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Abstract: Background and Purpose: Mitochondrial dysfunction remains the crucial cause for
many heart diseases including diabetic cardiomyopathy (DCM). Sirtuin-3 (SIRT-3) is a protein
deacetylase localized in the mitochondria and regulates mitochondrial function. Being a noteworthy
mitochondrial protein deacetylase enzyme, the role of SIRT-3 in DCM is yet to be explored.
Experimental Approach: Diabetes mellitus (Type-I, T1DM) was induced using streptozotocin (STZ,
50 mg/kg) in male Sprague Dawley (SD) rats. Rats with >200 mg/dL blood glucose levels were
then divided randomly into two groups, DIA and DIA + RESV, where vehicle and resveratrol
(25 mg/kg/day) were administered orally in both groups, respectively. Cardiac oxidative stress,
fibrosis, and mitochondrial parameters were evaluated. H9c2 cells were transfected with SIRT-3
siRNA and shRNA, and ORF plasmid for silencing and overexpression, respectively. Key Results:
After eight weeks, diabetic rat heart showed reduced cardiac cell size, increased oxidative stress
and reduction of the activities of enzymes involved in mitochondrial oxidative phosphorylation
(OXPHOS). There was reduced expression and activity of SIRT-3 and mitochondrial transcription
factor (TFAM) in diabetic heart. Reduced SIRT-3 expression is also correlated with increased
acetylation, decreased mitochondrial DNA (mtDNA) binding activity of TFAM, and reduced
transcription of mitochondrial DNA encoded genes. Administration of resveratrol prevented the
decrease in SIRT-3 and TFAM activity, which was corresponding to the reduced acetylation status
of TFAM. Silencing SIRT-3 using siRNA in H9C2 cells showed increased acetylation of TFAM.
Conclusion and Implications: Together our data shows that resveratrol activates SIRT-3, regulates the
acetylation status of TFAM and preserves the mitochondrial function along with cellular size in
diabetic rat heart.
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1. Introduction

Sirtuins are the class III histone deacetylase enzymes (HDAC) which are evolutionary conserved
and possess NAD+ dependent deacetylase activity. Among the seven different sirtuins, SIRT-3, SIRT-4,
and SIRT-5 are mostly localized in the mitochondria. Growing evidence suggest that SIRT-3 has a crucial
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role in regulating metabolic homeostasis through multi-tissue coupling [1]. Reports confirmed SIRT-3
as a major protein deacetylase in mitochondria and thus explain its importance in energy metabolism.
SIRT-3 is involved in regulating cellular redox status, mitochondrial energetics, biogenesis, dynamics,
and apoptosis [2–5]. Cardiac mitochondrial proteins are three times more acetylated than other tissue
proteins [6]. Cardiac complications remain the major cause of mortality in diabetes and explain the
urgent need for mitigation. Looking at the basics of cardiac metabolic remodeling, the robust nature
of cardiac cells to shift the substrate utilization based on demand is regulated by protein acetylation
or deacetylation [7]. Cardiac complications in diabetes showed altered mitochondrial energetics,
dysregulation of electron transport chain (ETC) complex, electron leak, and superoxide generation [8].

Mitochondrial DNA transcription encodes thirteen proteins for ETC complex assembly is
regulated by TFAM, a mitochondrial transcription factor. All these thirteen proteins are essential
to form a functional assembly with the nuclear encoded proteins of ETC complex. Thus, it is
not surprising that altered transcriptional activity of mtDNA affects the capacity of OXPHOS.
Most of the proteins/enzymes enrolled in the metabolic pathways are regulated by acetylation.
Therefore, we hypothesized that altered acetylation balance in the diabetic heart may also affect
mtDNA transcription.

Targeting mitochondrial energy metabolism pathways for the mitigation of disease pathology
is the focus of today’s drug discovery. Nowadays, sirtuins are considered as emerging druggable
targets for multiple diseases including diabetes [9]. Hebert and colleagues reported that the absence
of SIRT-3, a mitochondrial sirtuin, increased the acetylation modification of mitochondrial protein
almost two-fold [10]. In addition, it has been shown that SIRT3 enhances mitochondrial respiration
rate and ATP production by coordinated activation of mitochondrial metabolic pathways and ROS
detoxification [11,12]. Recent study by Zhang and colleagues showed that resveratrol glucoside
activates SIRT-3 and attenuates DCM by upregulating autophagy and improving mitochondrial
function [13].

Deliberating the role of SIRT-3 in mitochondrial energetics and mitochondrial dysfunction in
diabetes, we thought to find out the missing link between SITR3 and mitochondrial function in the
diabetic heart. We hypothesized that SIRT-3 has a crucial role in regulating the mitochondrial function
in diabetic heart through regulating TFAM and thus targeting SIRT3 could be a useful approach to
overcome cardiac complications in diabetes. In the present study, we have shown that resveratrol,
which directly or indirectly can activate SIRT-3 [3,14,15] reduces acetylation of TFAM and rescued the
mitochondrial dysfunction in the diabetic heart.

2. Materials and Methods

2.1. Animals

All the experiments were performed in accordance with relevant guidelines and regulations of
the Institutional Animal Ethical Committee (IAEC) and Indian Institute of Chemical Technology (IICT),
Hyderabad which is consistent with the Committee for the Purpose of Control and Supervision of
Experiments on Animals (CPCSEA), New Delhi, India, guidelines. Male SD rats weighing 200 to
220 g and 8–10 weeks old were purchased from the National Institute of Nutrition (NIN), Hyderabad,
India. Diabetes was induced by single intraperitoneal (i.p.) injection of 50 mg/kg STZ prepared in
citrate buffer, pH 4.5; control rats received a similar volume of citrate buffer, pH 4.5 (i.p.). Rats were
monitored for the development of hyperglycemia for the next seven days. Rats with stable increased
blood glucose levels of more than 200 mg/dL were divided randomly into two groups: DIA group and
DIA + RESV group (n = 12/group). Resveratrol was orally administered at a dose of 25 mg/kg/day,
as per the previous study [16]. After eight weeks, rats were sacrificed and heart tissue was collected
and stored in appropriate condition for downstream analysis.
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2.2. Cell Culture

Rat cardiomyoblast cells (H9C2) were purchased from ATCC (Manassas, VA, USA) and cultured
in Dulbecco’s modified Eagle’s medium (DMEM). The culture was supplemented with 10% fetal
bovine serum and 100 µg/mL penicillin/streptomycin. After reaching 50 to 60% confluence, cells were
treated with the respective siRNA for SIRT-1 and SIRT-3 knockdown, and ORF plasmid for SIRT3
overexpression (Dharmacon, USA) using dharmafect transfection reagent (Dharmacon, Lafayette,
CO, USA) as per the manufacturer’s protocol. After 48 h of transfection, cells were washed and lysed
for either protein or mRNA analysis. Isolated protein or mRNA was used for downstream analysis.
Similarly, the stable SIRT-3 knockdown H9C2 cell line was developed with lentiviral vector shRNA
(Dharmacon, USA) and used for gene expression analysis.

2.3. Serum Biochemical Analysis

Serum samples collected from rats were analyzed with auto blood analyzer (Siemens, Qulin,
MO, USA) for the measurement of triglyceride, uric acid, HDL, creatinine, cholesterol, and SGOT.
Measurement of serum insulin and glycated hemoglobin (HbA1c) was carried out using Mercodias’
rat insulin ELISA kit and Biosystems’ glycated hemoglobin detection kit, respectively.

2.4. Measurement of Cardiac Cell Size and Histopathological Examination

Heart weight to tail length ratio was evaluated at the end of the study to demonstrate
cardiac phenotypic changes. Heart tissue samples fixed in neutral buffer formalin (10%) were
paraffin-embedded for histopathological analysis. Sections (5-µm) were stained with hematoxylin and
eosin and masons trichrome for further analysis. Cardiac cell size was measured using Image J as
described previously [17,18].

2.5. Isolation of Mitochondria

Mitochondria were isolated from equal weight of heart tissues from all groups using mitochondria
isolation kit (Pierce, Thermo scientific, cat No: 89801). Isolated mitochondria were lysed and stored for
downstream application.

2.6. Preparation of Heart Tissue Homogenate

Heart tissues were homogenized with ten times volume of 0.05 M phosphate buffer (pH 7.4) and
centrifuged at 15,000× g for 30 min at 4 ◦C. Supernatant was stored at −80 ◦C for downstream analysis.

2.7. Measurement of Cardiac ROS, Antioxidant Levels and Oxidative Stress Parameters

The cardiac thiobarbituric acid assay (TBARS), reactive oxygen species (ROS), 2,2-diphenyl-1-
picrylhydrazyl (DPPH), catalase, and superoxide dismutase (SOD) activity assays were conducted
using protocol described by us previously [19–22].

2.8. Electron Transport Chain Complex Assembly Activity

Enzyme activity of citrate synthase and β-hydroxyl acyl-CoA dehydrogenase was measured
according to the protocol described before [23]. The specific enzymatic activity of mitochondrial ETC
complex I (NADH-ubiquinone oxidoreductase), complex II (succinate-ubiquinone oxidoreductase),
and complex IV (cytochrome c oxidase) was measured as described previously [24]. ATP levels were
measured using luminescence based assay (Life Technology Ltd. Waltham, MA, USA).

2.9. Gene Expression Analysis

Isolation of RNA from the heart tissue (n = 5) was carried out using RNAeasy kit (Quiagen,
Germantown, MD, USA). Isolated RNA was quantified using Nanodrop (ThermoFischer, Waltham,
MA, USA) followed by DNA digestion (Quiagen Kit). The purified RNA was then reverse transcribed
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to cDNA using First Strand cDNA synthesis kit, Quiagen, USA. Synthesized cDNA was diluted
for downstream analysis. Primers used for the study were designed using Primer-3 tool and
standardized as per the routine protocol. For real-time PCR reaction, SYBER green chemistry was
used as per manufacturer’s protocol (Applied Biosystems, Waltham, MA, USA) using Step One Plus
instrument (Applied Biosystems, USA). Mathematical calculation for fold change in gene expression
was performed as described before [25]. RPL32 was used as reference gene [25].

2.10. Immunoblotting

Protein isolation was carried out using tissue protein extraction reagent (T-PER, Pierce, USA).
Following centrifugation, resultant supernatant was collected and quantified using BCA kit, Pierce,
USA. An equal amount of protein was resolved using 10 to 12% SDS-polyacrylamide gel. The resolved
gel was then transferred to a polyvinyldine difluoride membrane (Thermo Scientific, Waltham, MA,
USA). Blocking of the membrane was performed using 3–5% blotto, nonfat dry milk (Santa Cruz,
Dallas, TX, USA) in TBS containing 0.1% Tween-20, at room temperature for 1 h. The membrane was
then incubated with primary antibody at 4 ◦C overnight. Following three subsequent washings,
the membrane was incubated with secondary anti-Rabbit (Cell signaling, Danvers, MA, USA.
Cat No: 7074) or anti-mouse (Cell signaling, Danvers, MA, USA. Cat No: 7076) antibody for 1 h
at room temperature. Blots were visualized using super signal chemiluminescent substrate (Thermo
Scientific, Waltham, MA, USA. Cat No: 34080). SIRT-3 antibody (Cell signaling, Danvers, MA, USA.
Cat No: 5490), SIRT-1 antibody (Abcam, Cambridge, MA, USA. Cat No: ab157401), TFAM antibody
(Abcam, Cambridge, MA, USA. Cat No: ab131607), GAPDH antibody (Cell signaling, Danvers,
MA, USA. Cat No: 2118), and anti-acetylated lysine antibody (Cell signaling, Danvers, MA, USA.
Cat No: 9441) were used for the study.

2.11. Immunoprecipitation

Immunoprecipitation (IP) was carried out using Dynabeads protein G IP kit (Life Technologies,
Cat No: 10007D) as per the manufacturer’s instructions. An equal amount of eluted protein was
resolved on the gel for assessing the acetylation status TFAM using anti-acetyl lysine antibody.

2.12. Electrophoretic Mobility Shift Assay

The DNA-binding activity of TFAM was assessed by electrophoretic mobility shift assay (EMSA)
using the light-shift chemiluminescent EMSA kit (Pierce, Waltham, MA, USA). Complementary
oligonucleotide probes containing the D-loop region of mtDNA were designed as binding
motifs (TFAM-, 5-TTTCCTCCTAACTAAACCCTCTTTAC-3) and were end-labeled with biotin.
The membrane was incubated with chemiluminescent substrate and developed using a CCD camera
ChemiXRS, a chemiluminescent instrument (Bio-Rad, Hercules, CA, USA). Unlabeled oligos were
added to the reaction at five- to ten-fold excess to evaluate the specificity.

2.13. Statistical Analysis

All values are expressed as the mean ± standard error (SE). One-way analysis of variance
(ANOVA) test followed by Bonferoni’s correction was carried out to test any differences between the
mean values of all groups. Significance in group differences was assumed if p < 0.05.

3. Results

3.1. Serum Biochemistry

Rats injected with STZ showed increased blood glucose levels after eight weeks compared to CON
group (Table 1). In addition, there was an increased blood HbA1c levels in DIA group rats (Table 1).
Administration of resveratrol decreased the levels of blood glucose and glycated hemoglobin compared
to DIA group rats. Moreover, there were reduced levels of serum insulin in DIA group rats compared to
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CON group rats, which increased after resveratrol administration (Table 1). Increased levels of serum
SGOT in DIA group rats was also reduced after resveratrol administration (Table 1). Increased levels
of serum triglyceride, uric acid, and creatinine along with reduced levels of cholesterol and HDL
was observed in DIA group. Administration of resveratrol normalized all these serum metabolites
alteration (Table 1). HOMA analysis showed reduced beta cell efficiency which was improved by
resveratrol administration (Table 1).

Table 1. Serum biochemistry of diabetic and resveratrol administered rats.

Parameters CON DIA DIA + RESV

Blood glucose, mg/dL 88.58 ± 2.90 429.00 ± 22.53 ## 217.50 ± 37.83 **
Glycated Hemoglobin, % 5.84 ± 0.16 9.71 ± 0.13 ## 7.46 ± 0.15 *

Insulin, pmol 131.01 ± 15.74 44.87 ± 6.70 ## 97.32 ± 8.26 *
Triglyceride, mg/dL 116.87 ± 8.255 157.00 ± 15.38 # 122.60 ± 6.47 *
Cholesterol, mg/dL 72.77 ± 3.55 53.00 ± 2.58 # 74.66 ± 5.40 **

Uric acid, mg/dL 0.85 ± 0.034 1.44 ± 0.15 # 0.92 ± 0.05 *
Creatinine, mg/dL 0.36 ± 0.01 0.52 ± 0.03 # 0.26 ± 0.01 *

HDL, mg/dL 62.71 ± 1.02 48.20 ± 2.09 # 64.80 ± 3.69 *
HOMA IR 4.00 ± 0.46 26.65 ± 8.25 # 5.52 ± 1.18 **
HOMA %B 278.70 ± 19.15 13.61 ± 2.56 # 58.20 ± 17.59 *
HOMA %S 28.12 ± 3.07 15.46 ± 5.95 # 20.60 ± 3.76 *

Data are the mean ± SE of individual data sets. # p < 0.05; ## p < 0.01 vs. Conl and * p < 0.05; ** p < 0.01; vs. DIA
(n = 8). Part of the data is reprinted from Biochemical and Biophysical Research Communications, 468, Bagul PK,
Dinda AK, Banerjee SK, “Effect of resveratrol on sirtuins expression and cardiovascular complications in diabetes”
221–227, 2015, with permission from Elsevier.

3.2. Cardiac Atrophy and Fibrosis

We have previously reported that the reduced ratio of heart weight to tail length in the DIA group
was increased with resveratrol administration [14]. Histopathological examination revealed reduced
cell size along with significant induction of cardiac fibrosis. Increased mRNA expression of β-MHC in
DIA group was observed. Administration of resveratrol significantly ameliorated all of these cardiac
alterations. However, there was a significant difference in mRNA expression of β-MHC between CON
and resveratrol treated group (Figure 1).
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Figure 1. Cardiac phenotypes and histopathological changes in diabetic rat heart and effect of
resveratrol administration. (A) mRNA expression of β-MHC; (B) Cardiac cell size; (C) Hematoxylin
and eosin staining of rat heart tissue; (D) Masson’s trichrome staining of rat heart tissue. Data shown
as Mean ± SE, (n = 6) # p < 0.05, ## p < 0.01 vs. Con; * p < 0.05, ** p < 0.01 vs. DIA group. Three sections
were observed for histopathology examination and twenty cells per image were analyzed for cell
size measurement.
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3.3. Mitochondrial Citrate Synthase, β-Hydroxy Acyl Co-A Dehydrogenase Activity, and Mitochondrial Number

There was reduced activity of citrate synthase in DIA group rat heart compared to CON group rat
heart (Figure 2A). In addition, there was reduced activity of β-hydroxy acyl CoA dehydrogenase in DIA
group rats. Administration of resveratrol rescued the activity of citrate synthase and β-hydroxy acyl
CoA dehydrogenase (Figure 2A,B). Analysis of cardiac mitochondrial content showed reduced number
of mitochondria in DIA group compared to CON group. Administration of resveratrol prevented the
decline in mitochondrial content compared to DIA group (Figure 2H).
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Figure 2. Mitochondrial metabolic enzymes activity in diabetic rat heart and effect of resveratrol
administration. (A) Citrate synthase; (B) β-hydroxy acyl CoA dehydrogenase; (C) Complex-I: NADH
dehydrogenase; (D) Complex-II: Succinate dehydrogenase; (E) Complex-IV: Cytochrome c oxidase;
(F) Complex-V: ATP synthase; (G) ATP levels; (H) Mitochondrial content. Data shown as mean ± SE,
(n = 6) # p < 0.05 vs. Con; * p < 0.05 vs. DIA group.

3.4. Activity of ETC Complex Assembly and ATP Generation

Diabetic heart showed reduced activity of complexes I, II, and IV along with reduced levels of ATP
generation compared to the CON group (Figure 2). Administration of resveratrol prevented decline in
the activity of complexes I, II, IV, V, and ATP content compared to the DIA group. In addition, ATP level
was significantly higher in the resveratrol-treated group as compared to the CON group (Figure 2).

3.5. Reactive Oxygen Species Levels and Antioxidant Defense

Increased levels of ROS and TBARS in DIA group compared to CON group were observed
(Table 2). In addition, there was reduced activity of SOD, catalase, and DPPH along with reduced
levels of glutathione (GSH) in the DIA group compared to the CON group (Table 2). Administration of
resveratrol prevented the increase in ROS levels as well as the decline in SOD, catalase, DPPH activity,
and levels of GSH (Table 2).

3.6. mRNA Expression of Mitochondrial Encoded Genes

Reduced expression of all thirteen mitochondrial encoded genes in DIA group hearts compared
to CON group hearts was observed. Administration of resveratrol restored the expression of all these
genes except MT-CYB. In addition, mitochondrial CYB and CO-1 gene expression was significantly
low in resveratrol treated group as compared to CON (Figure 3).

3.7. Expression and Activity of TFAM with Increased Acetylation Status

Reduced expression and activity of TFAM in diabetic heart compared to CON group heart
was observed (Figure 4A,B). Resveratrol administration improved the expression and activity of
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TFAM compared to DIA group heart. Transcript level of TFAM mRNA was increased with SIRT-3
overexpression in H9C2 cells (Supplementary Figure S1C). In addition, there was increased acetylation
status of TFAM in DIA group heart compared to CON group heart. However, this increased acetylated
TFAM levels was reduced with resveratrol administration (Figure 4C).

Table 2. Cardiac antioxidant and oxidative stress markers in diabetic rats and effect of
resveratrol administration.

Parameters CON DIA DIA + RESV

TBARS (uM/ gm weight of tissue) 559.57 ± 26.44 707.53 ± 26.32 # 576.29 ± 4.09 **
ROS (%) 100 160.18 ± 1.87 ## 95.24 ± 1.07 **

DPPH (% scavenging) 26.68 ± 2.30 18.61 ± 1.43 # 27.86 ± 5.01 *
GSH (ng/mg of protein) 398.23 ± 6.00 378.67 ± 5.34 # 417.50 ± 12.58 *

Catalase (mU/ug of protein) 1.85 ± 0.11 1.04 ± 0.28 # 3.26 ± 0.52 **
SOD (% activity) 100 68.84 ± 2.53 ## 81.51 ± 3.62 *

Data are the mean ± SE of individual data sets. # p < 0.05; ## p < 0.01 vs. CON and * p < 0.05; ** p < 0.01; vs. DIA
(n = 8).
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3.8. Expression and Activity of SIRT-1 and SIRT-3

The reduced expression and activity of SIRT-1 and SIRT-3 in type-I diabetic heart compared to
the CON group heart has already been reported by us. Administration of resveratrol prevented the
decline in expression and activity of both SIRT-1 and SIRT-3 in diabetic heart. However, SIRT-1 and
SIRT-3 protein expression was significantly higher in the resveratrol treated group compared to the
CON group (Figure 5) [14].
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3.9. TFAM Acetylation Is Regulated by SIRT-3

There was no change in the expression of TFAM and NRF-1 in SIRT-1 and SIRT-3 silenced
H9C2 cells (Figure 6A). In addition, we did not observe any change in the mRNA transcript level of
NRF-1 and TFAM in SIRT-3 (shRNA) silenced H9C2 cells (Supplementary Figure S1D,E). However,
there was reduced activity of TFAM in SIRT-3 silenced cell, but not in SIRT-1 silenced cells (Figure 6B).
Immunoprecipitation followed by immunoblotting with anti-acetyl lysine of TFAM showed increased
acetylation status of TFAM in SIRT-3 silenced cells (Figure 6C). Thus, our data indicates that lack of
SIRT-3 reduces TFAM activity via hyperacetylation.
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4. Discussion

Diabetes is a complex metabolic disease that leads to cardiac complications as the disease
progresses. Hyperglycemia induces multiple molecular and phenotypic perturbations, leading to the
development of cardiac dysfunction [26]. Although the incidence of T1DM is only 5 to 10% in the
diabetic populace, its severity is comparatively higher than type II diabetes mellitus. Hyperglycemia
remains the common culprit in both types of diabetes and contributes most to the pathology of cardiac
complications. In the present study, we have selected the T1DM rat model to study the effect of
hyperglycemia and lack of insulin on cardiac mitochondrial energetics and transcription.

Our study showed increased blood glucose and reduced serum insulin levels in STZ injected
rats. The hyperglycemic condition sustained throughout the study duration, as indicated by increased
HbA1c levels. In addition, there was increased level of serum triglyceride, serum creatinine, uric acid,
and SGOT in diabetic rats along with reduced levels of serum HDL and total cholesterol. All these
altered metabolite profiles were normalized with resveratrol administration. Thus all the above serum
metabolite changes indicate the development of T1DM, which is a well-known phenomenon in this
model [27].

Cardiac complications in this T1DM model revealed that there was reduced heart weight to
tail length ratio, called cardiac atrophy. This was supported by histopathological examination and
a reduction in cardiac cell size. We observed the incidence of cardiac atrophy in T1DM, contrast
with T2DM, where cardiac hypertrophy is the predominant phenotype [28]. Previous reports also
showed similar outcomes and indicate the effect of reduced insulin and starved condition [29–31].
Administration of resveratrol prevented reduction in the cell size as well as heart weight to tail length
ratio. Moreover, the reduced cardiac cell size may be one of the reasons of increased apoptosis in
cardiomyocytes as described before [30]. These dead cells are then replaced by fibrosis as a natural
repair mechanism, which we have observed in diabetic rat heart in our present study.
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We have observed the reduced mitochondrial activity of citrate synthase and β-hydroxyacyl
coA dehydrogenase in diabetic rat heart. In addition, there was reduced activity of ETC complex
assembly and ATP levels. All these outcomes may be associated with reduced cardiac size because
of deficient mitochondrial energetics. Along with these changes, we have also observed reduced
cardiac mitochondrial content in diabetic rats. Administration of resveratrol ameliorated these
reduced enzyme activities, along with increasing the levels of ATP and mitochondrial content. Data
showed that resveratrol improved cardiac phenotype with increased mitochondrial efficiency and
content. Increased SIRT3 expression and activity in the diabetic heart after resveratrol administration
might be responsible for improved mitochondrial ETC activity. Although, we have not explored
the exact mechanism of SIRT-3 activation by resveratrol in this study, previous work showed the
involvement of estrogen-related receptor alpha (ERRα) for SIRT-3 expression [32,33]. Apart from
regulating mitochondrial energy metabolism, SIRT-3 plays a critical role in attenuating cardiac fibrosis.
Chen et al. recently showed that activation of SIRT-3 by resveratrol improved cardiac function and
attenuated cardiac fibrosis by inhibiting TGF β/Smad pathway [15]. We also observed increased
fibrosis in diabetic rat heart in our present study. Administration of resveratrol reduced cardiac
fibrosis in diabetic rat heart. SIRT-3 also plays a critical role in regulating autophagy during diabetes
cardiomyopathy. Previously, it has been shown that resveratrol promotes autophagy by upregulating
SIRT-3 expression and phosphorylating AMP-activated protein kinase (AMPK) [34]. However, in the
present study, we are more focused on understanding the regulation of cellular metabolism by SIRT-3
in mitochondria.

We evaluated whether the improvement of mitochondrial efficiency through resveratrol is due to
enhancement of mitochondrial biogenesis. TFAM, a mitochondrial transcription factor, is involved
in the transcriptional control of mtDNA, whereas NRF-1 is involved in the control of nuclear DNA
transcription for the mitochondrial proteins. We have observed reduced expression and activity of
TFAM with no change in NRF-1 (data not shown) in diabetic heart. This suggests that the nuclear
trigger for mitochondrial biogenesis is not affected in this diabetic heart and the problem persists
mostly at the mitochondrial levels. As TFAM is the only mitochondrial transcription factor involved in
transcription of mtDNA that encodes proteins for ETC complex, reduced activity of the ETC complex
and its activity is expected in diabetic heart. We have also tried to elucidate if the altered TFAM
activity is due to reduced expression and activity of SIRT-1 and SIRT-3 in diabetic heart as observed in
the present study and previously [14]. SIRT-1 is involved in deacetylating PGC-1α, which regulates
the action of NRF-1 as reported earlier [35,36]; whereas, SIRT-3, a major mitochondrial deacetylase,
controls mitochondrial health [37]. To find out the underlying mechanism of the regulation of TFAM
activity, we have silenced SIRT-1 and SIRT-3 in H9C2 cells. We found no change in the expression of
TFAM and NRF-1. However, there was reduced activity of TFAM in SIRT-3 silenced cells but not in
SIRT-1 silenced cells. Next, we demonstrated whether SIRT-3 controls the acetylation status of TFAM
and its activity. We found that silencing SIRT-3 increases the acetylation of TFAM and reduces its DNA
binding activity, which was not observed in SIRT-1 silenced cells. This reinforces that SIRT-3 is crucial
in regulating the acetylation status of TFAM and also its activity. As observed in in vitro cell line, we
have also observed the acetylation status of TFAM in diabetic rat heart in vivo. Reduced activity of
SIRT-3 in diabetic rat heart was associated with increased acetylation of TFAM, which leads to reduced
activity. Administration of resveratrol prevented the decline in SIRT-3 activity and TFAM acetylation
as well as its activity in diabetic rat heart.

5. Conclusions

In conclusion, we have observed that reduced SIRT-3 activity in diabetic heart is associated with
increased acetylation and reduced activity of TFAM, which corresponds to reduced activity of ETC
complex assembly and ATP levels and decreased cardiac size. Administration of resveratrol prevented
all these cardiac changes and improves cardiac health. Our data indicates the potential role of SIRT-3
in Type-I diabetic heart providing an opportunity for future therapeutic intervention.



Cells 2018, 7, 235 11 of 13

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/7/12/235/s1,
Figure S1: Effect of SIRT-3 overexpression and stable knockdown in H9c2 cells.

Author Contributions: P.K.B. and P.B.K. carried out the animal experimentation, biochemical and molecular
estimation, and statistical analysis of results. A.K.D. did the histopathological examination of heart tissue.
P.K.B. and S.K.B. conceived the study, participated in its design and coordination, and drafted the manuscript.
All authors have read and approved the manuscript.

Funding: Financial assistance was provided by grant support (BT/PR6143/FNS/20/637/2012) from the
Department of Biotechnology (DBT), THSTI core fund, and EpiHead from Council for Scientific and Industrial
Research (CSIR). PBK is thankful to Indian Council of Medical Research (ICMR) for providing Senior Research
Fellowship. PKB and BP are thankful to Council for Scientific and Industrial Research CSIR for providing Senior
Research Fellowship (SRF).

Acknowledgments: The authors are thankful to Chengdu King-tiger Pharm-Chem. Tech. Co., Ltd. China for
providing the sample of Resveratrol.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Dittenhafer-Reed, K.E.; Richards, A.L.; Fan, J.; Smallegan, M.J.; Fotuhi Siahpirani, A.; Kemmerer, Z.A.;
Prolla, T.A.; Roy, S.; Coon, J.J.; Denu, J.M. SIRT3 mediates multi-tissue coupling for metabolic fuel switching.
Cell Metab. 2015, 21, 637–646. [CrossRef] [PubMed]

2. Ahn, B.H.; Kim, H.S.; Song, S.; Lee, I.H.; Liu, J.; Vassilopoulos, A.; Deng, C.X.; Finkel, T. A role for the
mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. USA 2008, 105,
14447–14452. [CrossRef] [PubMed]

3. Chen, Y.; Fu, L.L.; Wen, X.; Wang, X.Y.; Liu, J.; Cheng, Y.; Huang, J. Sirtuin-3 (SIRT3), a therapeutic target with
oncogenic and tumor-suppressive function in cancer. Cell Death Dis. 2014, 5, e1047. [CrossRef] [PubMed]

4. Samant, S.A.; Zhang, H.J.; Hong, Z.; Pillai, V.B.; Sundaresan, N.R.; Wolfgeher, D.; Archer, S.L.; Chan, D.C.;
Gupta, M.P. SIRT3 deacetylates and activates opa1 to regulate mitochondrial dynamics during stress.
Mol. Cell. Biol. 2014, 34, 807–819. [CrossRef] [PubMed]

5. Chen, I.C.; Chiang, W.F.; Liu, S.Y.; Chen, P.F.; Chiang, H.C. Role of SIRT3 in the regulation of redox balance
during oral carcinogenesis. Mol. Cancer 2013, 12, 68. [CrossRef] [PubMed]

6. Grillon, J.M.; Johnson, K.R.; Kotlo, K.; Danziger, R.S. Non-histone lysine acetylated proteins in heart failure.
Biochim. Biophys. Acta 2012, 1822, 607–614. [CrossRef] [PubMed]

7. Fukushima, A.; Milner, K.; Gupta, A.; Lopaschuk, G.D. Myocardial energy substrate metabolism in heart
failure: From pathways to therapeutic targets. Curr. Pharm. Des. 2015, 21, 3654–3664. [CrossRef] [PubMed]

8. Paneni, F.; Beckman, J.A.; Creager, M.A.; Cosentino, F. Diabetes and vascular disease: Pathophysiology,
clinical consequences, and medical therapy: Part I. Eur. Heart J. 2013, 34, 2436–2443. [CrossRef] [PubMed]

9. Bagul, P.K.; Banerjee, S.K. Insulin resistance, oxidative stress and cardiovascular complications: Role of
sirtuins. Curr. Pharm. Des. 2013, 19, 5663–5677. [CrossRef] [PubMed]

10. Hebert, A.S.; Dittenhafer-Reed, K.E.; Yu, W.; Bailey, D.J.; Selen, E.S.; Boersma, M.D.; Carson, J.J.; Tonelli, M.;
Balloon, A.J.; Higbee, A.J. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial
protein acetylome. Mol. Cell 2013, 49, 186–199. [CrossRef] [PubMed]

11. Bugger, H.; Witt, C.N.; Bode, C. Mitochondrial sirtuins in the heart. Heart Fail. Rev. 2016, 21, 519–528.
[CrossRef] [PubMed]

12. Koentges, C.; Bode, C.; Bugger, H. SIRT3 in cardiac physiology and disease. Front. Cardiovasc. Med. 2016, 3,
38. [CrossRef] [PubMed]

13. Zhang, M.; Wang, S.; Cheng, Z.; Xiong, Z.; Lv, J.; Yang, Z.; Li, T.; Jiang, S.; Gu, J.; Sun, D. Polydatin
ameliorates diabetic cardiomyopathy via Sirt3 activation. Biochem. Biophys. Res. Commun. 2017, 493,
1280–1287. [CrossRef] [PubMed]

14. Bagul, P.K.; Dinda, A.K.; Banerjee, S.K. Effect of resveratrol on sirtuins expression and cardiac complications
in diabetes. Biochem. Biophys. Res. Commun. 2015, 468, 221–227. [CrossRef] [PubMed]

15. Chen, T.; Li, J.; Liu, J.; Li, N.; Wang, S.; Liu, H.; Zeng, M.; Zhang, Y.; Bu, P. Activation of SIRT3 by resveratrol
ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway. Am. J. Physiol.
Heart Circ. Physiol. 2015, 308, H424–H434. [CrossRef] [PubMed]

http://www.mdpi.com/2073-4409/7/12/235/s1
http://dx.doi.org/10.1016/j.cmet.2015.03.007
http://www.ncbi.nlm.nih.gov/pubmed/25863253
http://dx.doi.org/10.1073/pnas.0803790105
http://www.ncbi.nlm.nih.gov/pubmed/18794531
http://dx.doi.org/10.1038/cddis.2014.14
http://www.ncbi.nlm.nih.gov/pubmed/24503539
http://dx.doi.org/10.1128/MCB.01483-13
http://www.ncbi.nlm.nih.gov/pubmed/24344202
http://dx.doi.org/10.1186/1476-4598-12-68
http://www.ncbi.nlm.nih.gov/pubmed/23800187
http://dx.doi.org/10.1016/j.bbadis.2011.11.016
http://www.ncbi.nlm.nih.gov/pubmed/22155497
http://dx.doi.org/10.2174/1381612821666150710150445
http://www.ncbi.nlm.nih.gov/pubmed/26166604
http://dx.doi.org/10.1093/eurheartj/eht149
http://www.ncbi.nlm.nih.gov/pubmed/23641007
http://dx.doi.org/10.2174/13816128113199990372
http://www.ncbi.nlm.nih.gov/pubmed/23448490
http://dx.doi.org/10.1016/j.molcel.2012.10.024
http://www.ncbi.nlm.nih.gov/pubmed/23201123
http://dx.doi.org/10.1007/s10741-016-9570-7
http://www.ncbi.nlm.nih.gov/pubmed/27295248
http://dx.doi.org/10.3389/fcvm.2016.00038
http://www.ncbi.nlm.nih.gov/pubmed/27790619
http://dx.doi.org/10.1016/j.bbrc.2017.09.151
http://www.ncbi.nlm.nih.gov/pubmed/28965951
http://dx.doi.org/10.1016/j.bbrc.2015.10.126
http://www.ncbi.nlm.nih.gov/pubmed/26518647
http://dx.doi.org/10.1152/ajpheart.00454.2014
http://www.ncbi.nlm.nih.gov/pubmed/25527776


Cells 2018, 7, 235 12 of 13

16. Mohamad Shahi, M.; Haidari, F.; Shiri, M.R. Comparison of effect of resveratrol and vanadium on diabetes
related dyslipidemia and hyperglycemia in streptozotocin induced diabetic rats. Adv. Pharm. Bull. 2011,
1, 81–86. [PubMed]

17. Helms, S.A.; Azhar, G.; Zuo, C.; Theus, S.A.; Bartke, A.; Wei, J.Y. Smaller cardiac cell size and reduced
extra-cellular collagen might be beneficial for hearts of ames dwarf mice. Int. J. Biol. Sci. 2010, 6, 475–490.
[CrossRef] [PubMed]

18. Cosyns, B.; Droogmans, S.; Hernot, S.; Degaillier, C.; Garbar, C.; Weytjens, C.; Roosens, B.; Schoors, D.;
Lahoutte, T.; Franken, P.R.; et al. Effect of streptozotocin-induced diabetes on myocardial blood flow reserve
assessed by myocardial contrast echocardiography in rats. Cardiovasc. Diabetol. 2008, 7, 26. [CrossRef]
[PubMed]

19. Bagul, P.K.; Middela, H.; Matapally, S.; Padiya, R.; Bastia, T.; Madhusudana, K.; Reddy, B.R.; Chakravarty, S.;
Banerjee, S.K. Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by
resveratrol in fructose-fed rats. Pharmacol. Res. 2012, 66, 260–268. [CrossRef] [PubMed]

20. Banerjee, S.K.; Dinda, A.K.; Manchanda, S.C.; Maulik, S.K. Chronic garlic administration protects rat heart
against oxidative stress induced by ischemic reperfusion injury. BMC Pharmacol. 2002, 2, 16. [CrossRef]

21. Padiya, R.; Chowdhury, D.; Borkar, R.; Srinivas, R.; Pal Bhadra, M.; Banerjee, S.K. Garlic attenuates cardiac
oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLoS ONE
2014, 9, e94228. [CrossRef] [PubMed]

22. Padiya, R.; Khatua, T.N.; Bagul, P.K.; Kuncha, M.; Banerjee, S.K. Garlic improves insulin sensitivity and
associated metabolic syndromes in fructose fed rats. Nutr. Metab. 2011, 8, 53. [CrossRef] [PubMed]

23. Shepherd, D.; Garland, P.B. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem. J.
1969, 114, 597–610. [CrossRef] [PubMed]

24. Trounce, I.A.; Kim, Y.L.; Jun, A.S.; Wallace, D.C. Assessment of mitochondrial oxidative phosphorylation
in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 1996, 264,
484–509. [PubMed]

25. Bagul, P.K.; Deepthi, N.; Sultana, R.; Banerjee, S.K. Resveratrol ameliorates cardiac oxidative stress in diabetes
through deacetylation of NFkB-p65 and histone 3. J. Nutr. Biochem. 2015, 26, 1298–1307. [CrossRef] [PubMed]

26. Lei, S.; Li, H.; Xu, J.; Liu, Y.; Gao, X.; Wang, J.; Ng, K.F.; Lau, W.B.; Ma, X.L.; Rodrigues, B.; et al.
Hyperglycemia-induced protein kinase c β2 activation induces diastolic cardiac dysfunction in diabetic
rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes 2013, 62, 2318–2328. [CrossRef]
[PubMed]

27. Ward, D.T.; Yau, S.K.; Mee, A.P.; Mawer, E.B.; Miller, C.A.; Garland, H.O.; Riccardi, D. Functional, molecular,
and biochemical characterization of streptozotocin-induced diabetes. J. Am. Soc. Nephrol. 2001, 12, 779–790.
[PubMed]

28. Fuentes-Antras, J.; Picatoste, B.; Gomez-Hernandez, A.; Egido, J.; Tunon, J.; Lorenzo, O. Updating
experimental models of diabetic cardiomyopathy. J. Diabetes Res. 2015, 2015, 656795. [CrossRef] [PubMed]

29. Lee, Y.; Hong, Y.; Lee, S.R.; Chang, K.T.; Hong, Y. Autophagy contributes to retardation of cardiac growth in
diabetic rats. Lab. Anim. Res. 2012, 28, 99–107. [CrossRef] [PubMed]

30. Yu, X.; Tesiram, Y.A.; Towner, R.A.; Abbott, A.; Patterson, E.; Huang, S.; Garrett, M.W.; Chandrasekaran, S.;
Matsuzaki, S.; Szweda, L.I.; et al. Early myocardial dysfunction in streptozotocin-induced diabetic mice:
A study using in vivo magnetic resonance imaging (MRI). Cardiovasc. Diabetol. 2007, 6, 6. [CrossRef]
[PubMed]

31. Dobrzynski, E.; Montanari, D.; Agata, J.; Zhu, J.; Chao, J.; Chao, L. Adrenomedullin improves cardiac
function and prevents renal damage in streptozotocin-induced diabetic rats. Am. J. Physiol. Endocrinol. Metab.
2002, 283, E1291–E1298. [CrossRef] [PubMed]

32. Mathieu, L.; Costa, A.L.; Le Bachelier, C.; Slama, A.; Lebre, A.-S.; Taylor, R.W.; Bastin, J.; Djouadi, F.
Resveratrol attenuates oxidative stress in mitochondrial complex I deficiency: Involvement of SIRT3.
Free Radic. Biol. Med. 2016, 96, 190–198. [CrossRef] [PubMed]

33. Zhou, X.; Chen, M.; Zeng, X.; Yang, J.; Deng, H.; Yi, L.; Mi, M. Resveratrol regulates mitochondrial
reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells.
Cell Death Dis. 2014, 5, e1576. [CrossRef] [PubMed]

34. Duan, W.-J.; Li, Y.-F.; Liu, F.-L.; Deng, J.; Wu, Y.-P.; Yuan, W.-L.; Tsoi, B.; Chen, J.-L.; Wang, Q.; Cai, S.-H.
A SIRT3/AMPK/autophagy network orchestrates the protective effects of trans-resveratrol in stressed

http://www.ncbi.nlm.nih.gov/pubmed/24312761
http://dx.doi.org/10.7150/ijbs.6.475
http://www.ncbi.nlm.nih.gov/pubmed/20827400
http://dx.doi.org/10.1186/1475-2840-7-26
http://www.ncbi.nlm.nih.gov/pubmed/18764943
http://dx.doi.org/10.1016/j.phrs.2012.05.003
http://www.ncbi.nlm.nih.gov/pubmed/22627169
http://dx.doi.org/10.1186/1471-2210-2-16
http://dx.doi.org/10.1371/journal.pone.0094228
http://www.ncbi.nlm.nih.gov/pubmed/24796753
http://dx.doi.org/10.1186/1743-7075-8-53
http://www.ncbi.nlm.nih.gov/pubmed/21794123
http://dx.doi.org/10.1042/bj1140597
http://www.ncbi.nlm.nih.gov/pubmed/5820645
http://www.ncbi.nlm.nih.gov/pubmed/8965721
http://dx.doi.org/10.1016/j.jnutbio.2015.06.006
http://www.ncbi.nlm.nih.gov/pubmed/26298192
http://dx.doi.org/10.2337/db12-1391
http://www.ncbi.nlm.nih.gov/pubmed/23474486
http://www.ncbi.nlm.nih.gov/pubmed/11274239
http://dx.doi.org/10.1155/2015/656795
http://www.ncbi.nlm.nih.gov/pubmed/25973429
http://dx.doi.org/10.5625/lar.2012.28.2.99
http://www.ncbi.nlm.nih.gov/pubmed/22787483
http://dx.doi.org/10.1186/1475-2840-6-6
http://www.ncbi.nlm.nih.gov/pubmed/17309798
http://dx.doi.org/10.1152/ajpendo.00147.2002
http://www.ncbi.nlm.nih.gov/pubmed/12424108
http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.027
http://www.ncbi.nlm.nih.gov/pubmed/27126960
http://dx.doi.org/10.1038/cddis.2014.530
http://www.ncbi.nlm.nih.gov/pubmed/25522270


Cells 2018, 7, 235 13 of 13

peritoneal macrophages and RAW 264.7 macrophages. Free Radic. Biol. Med. 2016, 95, 230–242. [CrossRef]
[PubMed]

35. Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.;
Scarpulla, R.C.; et al. Mechanisms controlling mitochondrial biogenesis and respiration through the
thermogenic coactivator PGC-1. Cell 1999, 98, 115–124. [CrossRef]

36. Rodgers, J.T.; Lerin, C.; Haas, W.; Gygi, S.P.; Spiegelman, B.M.; Puigserver, P. Nutrient control of glucose
homeostasis through a complex of PGC-1α and SIRT1. Nature 2005, 434, 113–118. [CrossRef] [PubMed]

37. Liu, L.; Nam, M.; Fan, W.; Akie, T.E.; Hoaglin, D.C.; Gao, G.; Keaney, J.F., Jr.; Cooper, M.P. Nutrient sensing
by the mitochondrial transcription machinery dictates oxidative phosphorylation. J. Clin. Investig. 2014, 124,
768–784. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.freeradbiomed.2016.03.022
http://www.ncbi.nlm.nih.gov/pubmed/27021965
http://dx.doi.org/10.1016/S0092-8674(00)80611-X
http://dx.doi.org/10.1038/nature03354
http://www.ncbi.nlm.nih.gov/pubmed/15744310
http://dx.doi.org/10.1172/JCI69413
http://www.ncbi.nlm.nih.gov/pubmed/24430182
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Animals 
	Cell Culture 
	Serum Biochemical Analysis 
	Measurement of Cardiac Cell Size and Histopathological Examination 
	Isolation of Mitochondria 
	Preparation of Heart Tissue Homogenate 
	Measurement of Cardiac ROS, Antioxidant Levels and Oxidative Stress Parameters 
	Electron Transport Chain Complex Assembly Activity 
	Gene Expression Analysis 
	Immunoblotting 
	Immunoprecipitation 
	Electrophoretic Mobility Shift Assay 
	Statistical Analysis 

	Results 
	Serum Biochemistry 
	Cardiac Atrophy and Fibrosis 
	Mitochondrial Citrate Synthase, -Hydroxy Acyl Co-A Dehydrogenase Activity, and Mitochondrial Number 
	Activity of ETC Complex Assembly and ATP Generation 
	Reactive Oxygen Species Levels and Antioxidant Defense 
	mRNA Expression of Mitochondrial Encoded Genes 
	Expression and Activity of TFAM with Increased Acetylation Status 
	Expression and Activity of SIRT-1 and SIRT-3 
	TFAM Acetylation Is Regulated by SIRT-3 

	Discussion 
	Conclusions 
	References

