cells macrophages 71 proliferation, survival, invasion and migration
miR-29b solid tumor cells macrophages OnCom;I{;oTiie;;iﬁl; t(())i'}}f)z(;g lfitizzatic and
miR-9 tumor cell lines cancer cells OncomiR: 1 endothelial cell migration 1 tumor angiogenesis
miR-210 breast cancer cells adjacent cancer cells OncomiR: 1 angiogenesis
miR-105 breast cancer cells endothelial cells of distant organs OncomiR: 1 metastiis ;h i?fn‘cl;icr:l;a;ft):ﬁnzegﬁhty by targeting the
miR-200 metastatic cancer cells metastatic cancer cells Regulates mesenchimal to epithelial transition Tumor-sz;-;t;izxosomal
let-7e gastric cancer cells cancer cells Tumor suppressor function (i.e., inhibits metastasis)
miR-23b bladder carcinoma cells cancer cells Tumor suppressor functioarrl‘l Eie.ri.e, ::::ial;iigi)on angiogenesis, invasion
miR-224 bladder carcinoma cells cancer cells Tumor suppressor functions (e.g., inhibition angiogenesis, invasion
and metastasis)
miR-921 bladder carcinoma cells cancer cells Tumor suppressor functions (e.g., inhibition angiogenesis, invasion
and metastasis)
miR-15a mesenchymal stromal cells myeloma cells Tumor suppressor function
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Figure 3. Exosomal miRNAs as molecular messages exchanged between immune cells and tumor.
The tumor microenvironment (TME) is a highly heterogeneous environment where different cell types,
including macrophages, T lymphocytes, and endothelial cells, interact with each other by releasing
exosomal miRNAs. The result of this interaction can lead to cell differentiation, survival, apoptosis,
or angiogenesis, and strongly affects tumor initiation and progression.

With regards to the immune system, a pioneering study described in 2011 by Yang et al. [157],
demonstrated that M2 macrophages were able to modulate invasiveness of breast cancer cells through
exosome-mediated delivery of miR-223, which directly targets the Mef2c/ 3-catenin pathway. The breast
cancer cells acquired improved capacity for cell migration as a functional consequence of this horizontal
genetic transfer. Since the publication of that study, many other miRNAs have been described as
critical signaling molecule between tumor and host immune cells. In particular, exosomes-derived
miR-940 released by hypoxic epithelial ovarian cancer induce TAM polarization [174]. High levels of
miR-203 are present in the serum of colorectal carcinoma (CRC) patients and are associated with later
metastasis and overall poor prognosis [175,176]. MiR-203 is shuttled to monocytes where it promotes
the expression of M2 markers, thus favoring differentiation to TAM [159].

In the last few years new exosomal “oncomiRs” have been characterized, and it has become
more and more evident that cancer-released exosomal miRNAs contribute to both progression of
primary tumors and metastases. In particular, miR-21 is expressed and released by both TAMs and
solid tumor-derived exosomes [160]. It is shuttled from TAM-derived exosomes to gastric cancer
cells, where it suppresses apoptosis and enhances activation of PI3K/AKT signaling pathway
by down-regulating PTEN. Moreover, miR-21 is also highly expressed in a wide range of solid
tumors [134,177] and secreted in plasma-derived exosomes from patients affected by different cancer
types, including pancreatic, ovarian, lung, and colon carcinomas. Enforced expression of miR-21
promotes cellular proliferation, survival, invasion, and migration. Its expression positively correlates
with tumor progression and invasiveness [134], while its knockdown decreases tumor cell survival and
growth [178]. Interestingly, miR-21 has been described as a key player in a complex regulatory loop
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between cancer and immune cells, able to support the maintenance of a pro-tumorigenic inflammatory
environment. Specifically, the secretion of the pro-inflammatory cytokine IL-6 from immune cells,
promotes the invasiveness of tumor cells in an in vitro co-culture model of CRC [179,180]. As result,
tumor cells secrete miR-21 and miR-29b into the TME, both of which have been shown to bind to
TRLs in macrophages. This leads to the activation of NF-«B signaling pathway and the consequent
secretion of pro-metastatic inflammatory cytokines [161]. Exosome-derived miRNAs also participate
in cancer promotion by adapting the tumor niche cells. For instance, tumor-secreted miR-9 promotes
endothelial cell migration and tumor angiogenesis [181], as does miR-210, an hypoxia-induced
miRNA, with increased serum expression levels in breast cancer patients [182]. In this specific
context, angiogenesis is enhanced as consequence of miR-210-mediated suppression of the receptor
tyrosine kinase ligand ephrin-A3 (Efna3) and increased levels of VEGF [182]. Another example is
miR-105, expressed and secreted by metastatic breast cancer cells [169]. miR-105 potently regulates cell
migration; by targeting the tight junction protein ZO-1, and thus impairing the integrity of natural cell
barriers [169]. More recently, miR-200 family members have been described as able to be internalized
by weakly metastatic cells to enhance tumor growth at metastatic lesions [183-185]. These findings
suggest that horizontal transfer of exosomal miRNAs from cancer cells can facilitate remodeling
of tissue architecture to promote cancer progression. Interestingly, several studies reported that
cancer cells often secrete onco-suppressor miRNAs via exosomes [186]. Conversely, onco-suppressor
miRNAs are less abundant in many solid tumor patients [187,188] suggesting the hypothesis that,
tumor suppressor miRNAs might be considered a form of anti-cancer defense mechanism in advanced
cancer patients. An interesting example comes from a paper showing that let-7e family members
are more highly expressed in exosomes derived from metastatic gastric cancer cells, relative to
non-metastatic parental cells [189]. Many other miRNAs with tumor-suppressive functions have
been described, including miR-224, miR-921, miR-23b, and miR-15a [190-192]. Another intriguing
hypothesis supports the idea that in healthy individuals, a certain set of circulating miRNAs,
with anti-tumor properties, might be part of a surveillance mechanism, complementary to the
canonical cancer immune-surveillance system, exerting continuous inhibition on tumor formation
and complementary to the canonical cancer immune-surveillance system [139,193]. This hypothetical
action might add a further layer of host anti-tumor defense. However, the relevance of circulating
miRNAs in healthy individuals is still unknown; the results presented so far are mainly based on
expression profile studies; functional data in animal tumor models are still missing. Extensive studies
to identify potential mRNA targets of miRNAs isolated from healthy donors and cancerous patients
might provide insights on tumor suppressive or oncogenic mechanisms of circulating miRNAs.

7. Immunogenic Cell Death: A Promising Tool for Anti-Cancer Inmunotherapy

We pointed out the existence of a dynamic cross-talk between tumors and immune cells that can
either leads to progression or regression of the tumor, due to the simultaneous processing of both
pro- and anti-growth signals. A major challenge for successful cancer treatment is the understanding
of the molecular mechanisms to shift this balance, by favoring the selective killing of cancer cells.
The old dogma according to which apoptotic cells do not trigger an immune response has been recently
challenged by the emergence of the “immunogenic cell death” (ICD) concept. ICD refers to dying tumor
cells, which release endogenous danger molecules, generally called damage-associated molecular
patterns (DAMPs), after being exposed to chemotherapeutic agents (reviewed in [194,195]). DAMPs are
then recognized by surface receptors expressed on innate immune cells, including pattern-recognition
receptors (PRRs), phagocytosis-related receptors, and purinergic receptors, thereby eliciting an
anti-tumor immune response. In physiological conditions, most of DAMPs such as calreticulin,
adenosine triphosphate (ATP), heat shock protein 90 (HSP90) and high mobility group protein Bl
(HMGB1), have predominantly non immunological functions. They are released in response to cellular
stress conditions, including production reactive oxygen species (ROS) and endoplasmic reticulum
(ER) stress. Interestingly, some of these DAMPs have been demonstrated to be targeted by miRNAs in
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physiological conditions and few reports also documented a correlation between expression levels
of selective miRNAs and induction of tumor cell death by chemotoxic agents. In particular, miR-27a,
an oncomiR upregulated in CRC, that directly targets calreticulin has been object of investigation in the
study presented by Colangelo et al. in 2016 [196]. The authors demonstrated that upon chemoterapeutic
exposure, CRC cells expressing low levels of miR-27 showed upregulated expression of calreticulin
and HMGB], increased release of ATP and enhanced apoptosis [196].

Despite these promising results, several questions remain to be addressed; in particular the
molecular mechanisms involved and the impact of miRNA deregulation in the modulation of ICD.
Further studies are also needed to define a potential therapeutic use of ICD determinants to trigger
effective anti-tumor immune responses.

miRNAs as Therapeutic Agents in Cancer Treatment

In the last decade, advances in the field of cancer immunology have led to the emergence
of immunotherapy as one of the most promising areas of cancer research and treatments [197-200].
Overall, the goal of cancer immunotherapy is to induce the patient’s immune system to recognize cancer
cells as foreign, and destroy them. Various immunotherapies either stimulate specific components
of the immune system, or counteract tumor-derived signals that suppress immune responses.
Recent advances have been made in the development of T cell-mediated immunotherapies. The most
heralded of these are monoclonal antibodies directed at immune checkpoint modulators [199,201],
and the clinical realization of chimeric antigen receptor (CAR) T cells [198] (Table 3). On the contrary,
few therapies have been aimed at stimulating the response of myeloid cells against cancer [202,203].
In animal models, passive immunization with monoclonal antibodies against tumor antigens can
stimulate macrophage-mediated phagocytosis of cancer cells and induce macrophage infiltration into
the tumor milieu [201,204].

Table 3. Inmunological drugs in clinical development. List of immunological agents developed for
treatment of malignancies. Drugs blocking immune checkpoints, CAR T cell therapies and miRNA-based
drugs represent novel promising therapeutics in clinical development.

Immunological Target Drug Name Characteristics Clinical Phase Testing
anti-CTLA4 IPILIMUMAB fully human IgG1 approved, advanced melanoma
TREMELIMUMAB fully human IgG2 failed phase III trial melanoma
approved, melanoma,
NIVOLUMAB fully human IgG4 squamous NSCLC
Drugs blocking anti-PD1 PEMBROLIZUMAB fully human IgG4 approved, melanoma
Immune Checkpoints PIDILIZUMAB humanized IgG1 phase I-II trial
BMS-936559 fully human IgG4 phase I trial
X MSB0010718C fully human IgG1 phase I-I trial
anti-PD-L1
MEDI4736 Fe-modified human IgG1 phase I-II trial
MPDL3280A Fe-modified human IgG1 phase I-1I trial
TISAGENLECLEUCEL-T - . . .
(Kimryah™) chimeric antigen receptor T cells  approved, Acute lymphatic leukemia
anti-CD19 AXICABTAGENE
CILOLEUCEL chimeric antigen receptor T cells approved, B cell lymphoma
™
CAR T cells therapy (Yescarta )
anti-CD20 NCT01735604 chimeric antigen receptor T cells phaS§ Itrial, progressive
malignant lymphoma
anti-CD30 NCT02259556 chimeric antigen receptor T cells  phase II-III trial, Hodgkin lymphoma
anti-EGFR NCT01869166 chimeric antigen receptor T cells phase [l trial, Advanced
lung cancer
miR-34 MRX34 miRNA mimic phase I trial, advanced
hepatocarcinoma
miR-122 MIRAVIRSEN LNA-based antimiRNA phase II trial, HCV
. miR-29b MRG-201 miRNA mimic phase I trial, fibrotic diseases
miRNA-based drugs -
miR-155 MRG-106 AntimiRNA phase  trial,
hematological malignances
miR-10b - AntimiRNA preclinical phase, glioblastoma
miR-221 - AntimiRNA preclinical phase, hepatocarcinoma
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Compared to other drugs currently on the market for cancer treatment, the intrinsic ability
of miRNAs to simultaneously affect gene expression of multiple different pathways makes them
an attractive tool for the development of effective drugs. As discussed in the previous sections,
miRNAs dysregulation plays a critical role in cancer development, as they are entangled with many
of the hallmarks of cancer [205,206]. Therefore, an effective therapeutic strategy might consist in
the modulation of specific miRNAs. This can be achieved by specific targeting of cancer-relevant
miRNAs at different levels of their biogenesis and activity. Promising results have been obtained
in preclinical studies with the use of miRNA antagonists, called antagomiRs, and miRNA mimics
to reduce or enhance miRNA activity, respectively (Table 3). AntagomiRs are chemically modified
single stranded DNA oligonucleotides complementary to the miRNA sequence, that function as
miRNA antagonists and can be employed to repress the activity of oncomiRs, by competing with
native tumor-suppressing target transcripts [173]. miRNA mimics are chemically-modified short
double-stranded oligonucleotides, that functionally mimic pre-miRNA duplexes; hence they are
processed by native cellular pathways to increase expression levels of tumor suppressor miRNAs [155].
To increase their stability and ensure specificity chemical modification have been introduced,
including: methoxyethyll-4'-thioRNA (MOE-SRNA), cholesterol-conjugated 2'-O methylated miRNA
mimic/antagomiRs, and locked nucleic acid (LNA)- modified anti-miRNAs [150].

However, a remaining challenge is the successful delivery of these therapeutic molecules to
specific tissue and cells. Indeed, given the pleiotropic role of miRNAs and their ability to function
in a cell type-dependent manner, the design of an effective delivery system is critical to guarantee
tissue and cell specificity in order to reduce the risk of toxicity and side effects. Different types
of biodegradable and biocompatible miRNA carriers have been synthesized as biodegradable and
biocompatible, including liposomes, nanoparticles, polymers and viral agents. The versatility of
liposomal carriers made them suitable vehicles for co-delivery of miRNAs and small-molecule drugs,
which concurrently are able to target the same cancer cell, in an effective synergistic antitumor way.
Liposomal carriers were firstly employed for siRNA and small conventional drugs delivery in clinical
trials. A liposomal formulation of a mimic of the tumor-suppressive miR-34 was first characterized in
animal model of liver cancer [150] and recently reached clinical development. Recently, another miR-34
mimic entered phase I clinical trials for the treatment of advanced hepatocarcinoma [149] (Table 3).
Studies have also investigated the use in clinics of viral-based delivery systems [152]. In particular,
lentiviral vectors containing antagomiRs against miR-494 have been shown to reduce tumor-infiltrating
MDSCs and their protumor activity in an in vivo model of breast cancer [82]. However, the potential
risk of therapeutic lentiviral vectors is due to their intrinsic nature to integrate themselves into the
human genome. To bypass this risk, adenoviruses and adeno-associated viruses might be more
suitable for therapeutic purposes, due to their non-integrative activity. However, limits in large-scale
production as well as the immunogenic potential still remain major issues in their effective and safe
use in therapy. Therefore, non-viral delivery strategies have received more interest. In particular,
cell-derived exosomes containing immune-related miRNAs have the potential to be employed as
therapeutic agents. Accordingly, exosome- and immune cell-based delivery represent two interesting
potential strategies for miRNA-based cancer immunotherapy. The use of tumor-derived extracellular
vesicles to deliver therapeutic miRNAs was recently reported, wherein the authors described the
efficient delivery of the tumor suppressive miRNA let-7a to epidermal growth factor receptor
(EGFR)-expressing breast cancer cells in vivo. However, the use of exosomes as miRNAs vehicles in
cancer therapies is only at the beginning and needs to be further investigated. Possible strategies to
improve target selectivity are the modification of the vesicular membrane with ligands or antibodies
targeted to the endogenous receptors of tumor or stromal cells. In this context, the combination of
miRNA-related immunotherapy with conventional cytotoxic drug agents or targeted therapy would
represent a valuable opportunity for effective therapeutic interventions in human malignancies.
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8. Conclusions

The prominent role of miRNAs as molecular determinants of the innate immune response qualifies

them as novel potential therapeutic agents that could critically modulate the fine balance of innate
immune cells involved in cancer progression.
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