Supplementary figures and figure legends

Figure S5

b

f

h

NCI-H520
j

Figure S1. Fluorescence-based in vitro and cell-free detection of PD173074. (a) Intracellular fluorescence of NCI-H520 cells, treated for 1 h with $10 \mu \mathrm{M}$ PD173074 was determined by flow cytometry. Fluorescence emission was detected using DAPI (450/40 nm), Horizon V450 (450/40 nm), FITC (530/30 nm) and APC (660/20 nm) emission channels for the $355 \mathrm{~nm}, 405 \mathrm{~nm}, 488$ and 640 nm lasers, respectively. ${ }^{* * *} p<0.001$, student's t-test. (b) Accumulation of indicated PD173074 concentrations in NCI-H520 cells was measured over time by flow cytometry using the 405 nm laser and the Horizon V450 (450/40 nm) emission filter. ${ }^{* * *} p$ <0.001, two-way ANOVA, Bonferroni post-test. (c) A 3-dimensional, full-range excitation-emission spectrum was generated by fluorescence spectroscopy to analyze cell-free fluorescence properties of PD173074 at pH 4,5,6 (diluted in 1\% DMSO/citrate buffer) and 7.4 (diluted in 1\% DMSO/PBS). Excitation wavelengths ranged from 220 nm to 420 nm , emission spectra were recorded from 250 nm to 700 nm . Diagonal ridges indicate Raleigh scatters of first and second order. (d) Intracellular PD173074 distribution in VL-2 and BEAS-2B cells, exposed to $10 \mu \mathrm{M}$ of the drug for 1 h was investigated by confocal microscopy using the DAPI channel. Lysosomes were stained with LysoTracker Red®. The scale bar indicates $10 \mu \mathrm{~m}$. (e) Accumulation of indicated PD173074 concentrations in NCI-H1703 cells preincubated-or not-with 20 $\mu \mathrm{M} \mathrm{CPZ}$ was measured over time by flow cytometry using the 405 nm laser and the Horizon V450 (450/40 $\mathrm{nm})$ emission filter. ${ }^{* * *} p<0.001$, two-way ANOVA, Bonferroni post-test. ns, non-significant;

Figure S2

Figure S2. Lysosomal localization of PD173074 remains stable over several days. PD173074 retention in lysosomes of NCI-H1703 cells was analyzed by live cell microscopy. Cells were treated for 1 h with indicated concentrations of PD173074, followed by incubation in drug-free media. PD173074 was imaged using the DAPI channel and is pseudocolored in cyan. The scale bar indicates $10 \mu \mathrm{~m}$.

Figure S3
NCI-H520

Figure S3. Lysosomal de-acidification reduces PD173074 accumulation in lysosomes. Effect of 2 h coincubation with $100 \mu \mathrm{M}$ chloroquine or with $1 \mu \mathrm{M}$ bafilomycin A 1 on subcellular distribution of PD173074 ($10 \mu \mathrm{M}$) in NCI-H520 cells was analyzed by live cell microscopy. LysoTracker Red ${ }^{\circledR}$ was used to stain lysosomes. The scale bar indicates $10 \mu \mathrm{~m}$.

Figure S4

Figure S4. Bafilomycin A1 pretreatment prevents lysosomal PD173074 sequestration. Effect of 1 h preincubation with $1 \mu \mathrm{M}$ bafilomycin A1 on subcellular distribution of PD173074 (10 $\mu \mathrm{M})$ in NCI-H520 cells was analyzed 15 min after drug exposure by live cell microscopy. The scale bar indicates $10 \mu \mathrm{~m}$.

Figure S5

e

PD173074 ($\mu \mathrm{M}$)
g

i

f

h

j

Figure S5. Lysosomal alkalinization increases the cytotoxic potential of PD173074. (a). Impact of 1 h coincubation of $1 \mu \mathrm{M}$ bafilomycin A1 on intracellular accumulation of PD173074 (10 $\mu \mathrm{M})$ in NCI-H1703 and NCI-H520 cells was determined by flow cytometry using the 405 nm laser and the Horizon V450 (450/40 $n m$) emission filter. ${ }^{* * *} p<0.001$, two-way ANOVA, Bonferroni post-test. (b-d) A 3-dimensional, full-range excitation-emission spectrum was generated by fluorescence spectroscopy to analyze cell-free fluorescence properties of $15 \mu \mathrm{M}$ chloroquine (b) and combination of $15 \mu \mathrm{M}$ PD173074 in combination with $1 \mu \mathrm{M}$ bafilomycin A1 (c) or $15 \mu \mathrm{M}$ chloroquine (d) at pH 7.4 (diluted in 1\% DMSO/PBS). Excitation wavelengths ranged from 220 nm to 420 nm , emission spectra were recorded from 250 nm to 700 nm . Diagonal ridges indicate Raleigh scatters of first and second order. (e) Impact of 5 nM and 10 nM bafilomycin A 1 on viability of NCI-H1703 cells cotreated for 72 h with rising concentrations of PD173074 was determined by MTT assay. ${ }^{* * *} p<0.001$, two-way ANOVA, Bonferroni post-test. (f) Impact of 10 nM and 25 nM bafilomycin A1 on viability of NCI-H520 cells cotreated for 72 h with rising concentrations of PD173074 was determined by MTT assay. ${ }^{* * *} p<0.001$, two-way ANOVA, Bonferroni post-test. (g, h) Synergism of PD173074 and bafilomycin A1 in NCI-H1703 (g) and NCI-H520 (h) cells was evaluated calculating CalcuSyn combination indices (CI). CI values above 1.2, between 0.9-1.2 and below 0.9 indicated antagonism, additivity, and synergism, respectively. (i) Impact of indicated concentrations of chloroquine on viability of NCI-H1703 and NCI-H520 cells was determined by MTT viability assay after 72 h drug exposure. (j) Impact of indicated concentrations of bafilomycin A1 on viability of NCI-H1703 and NCI-H520 cells was determined by MTT viability assay after 72 h drug exposure.

