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Abstract: Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disease characterized
by both motor and nonmotor features. The diagnose of PD is based on a review of patients’ signs and
symptoms, and neurological and physical examinations. So far, no tests have been devised that can
conclusively diagnose PD. In this study, we explore both microRNA and gene biomarkers for PD.
Microarray gene expression profiles for PD patients and healthy control are analyzed using a principal
component analysis (PCA)-based unsupervised feature extraction (FE). 244 genes are selected to be
potential gene biomarkers for PD. In addition, we implement these genes into Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways, and find that the 15 microRNAs (miRNAs), hsa-miR-92a-3p,
16-5p, 615-3p, 877-3p, 100-5p, 320a, 877-5p, 23a-3p, 484, 23b-3p, 15a-5p, 324-3p, 19b-3p, 7b-5p and
505-3p, significantly target these 244 genes. These miRNAs are shown to be significantly related to
PD. This reveals that both selected genes and miRNAs are potential biomarkers for PD.
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1. Introduction

Parkinson’s disease (PD), first described by Dr. James Parkinson in 1817, is a chronic, progressive
neurodegenerative disease characterized by both motor and nonmotor features [1]. PD motor symptoms
such as shaking, rigidity, and slowness of movement are caused by the loss of striatal dopaminergic
neurons [2]. The nonmotor symptoms of PD include sleep disorders, depression, and cognitive
changes [3–5].

The incidence and prevalence of PD increase with age. So far, it is problematic to conclusively
diagnose PD because of the lack of a reference standard test [6]. The diagnose of PD is based on a
review of patients’ signs and symptoms, and neurological and physical examinations. Resting tremor,
cogwheel rigidity, and bradykinesia are three “cardinal signs” of PD, and postural instability, a late
finding in PD, is the fourth cardinal sign of PD [6].

Owing to the lack of a standard test for diagnosing PD, genetic testing of mutations in
disease-causing genes may be one of a helpful way to diagnose familial Parkinson’s disease (fPD) and
sporadic Parkinson’s disease (sPD). A number of PD disease-causing genes have been discovered and
debated for both physicians and patients regarding diagnostic and presymptomatic genetic testing of
PD in the clinic [7].

A common form of monogenic PD with dominant inheritance is caused by mutations in the
gene for leucine-rich repeat kinase 2 (LRRK2) [8,9]; H-Synuclein (SNCA), which is a presynaptic
neuronal protein, is linked genetically and neuropathologically to PD [10]; mutations in Parkin are the
second most common known cause of PD [11]; mutations in DJ-1 and PTEN Kinase 1 (PINK1) can
cause PD [11]; there is a significant inverse association of the ubiquitin carboxy-terminal hydrolase L1
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(UCHL1) S18Y variant with PD [12]; and variants in glucocerebrosidase (GBA) and SNCA influence
PD risk [13].

In addition to neurological and physical examinations and genetic testing, the gene expression
differences between PD and healthy controls can be used as a potential prognosis of PD. Several studies
have explored gene biomarkers for PD [14,15]. In this study, we explore gene and microRNA (miRNA)
biomarkers for PD.

2. Materials and Methods

2.1. Gene Expression

We downloaded three mRNA expression profiles of PD and healthy control from Gene Expression
Omnibus (GEO) under the GEO ID, GSE20295, GSE20163, and GSE20164. For all three profiles,
raw data files (CEL files) (Supplementary file S1) were read with the function ReadAffy of the package
Affy (Affymetrix; Thermo Fisher Scientific, Inc., Waltham, MA, USA) in R. Loaded CEL files were
treated by mas5 function in the affy package. Then, write.exprs function was used to output normalized
mRNA expression profiles. The tissue of the data was substantia nigra (see Supplementary file S1).
Integrating the three datasets, we had 35 normal control and 25 PD patients’ substantia nigra mRNA
expression profiles.

2.2. Principal Component Analysis Based Unsupervised Feature Extraction

We applied principal component analysis (PCA)-based unsupervised feature extraction (FE) to
mRNA expression profiles in order to select mRNAs that were expressed distinctly between controls
and PD patients (see Supplementary file S2 for more details). This method has been successful in
identifying potential biomarkers for other neurological disorders [16,17]. PCA was applied to only
mRNAs identified by PCA-based unsupervised feature extraction (FE). PC loadings and PC scores
were attributed to samples and genes, respectively. Furthermore, PC loadings are associated with
the distinction between controls and PD patients; PD patients and controls were differentiated using
linear discriminant analysis (LDA) with these selected PC loadings (see Supplementary file S2 for
more details).

2.3. Validation of Obtained mRNAs

In order to validate the obtained mRNAs, we computed the area under the curve (AUC) of the
receiver operating characteristic curve (ROC). Gene symbols associated with mRNAs selected by
PCA-based unsupervised FE were uploaded to Enrichr [18,19], and various enriched biological terms
were identified (see Supplementary file S4 for more details).

3. Results

255 probes (Supplementary file S3) were identified using PCA-based unsupervised FE. PCA was
applied to 255 probes, and PC loadings attributed to samples were computed. The fourth PC loadings
turned out to be associated with distinction between PD patients and controls. Table 1 shows the
confusion table obtained by the linear discriminant analysis (LDA) using the fourth PC loading.
Sensitivity of PD is 0.88, precision of PD is 0.73, F1 score (F-measure) is 0.8, and accuracy is 0.80.
AUC is 0.95. Odds ratio is 20.5. p value computed by Fisher’s exact test is 2.5 × 10−6. All of these
evaluations suggest that the fourth PC loadings can significantly discriminate controls and PD patients.

Although we found 255 probes that successfully discriminate PD patients from controls, biological
evaluation of obtained probes is important. Two hundred and forty four gene symbols corresponding
to these 255 probes (See Supplementary Materials) were uploaded to Enrichr for biological evaluation.
There turned out to be many biological terms enriched in these gene symbols. Table 2 shows the
top-ranked five categories in “Disease Perturbations from GEO down” of Enrichr (full list is available
in Supplementary Material S4). The first four among these five categories are the PD. Since the GEO
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datasets used in Enrichr are not the same datasets used in our study, PCA based unsupervised FE
successfully identified genes downregulated in PD patients.

Table 1. Confusion table obtained by linear discriminant analysis (LDA) using the fourth principal
component (PC) loading obtained by principal component analysis (PCA) using 255 mRNAs identified
by PCA-based unsupervised feature extraction (FE). Rows: true, columns: prediction.

Control PD

Control 24 8
PD 3 22

Table 2. Top ranked five categories in “Disease Perturbations from Gene Expression Omnibus (GEO)
down” of Enrichr.

Term Overlap p-Value Adjusted p-Value

Parkinson’s disease DOID-14330 human GSE19587 sample 740 65/207 5.02 × 10−83 4.18 × 10−80

Parkinson’s disease DOID-14330 human GSE19587 sample 1080 56/167 5.88 × 10−73 1.60 × 10−70

Parkinson’s disease DOID-14330 human GSE19587 sample 496 73/361 3.90 × 10−78 1.59 × 10−75

Parkinson’s disease DOID-14330 human GSE7621 sample 940 67/365 2.96 × 10−68 6.06 × 10−66

Dystonia C0393593 human GSE3064 sample 329 62/317 1.06 × 10−64 1.74 × 10−62

As for “Disease Perturbations from GEO up” of Enrichr, PD is less enriched, but there are still
seven PD experiments with a significant p-value (Table 3, full list in Supplementary Material S4).

Table 3. Seven PD expression profiles in “Disease Perturbations from GEO up” where 244 gene symbols
are enriched.

Term Overlap p-Value Adjusted p-value

Parkinson’s disease DOID-14330 human GSE19587 sample 741 33/158 5.14 × 10−35 1.22 × 10−33

Parkinson’s disease DOID-14330 human GSE7621 sample 940 35/235 1.05 × 10−31 1.74 × 10−30

Parkinson’s disease DOID-14330 human GSE7621 sample 941 38/342 1.55 × 10−29 2.19 × 10−28

Parkinson’s disease DOID-14330 human GSE19587 sample 1080 37/433 1.17 × 10−24 8.78 × 10−24

Parkinson’s disease DOID-14330 human GSE6613 sample 788 26/274 1.24 × 10−18 5.50 × 10−18

Parkinson’s disease DOID-14330 human GSE19587 sample 496 15/239 1.03 × 10−8 2.15 × 10−8

The next biological term investigated is KEGG pathway (Table 4). Although PD was not top
ranked, it is the eighth most significant enriched KEGG pathway. Tables 1–4 suggest that the identified
244 genes are significantly related to PD.

Table 4. Top ranked 10 KEGG pathways enriched in 244 identified gene symbols.

Term Overlap p-Value Adjusted p-Value

Ribosome_Homo sapiens_hsa03010 28/137 1.68 × 10−29 2.92 × 10−27

Phagosome_Homo sapiens_hsa04145 16/154 1.72 × 10−12 1.49 × 10−10

Synaptic vesicle cycle_Homo sapiens_hsa04721 10/63 4.11 × 10−10 2.38 × 10−8

Pathogenic Escherichia coli infection_Homo sapiens_hsa05130 9/55 2.38 × 10−9 1.04 × 10−7

Gap junction_Homo sapiens_hsa04540 10/88 1.18 × 10−8 4.11 × 10−7

Mineral absorption_Homo sapiens_hsa04978 8/51 2.68 × 10−8 7.76 × 10−7

Oxidative phosphorylation_Homo sapiens_hsa00190 10/133 6.09 × 10−7 1.51 × 10−5

Parkinson’s disease_Homo sapiens_hsa05012 10/142 1.11 × 10−6 2.42 × 10−5

Vibrio cholerae infection_Homo sapiens_hsa05110 6/51 8.84 × 10−6 1.71 × 10−4

GABAergic synapse_Homo sapiens_hsa04727 7/88 2.15 × 10−5 3.73 × 10−4

In this regard, we found that 15 miRNAs significantly target 244 gene symbols by checking
“miRTarBase 2017” in Enrichr (Table 5); 113 gene symbols out of 244 gene symbols were targeted by
either of 15 miRNAs. These 15 miRNAs were reported to be related to PD (Table 5). Thus, we should
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consider these 15 miRNAs as key regulators of PD instead of 244 gene symbols. In reality, miRNAs are
generally suggested as key regulator of PD [20].

Table 5. “miRTarBase 2017” in Enrichr when 244 gene symbols were uploaded.

Term Overlap p-Value Adjusted p-Value Reference

hsa-miR-92a-3p 37/1404 1.41 × 10−8 2.71 × 10−5 [21]
hsa-miR-16-5p 37/1555 1.93 × 10−7 1.85 × 10−4 [22]
hsa-miR-615-3p 25/891 1.38 × 10−6 8.85 × 10−4 [23]
hsa-miR-877-3p 19/606 5.92 × 10−6 2.28 × 10−3 [24]
hsa-miR-100-5p 12/250 5.37× 10−6 2.28 × 10−3 [25]
hsa-miR-320a 18/584 1.33 × 10−5 4.25 × 10−3 [26]
hsa-miR-877-5p 11/235 1.68 × 10−5 4.63 × 10−3 [24]
hsa-miR-23a-3p 11/249 2.88 × 10−5 6.91 × 10−3 [25]
hsa-miR-484 22/890 4.37 × 10−5 9.33 × 10−3 [25]

hsa-miR-23b-3p 12/322 6.55 × 10−5 1.26 × 10−2 [27]
mmu-miR-15a-5p 15/499 9.42 × 10−5 1.65 × 10−2 [25]
hsa-miR-324-3p 12/338 1.04 × 10−4 1.66 × 10−2 [28]
mmu-miR-19b-3p 11/310 2.03 × 10−4 3.00 × 10−2 [20]
mmu-miR-7b-5p 13/438 3.13 × 10−4 4.02 × 10−2 [20]
hsa-miR-505-3p 9/222 2.93 × 10−4 4.02 × 10−2 [29]

4. Discussion

More Brain Synapse-Related Biological Terms Are Enriched

Although in the previous section, we notice that downregulated genes and upregulated genes
in PD GEO datasets and in PD KEGG pathway are enriched in the 244 identified gene symbols,
more detailed analyses give us more convincing insight about the relationship between these 244 gene
symbols and PD. Other than PD, some KEGG pathways in Table 4 are also related to PD. For example,
as for ribosome that is top-ranked in Table 4, ribosomal protein s15 phosphorylation was reported to
mediate LRRK2 neurodegeneration in Parkinson’s disease [30] As for phagosome that was the second
top-ranked, LRRK2 was reported to be a negative regulator of Mycobacterium tuberculosis phagosome
maturation in macrophages [31]. As for synaptic vesicle cycle that was the third top-ranked, synaptic
vesicle trafficking was reported to be related to Parkinson’s disease [32]. These results suggest that 244
gene symbols are expected to be closely related to PD progression mechanisms.

Although LRRK2 itself was not included in 244 gene symbols, significant number of genes
obtained from “Single Gene Perturbations from GEO up/down” affected by LRKK2 KO/KI (knocked
out/knocked in) were included in 244 gene symbols (Tables 6 and 7). This also supports that 244 gene
symbols are related to mechanisms of PD.

Other than PD specificity, it is important to check if 244 genes are specifically upregulated in
brain/synapse, since, otherwise, genes identified are not convincing. Tables 8 and 9 show that 244
genes are highly brain tissue-specific, while Table 10 shows that 244 genes are overlapped with genes
downregulated in other tissues than brain (full list is in Supporting Materials).

Table 6. Top ranked four LRRK2 KO/KI experiments in “Single Gene Perturbations from GEO up”.

Name Overlap p-Value Adjusted p-Value

LRRK2 Gly2019Ser (G2019S) mutation knockin
human GSE36321 sample 1688 21/335 1.03 × 10−11 4.82 × 10−11

LRRK2 mutant human GSE33298 sample 2039 16/309 4.94 × 10−8 1.55 × 10−7

LRRK2 dominant negative mutation-G2019S
homozygous human GSE33298 sample 1743 12/280 1.68 × 10−5 4.14 × 10−5

LRRK2 dominant negative mutation-G2019S
homozygous human GSE33298 sample 1741 12/337 1.01 × 10−4 2.33 × 10−4
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Table 7. Top ranked two LRRK2 KO/KI experiments in “Single Gene Perturbations from GEO down”.

Name Overlap p-Value Adjusted p-Value

LRRK2 Gly2019Ser (G2019S) mutation knockin
human GSE36321 sample 1688 24/265 8.38 × 10−17 9.78 × 10−16

LRRK2 dominant negative mutation-G2019S
heterozygous human GSE33298 sample 1739 9/282 1.61 × 10−3 3.56 × 10−3

Table 8. Top ranked five gene expression profiles in drug matrix whose altered genes are associated
with 244 gene symbols.

Term Overlap p-Value Adjusted p-Value

Oxcarbazepine-1600-mg/kg-in_CMC-Rat-Brain-3d-dn 31/369 1.66 × 10−20 1.31 × 10−16

Carbachol-15-mg/kg_in_Water-Rat-Brain-3d-up 26/318 4.96 × 10−17 7.82 × 10−14

Piracetam-2500_mg/kg_in_CMC-Rat-Brain-5d-up 27/325 7.89 × 10−18 2.56 × 10−14

Theophylline-225_mg/kg_in_Water-Rat-Brain-3d-dn 25/314 3.87 × 10−16 5.08 × 10−13

Tramadol-114_mg/kg_in_Water-Rat-Brain-5d-dn 26/315 3.93 × 10−17 7.75 × 10−14

Table 9. Top ranked five gene expression profiles in “Genotype-Tissue Expression (GTEx) Tissue
Sample Gene Expression Profiles up” whose altered genes are associated with 244 gene symbols.

Term Overlap p-Value Adjusted p-Value

GTEX-X585-0011-R2B-SM-46MVF_brain_male_50-59_years 81/1895 1.63 × 10−33 4.72 × 10−30

GTEX-WHSE-0011-R2A-SM-3P5ZL_brain_male_20-29_years 71/1660 7.67 × 10−29 1.11 × 10−25

GTEX-X261-0011-R8A-SM-4E3I5_brain_male_50-59_years 70/1878 8.35 × 10−25 8.08 × 10−22

GTEX-N7MT-0011-R10A-SM-2I3E1_brain_female_60-69_years 70/1918 2.88 × 10−24 2.09 × 10−21

GTEX-TSE9-0011-R8A-SM-3DB7R_brain_female_60-69_years 62/1548 2.52 × 10−23 1.47 × 10−20

Table 10. Top ranked five gene expression profiles in “GTEx Tissue Sample Gene Expression Profiles
down” whose altered genes are associated with 244 gene symbols.

Term Overlap p-Value Adjusted p-Value

GTEX-S4Q7-1226-SM-4AD5I_testis_male_20-29_years 22/329 8.84 × 10−13 2.36 × 10−9

GTEX-U4B1-1526-SM-4DXSL_testis_male_40-49_years 20/282 3.48 × 10−12 3.09 × 10−9

GTEX-UPK5-1426-SM-4JBHH_liver_male_40-49_years 79/3879 2.06 × 10−12 2.74 × 10−9

GTEX-OHPM-2126-SM-3LK75_testis_male_50-59_years 26/525 6.48 × 10−12 4.07 × 10−9

GTEX-S7PM-0626-SM-4AD4Q_testis_male_60-69_years 34/911 7.63 × 10−12 4.07 × 10−9

Thus, we can conclude that 244 gene symbols are not only PD-specific but also brain tissue-specific.
This also suggests that we successfully identified gene-related PD mechanisms. In spite of successfully
identifications, it is not very easy to investigate as many as 244 gene symbols one by one. It is better to
find a more limited number of factors that regulate 244 gene symbols.

For the selected 15 miRNAs in Table 5, we confirmed our results by comparing other studies.
hsa-miR-92a appeared as novel hub miR in both regulatory and co-expression network, indicating its
strong functional role in PD; GBA deficiency is associated with PD, and miR-16-5p has been shown
to correspond to enhanced GBA protein levels [22,33]; and both PD and HD (Huntington’s disease)
are neurodegenerative and caused by protein inclusions. miR-615-3p was identified as differentially
expressed in HD prefrontal cortex compared to non-neurological disease controls, and hsa-miR-615-3p
was identified up-regulated in HD [23]; miR-100, miR-23a, and miR484 were identified to be PD-related
miRNAs [25]; miR-320a was identified as a PD-related miRNA [26]; tumor necrosis factor-alpha
(TNF-α), a pro-inflammatory cytokine, was elevated in blood, CSF, and striatum regions of the brain in
PD patients, and hsa-miR-23a, hsa-miR-23b, and hsa-miR-320a significantly decreased in the presence
of TNF-α [27]; mmu-miR-15a-5p, mmu-miR-19b-3p, and mmu-miR-7b-5p miR-7 were shown to
downregulate the inflammatory response in cellular in vitro and/or in vivo PD neurotoxic models,
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and miR-19b was shown to be downregulated in the prodromal stage of alpha-synucleinopathies
and pinpointed this miRNA as a potential biomarker also for PD and DLB [20]; and miR-505-3p was
identified as a PD-predictive miRNA by microarrays [29].

5. Conclusions

PD is a long-term degenerative disorder that usually affects elderly people. Since there
are no standard tests that can conclusively diagnose PD, biological biomarkers can help in early
diagnosis. In this study, PD-related mRNAs are selected using a PCA-based, unsupervised FE method,
and miRNA biomarkers of PD are explored based on these selected mRNAs. Two hundred and
forty-four genes and 15 miRNAs are identified to be related to PD. Biological evidence shows the
selected genes and miRNAs are potential PD biomarkers. However, since the tissues used in this study
are substantia nigra from postmortem brain, it needs to be further verified whether these selected
biomarkers can be used as blood/serum PD biomarkers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/7/12/
245/s1, File S1: samples for PD and control, File S2: Mathematical details of PCA based unsupervised FE,
File S3: the selected genes, File S4: “miRTarBase 2017” in Enrichr when 244 gene symbols were uploaded
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