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Abstract: Sustained endoplasmic reticular stress (ERS) is implicated in aggressive metastasis of 

cancer cells and increased tumor cell proliferation. Cancer cells activate the unfolded protein 

response (UPR), which aids in cellular survival and adaptation to harsh conditions. Inhibition of 

apoptosis, in contrast, is a mechanism adopted by cancer cells with the help of the inhibitor of an 

apoptosis (IAP) class of proteins such as Survivin to evade cell death and gain a proliferative 

advantage. In this study, we aimed to reveal the interrelation between ERS and Survivin. We 

initially verified the expression of Survivin in Winnie (a mouse model of chronic ERS) colon tissues 

by using immunohistochemistry (IHC) and immunofluorescence (IF) in comparison with wild type 

Blk6 mice. Additionally, we isolated the goblet cells and determined the expression of Survivin by 

IF and protein validation. Tunicamycin was utilized at a concentration of 10 µg/mL to induce ERS 

in the LS174T cell line and the gene expression of the ERS markers was measured. This was followed 

by determination of inflammatory cytokines. Inhibition of ERS was carried out by 4Phenyl Butyric 

acid (4PBA) at a concentration of 10 mM to assess whether there was a reciprocation effect. The 

downstream cell death assays including caspase 3/7, Annexin V, and poly(ADP-ribose) polymerase 

(PARP) cleavage were evaluated in the presence of ERS and absence of ERS, which was followed by 

a proliferative assay (EdU click) with and without ERS. Correspondingly, we inhibited Survivin by 

YM155 at a concentration of 100 nM and observed the succeeding ERS markers and inflammatory 

markers. We also verified the caspase 3/7 assay. Our results demonstrate that ERS inhibition not 

only significantly reduced the UPR genes (Grp78, ATF6, PERKandXBP1) along with Survivin but 

also downregulated the inflammatory markers such as IL8, IL4, and IL6, which suggests a positive 

correlation between ERS and the inhibition of apoptosis. Furthermore, we provided evidence that 

ERS inhibition promoted apoptosis in LS174T cells and shortened the proliferation rate. Moreover, 

Survivin inhibition by YM155 led to a comparable effect as that of ERS inhibition, which includes 

attenuation of ERS genes and inflammatory markers as well as the promotion of programmed cell 

death via the caspase 3/7 pathway. Together, our results propose the interrelation between ERS and 

inhibition of apoptosis assigning a molecular and therapeutic target for cancer treatment. 

Keywords: endoplasmic reticular stress; apoptosis; survivin; unfolded protein response; inhibition 

of apoptosis; proliferation; Winnie; LS174T; colon; colon cancer; 4PBA; tunicmycin 
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1. Introduction 

The disruption of endoplasmic reticular homeostasis by various physiological stimuli leads to 

the accumulation of misfolded proteins. This phenomenon is called endoplasmic reticular stress 

(ERS), which, in turn, induces a coordinated program called an unfolded protein response [1]. The 

unfolded protein response (UPR) triggered by ERS serves as an adaptive mechanism to protect the 

cell from stress and restore endoplasmic reticulum (ER) homeostasis. An increase in ERS initiates the 

UPR, which results in programmed cell death or apoptosis. In conditions such as cancer, ERS initiates 

an unfavorable micro-environment that may include low pH and hypoxia, which leads to the 

accumulation of misfolded proteins. Under normal cellular conditions, the above factors collectively 

lead to apoptosis to ameliorate ER stress and reinstate homeostasis. In cancer, numerous mechanisms 

have evolved to circumvent environmental stress and evade cell death [2,3]. 

ER chaperones are the group of proteins typically involved in shuttling proteins into ER and 

modifying with N-linked glycans, which was folded into the appropriate secondary and tertiary 

structures. These are stabilized by disulfide bonds and, in many cases, are assembled into multimeric 

complexes [4]. Inhibition of ER chaperone proteins that aid in correct protein folding has been 

suggested as a therapeutic approach in cancer treatment, which targets pro-survival pathway 

inhibition and subsequent initiation of cancer cell death [5]. Apoptosis is dependent on the triggering 

of caspases and a special class of proteins known as an inhibitor of apoptosis proteins (IAPs), which 

negatively regulates caspases and apoptosis [6]. Numerous cellular processes are controlled by IAPs. 

In cancers, IAPs either directly or indirectly contribute to tumorigenesis through disease initiation, 

progression, cellular proliferation, and tumor preservation. Thus, IAPs are gaining clinical interest 

for their role in therapeutics as tumor markers. 

Survivin is one of the IAP that protects cells from apoptosis. Survivin was reported to act as a 

‘gatekeeper’ at the G2-M boundary of the cell cycle and resides between the nucleus and cytoplasm, 

which binds to caspase activation involved in apoptosis [7]. Survivin is highly organ-specific and 

tissue-specific and is linked to several processes such as angiogenesis. The stress response and p53 

linkage as Survivin was said to regulate p53 [8]. Survivin is responsible for aggressiveness cellular 

proliferation in colorectal cancers (CRC) and its inhibition via PARP6 resulted in the reduction of 

tumors [9]. This highlights an essential role for survivin as a critical regulator of tumorigenesis and 

is, therefore, amendable to therapeutic intervention in the treatment of cancer progression. 

ER stress in situ often correlates with advanced-stage disease and chemoresistance. The ability 

to tolerate persistent ER stress enhances cancer cell survival, angiogenesis, metastatic capacity, drug 

resistance, and immune-suppression [10]. ERS inhibition has gained attention in establishing a 

therapeutic approach to treat various disease states. ERS inhibitors including benzodiazepines, 

baicalein, 1-deoxymannojirimycin hydrochloride, and others targeting ERS genes such as CHOP and 

ER alpha-mannosidase were employed in various cell lines including stem cells and progenitor cells 

to bring down the levels of reactive oxygen species (ROS) and chaperones in order to establish a 

therapeutic role [11]. ER misfolding defects are associated with aggressive tumor growth and, 

therefore, it is critical to understand the molecular mechanisms and regulation of the UPR. Cancer 

survival in one way depends on the UPR signaling pathways that orchestrate cellular processes such 

as apoptosis and autophagy. Pharmacological induction of ERS leads to escalation of UPR markers 

and pro-inflammatory cytokines [12]. In addition, ERS inducers such as thapsigargin in tumor mice 

aggravated the tumors, which form a link between ERS and cancer progression. However, there was 

no clear link between ERS and IAP proteins such as Survivin and, hence, we decided to investigate 

the relationship between these two mechanisms and subsequent downstream effects like 

inflammation, apoptosis, and proliferation. 

In the present study, we determined the expression of Survivin in Winnie, which is a chronic 

ERS mouse model displaying severe colitis due to missense Muc2 mutations [13]. We have also 

correlated Muc2 expression with proliferation in LS174T cells since theMuc2 role was perplexing in 

the gut due toa number of studies correlating Muc2 expression with severe ERS [14] and Muc2 

positive expression, which was relatable with increased proliferation [15]. 
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Importantly, Survivin expression is a well-established event in the development of colonic 

adenocarcinoma [16]. Studies have documented Survivin translocation between the nucleus and 

cytoplasm. Its potential role as an inhibitor of apoptosis is conducted by binding to the mitochondrial 

activator of caspase and portraying it as a bridge between apoptosis and mitosis [17]. Apoptosis and 

ERS, in contrast, are responsible for the development of various diseases. The molecular link between 

ERS and apoptosis has not yet been established based on a plethora of complex events including the 

accumulation of folded proteins and hypoxia as part of the pro-survival mechanism [18]. Hence, it 

was vital to understand the link between the inhibition of apoptosis, ERS, pro-survival, proliferation, 

and cancer. 

We have shown for the first time a reciprocal relationship between ERS and Survivin through 

chemical inducers and inhibitors of ERS and Survivin activity. This relationship was also concomitant 

with cell death and the rate of cellular proliferation in the human colon cancer cell line LS174T. 

2. Materials and Methods 

2.1. Cell Culture 

The human colon cancer cell line (LS174T-ATCC® CL-188™) was cultured in Roswell Park 

Memorial Institute medium RPMI media with added L-glutamine (Life Technologies, Victoria, 

Australia) supplemented with 10% fetal bovine serum, penicillin (1000 UG/mL), and streptomycin 

(1000 U/mL) (Gibco BRL, Victoria, Australia). Cells were incubated under 37 °C and 5% CO2.After 

reaching confluency, the cells were harvested using 0.25% TrypLe express (Life Technologies, AUS). 

The detached cells were determined for the cell number and viability after washing by using the 

Countess® cell counter (Life Technologies, AUS) as per the instructions. 

2.2. Animals 

All animal experiments were approved by the Animal Ethics Committee of the University of 

Tasmania (Ethics approval number: A14095, 2017) and conducted in accordance with the Australian 

Code of Practice for Care and Use of Animals for Scientific Purposes (8th Edition 2013). All the 

animals were bought from the Cambridge farm facility (Hobart, Australia). Animal housing was 

under a 21 °C environment with a 12-h day/night cycle. All mice had continuous access to radiation-

sterilized rodent feed (Barastoc Rat and Mouse, Ridley AgProducts, Hobart, Australia) and 

autoclaved tap water ad libitum. 

2.3. Isolation of Goblet Cells 

The animals were sacrificed via CO2 asphyxiation in the morning before the abdomen was 

dissected and the colon removed. Colons were then harvested from 16 weeks, 10 Winnie 

(homozygous Muc2 mutant), and 10 wild type mice (C57BL6/J background) of both sexes, sliced 

lengthwise, and washed with ice cold phosphate buffer saline (PBS). The colons were stored on ice in 

Dulbeccos’ Modified Eagle Medium (DMEM) L-glutamine (Life Technologies) and supplemented 

with 10% fetal bovine serum (Gibco, VIC, AUS), penicillin (1000 U/mL), and streptomycin (1000 ug/L) 

(Gibco BRL, AUS) until all colons were collected. The colons were washed twice with PBS and placed 

in pre-digestion solution (liberase 0.35 mL; Hanks’ balanced salt solution HBSS). The liberase was 

prepared by utilizing 5 mg/mL of the concentration. A total of 2.3 mL of HBSS needs to be added to 

prepare the master stock and later needs to be divided into aliquots. In an individual experiment, 168 

µL of liberase from the aliquot was added into 10 mL of HBSS. The samples were incubated using 5 

mg/mL liberase in HBSS for 15 min with rocking in a 37 °C incubator, 4.5% CO2. The colon crypts 

were collected by scraping the colons (cells off from the basement membrane by using a pipette tip 

and forceps). The crypts isolated were passed through a 100 µm cell sieve. The cells were then 

subjected to a gentle spin at 3000× g, 4 °C for 5 min. The gradient assay was employed. The goblet cell 

pellet was re-suspended in freezing medium (6:3:1) Medium: Fetal bovine serum (FBS): DMEM and 

was transferred into a cryo-vial and stored for future use. 
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2.4. RNA Extraction and cDNA Conversion 

The RNeasy Mini kit was employed (Qiagen, VIC, AUS) with RNase-Free DNase set (Qiagen, 

AUS) to extract RNA from LS174T cells (3 × 105cell population). The RNA quantitative and qualitative 

analysis was performed by using an Experion automated electrophoresis system (Bio-Rad 

Laboratories, VIC, AUS) and RNA samples with an RNA quality index (RQI) >7.0 were considered 

suitable for expression analysis. The iScript cDNA synthesis kit (Bio-Rad Laboratories, AUS) was 

used to transcribe one microgram of total RNA to cDNA as per the manufacturing protocol. 

2.5. qRTPCR 

The RT-PCR was performed by using Taqman® probes (Life Technilogies, AUS) for GAPDH 

(Hs03929097_gl), ATF6 (Hs00232586_m1), XBP1 (Hs00231936_m1), GRP78 (Hs0060719_gH), CHOP 

(Hs00358796_g1), and PERK (Hs00984006_m1). The RT-reaction mixture consisted of 40 ng of cDNA, 

Taqman Fast Advanced Master mix (Life Technologies, AUS), and 1 µL of gene-specific probe/total 

volume of 20 µL. The reactions were run in duplicates on the qRT-PCR machine (StepOne Plus-Life 

Technologies, VIC, AUS).Thermo cycling conditions included 90 °C for 20 s, 40 cycles at 95 °C for 1 

s, and 60 °C for 20 s. Gene expression was quantified by using the comparative (ΔΔCT) method where 

the threshold cycle (CT) for each gene was normalized to reference gene GAPDH. 

2.6. The Assessment of Cytokines by Bioplex 

Ls174T cells were utilized for measurements of IL-8, IL-4, IL-6, and IL-10 cytokine levels. The 

cells were subjected to the corresponding treatments of tunicamycin, 4-phenylbutyric acid (4PBA) 

and YM155. The cells were cultured in 12-well cell culture plates (Greiner, VIC, AUS) and were 

seeded at a density of 3.0 × 105 cells for every well in 2.0 mL of medium and incubated overnight at 

37 °C/5% CO2 to enable the cells to adhere. Medium was replaced the following day comprising of 

the treatments: Tunicamycin (10 µg/mL in DMSO) and 4PBA (40 µg/mL) incubated for 6 h at 37 °C/5% 

CO2. After 6 h of treatment, the media from each well was collected and utilized for measuring 

cytokines by utilizing the Bio-Plex® Pro human cytokine assay kit (Bio-Rad®), which is indicated by 

the manufacturer protocol. Additionally, 50 µL of cytokine beads were added to the 96-well plate 

and incubated for 30 min before washing twice with wash buffer. At that point, 50 µL of every 

standard including blank tests were added to the individual wells and incubated at room 

temperature on a shaker at 850 rpm for 30 min. Post incubation, the wells were washed thrice and 25 

µL of detection antibody was added to each well and incubated at room temperature on a shaker at 

850 rpm for 30 min. Subsequently, 50 µL of streptavidin-PE was added to each well and incubated at 

room temperature in a shaker at 850 rpm for 10 min. After three washes, 125 µL assay buffer was 

added to each well and incubated at room temperature for 30 s. After incubating, the plates were read 

on the Bio-Plex® 200 system and analyzed by using in Bio-Plex Data ProTM Software (Gladesville, 

NSW, AUS). All the tests were performed in triplicate. 

2.7. Toxicity Assay Lactate Dehydrogenase (LDH) 

After incubation with the respective treatments, the supernatants were collected for the 

determination of cytotoxicity by using the lactate dehydrogenase (LDH) assay. The cellular 

cytotoxicity was assessed by the LDH in-vitro cytotoxicity assay (TOX7, Sigma-Aldrich, St. Louis, 

MO, USA). The culture supernatants were centrifuged at 250× g for 4 min. An aliquot containing 50 

µL of either blank (complete medium) or control (cells only) and cells treated with tunicamycin 

(TUN) supernatants obtained after the respective time point incubations was mixed with 100 µL of a 

solution containing the LDH assay mixture (LDH substrate, LDH dye, and LDH cofactor). The 

mixture was then incubated at room temperature for 20 to 30 min and the reaction was quenched by 

the addition of 1N hydrochloric acid (15 µL). The absorbance was measured spectro-photo-metrically 

by using a plate reader (Spectra Max M2 microplate reader, Sunnyvale, CA, USA) at a wavelength of 
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490 nm. The cellular viability was examined by a Trypan Blue exclusion staining assay using a 

Countess Automated Cell Counter (Thermo-Fisher, Waltham, MA, USA). 

2.8. Western Blot 

The cells (1 × 106 treated for 6 h) post treatments were washed with HBSS followed by 

homogenization in 2 mL of RIPA buffer/10% of Protease Inhibitor (Sigma-Aldrich, AUS). After 

subjecting to centrifugation at 12,000 rpm for 20 min at 4 °C, the supernatant was collected. Thirty 

micrograms of protein from each sample was denatured in Laemmli loading buffer (Bio-Rad 

Laboratories, AUS) and separated on precast 12% SDS-PAGE gels (Bio-Rad Laboratories, AUS), 

which was followed by overnight transfer onto Polyvinylidene difluoride (PVDF) membranes 

(Millipore, NSW, AUS) at 30 mV at 4 °C. By using 5% non-fat milk, the blot was blocked before 

incubating with respective antibodies: anti-GADPH, Survivin, Grp78 (#14C10, 1:3000, Novus 

Biologicals, AUS), poly(ADP-ribose)polymerase (PARP), and cleaved PARP (SIGMA, VIC, Aus) 

overnight at 4 °C in blocking buffer. The blot was washed in PBST and incubated with appropriate 

species monoclonal horseradish peroxidase-conjugated anti-IgG secondary antibodies (1:5000) for 1 

h at 20 °C. The bands were visualized by using the Supersignal West Pico chemi-luminescent kit 

(Thermo Scientific, VIC, AUS). It was digitized and the band intensities were determined by using a 

Fuji LAS-3000 Imager (Fuji Life Sciences, JPN). The samples from all groups were included in each 

individual blot to ensure accurate quantification across multiple blots. 

2.9. Apoptosis Assays 

2.9.1. Caspase-3 Assay 

The Caspase-3 fluorimetric test was performed on the cell lysates, which were collected after the 

6-h treatment as indicated by the guidelines, which gave the test unit and past reference. This 

compound test depended on the hydrolysis of the caspase-3 peptide substrate (acetyl-Asp-Glu-Val-

Asp or AC-DEVD) conjugated to a fluorochrome at the C-terminal Asp, which brings the arrival of 

the fluorescent moiety. After the fluorimetric treatment, the fluorescence (absolute units) was 

estimated by utilizing the CytoFluor Multi-Well Plate Reader Series 4000 spectro-fluorometer from 

PerSeptive Biosystems (Framingham, MA, USA) as per the manufacturer’s protocol. 

2.9.2. Annexin V Assay 

The Annexin-V-Fluos assay (cat. No. 11828681001, Roche Diagnostics, Zug Switzerland) was 

utilized to measure apoptotic (annexin V) cell populations. The cells after the 6 h treatments were 

incubated in incubation buffer (10 mM HEPES at pH 7.4, 140 mM NaCL, 2.5 mM CaCl2) and 

supplemented with annexin V–PI mix for 15min atroom temperature (RT) and the cells were 

analyzed by flow cytometry and confocal microscopy with 4′,6-diamidino-2-phenylindole(DAPI) as 

nuclear staining and the Fluorescein isothiocyanate (FITC) channel (fluorescein) for visualizing 

apoptosis cells (Nikon AR1MP) per the manufacturers’ protocol. 

2.10. Proliferation Assay 

The proliferation test 5-ethynyl-2′-deoxyuridine (EdU) (Invitrogen, VIC, Aus) was executed 

according to the guidelines included by the producer, which means the upgraded convention. The 

Click-iT™ EdUIF Assay Kit, Invitrogen™ was included at a 50 µM final concentration. After the 

respective treatments, the cells were subjected to 3 × 5 min PBS washes. A cell volume of 20–30 µL 

was directly incubated at room temperature (RT) in the EdU detection cocktail (Invitrogen, Click-

iTEdU Alexa Fluor 488 HCS assay, cat no: {“type”:“entrez-nucleotide”,“attrs”: 

{“text”:“A10027”,“term_id”:“492344”,“term_text”:“A10027”}} A10027) for 30 min. For a one sample 

reaction, the following amounts of the kit components are mixed in 144 µL distilled water: 1.6 µL 



Cells 2018, 7, 171 6 of 22 

 

buffer additive (component F, kept frozen in small aliquots), 14 µL reaction buffer (Component D), 

6.7 µL Copper (II) sulfate solution (Component E, 100 mM CuSO4), and 0.07 µL Alexa Fluor 488 azide 

(Component B, in 70 µL DMSO). Confocal laser scanning microscopy was performed by using the 

Olympus Fluoview FV1000 confocal laser scanning microscope (Olympus Life Science Europa 

GmbH, Hamburg, Germany). Alexa Fluor 488 images were captured under excitation: 460–490 nm, 

dichroic beam splitter 505 nm, and emission of 510–550 nm. The images were analyzed by using 

ImageJ software (Madison, WI, USA). 

2.11. Statistical Analysis 

Statistical significance of the differences between groups among repeated experiments was 

calculated by one-way and two-way ANOVA and the Fisher's LSD-test using GraphPad Prism 7 

software (GraphPad Software Ltd, La Jolla, CA, USA). The results are expressed as the mean values 

± standard deviation. In all statistical tests, a p-value < 0.05 was considered statistically significant. 

3. Results 

3.1. Increased Survivin Expression in the Colon of Winnie 

We utilized the Winnie mouse model [13] of chronic ERS and control black 6 (Blk6) mice to assess 

the expression of Survivin in the colon since there was an increased ERS documented in the Winnie 

goblet cells. We have first checked the expression of Survivin in the colon tissue by 

immunohistochemistry (IHC) and immunofluorescence (IF). IHC revealed an increase in the 

expression of Survivin in the colonic epithelial cells, which is shown in Figure 1A,B. Similar to that 

of the IF where there was a striking elevated expression observed in Winnie compared to that of wild 

type mice where there was hardly any expression of Survivin (Figure 1C,D). We further isolated the 

goblet cells from the colons of both Winnie and Blk6 mice and performed IF analysis to precisely 

define the Survivin expression in the cells. There was a significant increase in the expression of 

Survivin in Winnie goblet cells compared to the wild type Blk6 (Figure 1E,F). We have also evaluated 

the Survivin protein expression of the goblet cells by using a Western blot where the Survivin protein 

expression of the goblet cells was found to increase in Winnie compared to the wild type mice (Figure 

1H). 

To further assess the functional relationship between Survivin and ERS, we employed an in vitro 

evaluation on a similar goblet cell like mucous secretory epithelial cell line (LS174T) to determine the 

functional and downstream effects of ERS induction and inhibition in the context of cancer and its 

emerging effects. 

3.2. Dynamics of Survivin in Line with Endoplasmic Reticular Stress (ERS) 

Having determined the expression of Survivin in Winnie goblet cells, we then investigated the 

dynamics in LS174T cells. First, to study the molecular dynamics of Survivin in parallel with ERS, we 

treated LS174T cells with TUN over a period of seven days and collected RNA at various time points 

(0 min, 15 min, 30 min, 1 h, 2 h, 4 h, 6 h, 8 h, 12 h, 24 h, 48 h, 72 h, and 7th day) to determine mRNA 

expression. Grp78 was used as a standard marker of ERS. The lactate dehydrogenase assay (LDH) 

was also performed at various time points to monitor the extent of cell death. It was evident from 

quantitative real-time PCR that the expression of Survivin was greatest (2.5-fold increase vs control) 

at 6 h (360 min) of TUN treatment and this increase in Survivin expression was concomitant with a 

similar increase in the ERS maker Grp78 (Figure 2A,B). The expression pattern of surviving showed 

a steady increase and reached the highest level by the sixth hour post TUN treatment. After the sixth 

hour time point, there was a steady drop in Survivin expression resulting in no expression by the 

900th minute (Figure 2A). Similar to Survivin expression, ERS induction by TUN showed an expected 

pattern of Grp78. 
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ERS-mediated cell death was shown through the LDH assay. There was no cell death recorded 

in the LDH assay during the sixth hour time point, which also proves that there was no death 

occurring during high ERS under TUN treatment. 

 

Figure 1. Expression of Survivin in Winnie. (A) Expression of Survivin in Winnie colon tissue. (B) 

Expression of Winnie in control black 6 (Blk6) colon tissue. (C) Double staining of Survivin in Winnie 

colon (Red-Survivin, Blue-4′,6-diamidino-2-phenylindole (DAPI)). (D) Double staining of Survivin in 

Blk6 colon (Red-Survivin, Blue-DAPI). (E) Representation of double staining of Survivin on colonic 

goblet cells of Winnie (violet- Survivin, blue-DAPI). (F) Representation of double staining of Survivin 

on colonic goblet cells of Blk6 (violet- Survivin, blue-DAPI). (G) Immunofluorescence (IF) 

quantification of Survivin expression in goblet cells. (H) Protein expression by Western blot for 

Survivin in the Winnie and Blk6 colonic goblet cells standardized by β-Actin. 
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Figure 2. Molecular dynamics of Survivin with respect to Endoplasmic Reticular Stress (ERS). (A) 

Molecular dynamics of Survivin in the LS174T cell line with ERS treatment by TUN 10 µg/mL. (B) 

mRNA dynamics release of Grp78 in the LS174T cell line with ERS treatment by TUN 10 µg/mL. (C) 

LDH assay of the LS174T cells with ERS treatment by TUN 10 µg/mL. 

3.3. Inhibition of Endoplasmic Reticular (ER) Stress Is Correlated to Survivin Expression in the LS174T Cell 

Line 

Having established the dynamics of Survivin expression under ERS conditioning, we further 

aimed to establish the relationship between Survivin, ERS, and the inhibition of apoptosis. 

Accordingly, the LS174T cells were incubated with an ERS inducer TUN (10 µg/mL) for 6 h since it 

was the time point in the previous assay with the highest ERS and the UPR genes (Grp78, XBP1, 
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PERK, and ATF6) were assessed. We observed an increase expression of UPR genes concomitant with 

an increase in Survivin expression. Upon treating with TUN, the expression of GRP78 rose to 35-fold, 

which was diminished under ERS inhibition by 4PBA (Figure 3A). The expression of PERK was 

dropped to two-fold in a 4PBA treated group compared to the TUN group, which was 25-fold 

increased (Figure 3C). A similar significant drop of UPR genes was observed in ATF6 where the 

expression was declined to two-fold in the 4PBA group in comparison to the TUN treated group, 

which was six-fold (Figure 3E). A significant expression of Survivin was reduced under ERS 

inhibition where the relative expression reduced to 1.25-fold from 0.31 (Figure 3B). There was no 

significant expression of XBP1 recorded in our study upon ERS induction by TUN. This was similar 

to the expression of IRE1 (Figure S1) which could be because of the regulation of XBP1 by IRE1 (Figure 

S2). We have then performed the Western blot analysis of the protein extract from the LS174T cells 

treated with TUN and 4PBA. There was a noticeable significant increase in protein expressions of 

both Survivin and Grp78 in the groups induced with ERS and a significant reduction in expressions 

of Grp78 and Survivin observed in groups under reduced ERS by 4PBA (Figure 3F–H). These results 

depict the relationship of ERS and the inhibition of apoptosis. 

 

Figure 3. Expression of UPR genes and Survivin modulated by ERS induction and inhibition. mRNA 

expression of UPR genes: (A) Grp78, (B) Survivin, (C) PERK, (D) XBP1, and (E) ATF6 in LS174T cells 

treated with TUN 10 µg/mL and 10 mM of 4PBA for 6hours normalized to GAPDH (n = 3). Data are 

shown as the mean fold change  ±  SEM (significance testing vs TUN: *, **, ***; p < 0.05, p <0 .01 and p 

< 0.001 respectively). (F) Representative Western blot for Survivin and Grp78. (G) Western blot 

quantification of Survivin. The bands were normalized with β-Actin and quantified. (H) 

Quantification of Western blot of Grp78. 

Since the ERS inhibition could reduce UPR markers and inhibition of apoptosis, we wanted to 

evaluate the effects of ERS reduction in ameliorating ERS mediated inflammation (Figure 4). 4PBA 

successfully modulated pro-inflammatory and anti-inflammatory cytokines in our study. TUN at a 

dose of 10 µg/mL could successfully induce ERS-mediated inflammation in LS174T cells evident 

through the up regulation of pro-inflammatory cytokines IL8, IL4, and IL6 from 584 ± 9.1, 573.52 ± 

15.84, and 2.11 ± 0.19 pg/mL to 1258.9 ± 59, 1996.84 ± 3.6, and 2.9 ± 0.1 pg/mL, respectively (p < 0.00001) 

(Figure 4). ERS inhibition by 4PBA significantly reduced the inflammatory cytokines to 507.1 ± 16.3, 

388.57 ± 10.61, and 2.2 ± 0.1 pg/mL, which offers a strong protection from inflammation (Figure 4). 
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The 4PBA and TUN group also offered significant protection against inflammation at 910.2 ± 30.12, 

1258.39 ± 89.6, and 1.89 ± 0.11 pg/mL (p < 0.001). The anti-inflammatory cytokine IL10 was also 

substantially modulated by inhibiting ERS. Upon inflammation, IL10 was standing at 3.0 ± 0.1 pg/mL 

and, after co-treatment with 4PBA, the value of IL10 rose to 13.7 ± 1.1 pg/mL alongside the combined 

group (4PBA and TUN) with a surprising 7.4 ± 0.6 pg/mL, which signifies that not only does ERS 

inhibition lead to reduction in pro-inflammatory cytokines but also regulates anti-inflammatory 

cytokines. 

 

Figure 4. Cytokine expression of (A) IL8, (B) IL10, (C) IL4, and (D) IL6 in LS174T cells treated with 

TUN 10 µg/mL TUN and 10 mM of 4PBA. (significance testing vs TUN: *, **, ***; p < 0.05, p < 0.01 and 

p < 0.001 respectively) 

3.4. Inhibition of ERS Escalates Apoptosis in Colon Cancer Cells 

To validate the induction of apoptosis with relation to TUN mediated effects, LS174T cells were 

subjected to ERS induction with 10 µg/mL TUN and ERS inhibition by 10 mM of 4PBA and apoptosis 

was quantified by staining with Annexin V (FITC). There was an increase of apoptosis in the cells 

treated with 4PBA alone when compared to TUN and cells alone groups. Cells treated with 4PBA 

alone also demonstrated a change in their morphology such as a disoriented nucleus when compared 

to the control group and TUN group (Figure 5D). There was a significant increased apoptosis 

recorded through the FITC flow cytometry where the apoptotic cells were plotted through the graph 

represented by the 4PBA group. There was a shift of cells from the live to the apoptotic column 

(Figure 5E) observed in the flow cytometry graph compared to the TUN where the live cell numbers 

were denoting a higher increased live cell number and higher control groups where the live cells 

were geared towards live and pre-apoptotic systems (Figure 5E). The cells were shifting to early 

apoptotic in the TUN+4PBA group and towards necrotic or late apoptotic systems in the 4PBA alone 

group. 
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Figure 5. The effect of ERS on apoptosis by the Annexin V assay. The Annexin V assay of LS174T cells 

treated with 10 µg/mL TUN and 10 mM of 4PBA for 6 h stained with Annexin V-FITC and analyzed 

by confocal microscopy. (A) Cells not subjected to any treatment (control). (B) Cells treated with TUN 

alone. (C) Cells treated with TUN + 4PBA. (D) Cells treated with 4PBA alone. The graphs represent 

the flow cytometry analysis after respective treatments. (E) Control group containing non-treated cells 

that were viable and not undergoing apoptosis. Cells treated with TUN and not prone to apoptosis. 

Cells treated with TUN + 4PBA, which have started shifting towards the apoptotic window (early 

apoptosis). Cells treated with 4PBA and in the end-stage apoptosis or already dead. Additionally, 

there was an increase in dead cell populations observed. (The axis of the flow cytometry is represented 

by PI (Propinium iodide and Annexin V. LA represents late apoptosis. NC represents necrotic. LC 

represents live cells and AP represents apoptotic). Scale bar represents 75 µm. 

To investigate the occurrence of programmed cell death due to Caspase activation, cell 

supernatants from the treated LS174T cells were subjected to the Caspase 3/7 assay. In this case, we 

have observed a significantly increased Caspase 3/7 expression in the 4PBA alone group compared 

to the 4PBA + TUN and TUN groups (Figure 6A). Parallel to this, the cleavage of PARP, which is an 

executioner Caspase substrate, was also detected by using Western blot analysis. The cleaved PARP 

(Figure 6B) was increased in the group treated with 4PBA (ERS inhibition), which suggests that 4PBA 

increases apoptosis partially through mitochondrial-mediated cell death and also that reducing the 

protein folding by 4PBA leads to the initiation of cell death. 
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Figure 6. Influence of ERS on Caspase3/7 and PARP cleavage assays. (A) Effect of Caspase3/7 assay 

on LS174T cells (control or non-treated, 4PBA at a concentration of 10 mM, TUN at a concentration of 

10 µg/mL and TUN + 4PBA). (B) Western blot of PARP and cleaved PARP of respective groups 

normalized with β-Actin. (significance testing vs TUN: *** p < 0.001 respectively) 

3.5. ERS Exhibits Direct Relationship to Proliferation in the LS174T Cell Line 

After evaluating the process of ERS inhibition, which leads to an increase in apoptosis, we 

decided to determine the cellular proliferation with regard to ERS inhibition and induction. The 5-

ethynyl-2′-deoxyuridine EdU assay for in-vitro proliferation was employed for this purpose. 

Following ERS induction and inhibition, the LS174T cells were seeded in eight chamber wells and 

incubated with an EdU click assay reagent and visualized through confocal microscopy. Images were 

quantified by Image J® software. We observed a reduction in cellular proliferation observed in 4PBA 

groups when compared to the TUN group where the proliferation was significantly increased (Figure 

7B) and when compared to the control group. Proliferation increased by TUN was almost 250-fold 

compared to the ERS inhibition groups (4PBA alone and 4PBA + TUN) where the proliferation rate 

dropped to 10-fold from 250 (Figure 7E). 
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Figure 7. The effect of ERS on the proliferation rate and Muc2 expression in LS174T cells. Cell 

proliferation assay performed by a 5-ethynyl-2′-deoxyuridine(EdU) click assay after incubating with 

treatments. (A) The cells alone or non-treated (B) TUN at a concentration of 10 µg/mL. (C) 4PBA at a 

dose of 10 mM. (D) TUN + 4PBA. (E) Quantification of the proliferation assay by Image J® representing 

different groups. (F) Muc2 gene expression (cells after treatments were subjected to RT-PCR). Scale 

bar represents 50 µm. (significance testing vs TUN: *** p < 0.001 respectively). 

We further correlated Muc2 gene expression with a proliferation rate under ERS. We performed 

RT-PCR for Muc2 expression with ERS induction and inhibition groups (Figure 7F). The data revealed 

the increased expression of Muc2 with the induction of ERS by 10 µg/mL TUN to 40-fold, which 
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denotes the relation of ERS and proliferation. ERS inhibition by 4PBA at a dose of 10 mM reduced 

the Muc2 expression significantly five-fold. A similar expression was noted in the TUN + 4PBA group. 

3.6. YM155, a Survivin Inhibitor, SubsidesERS and ERS Mediated Inflammation 

Since we could inhibit Survivin expression and inflammation under reduced ERS condition, we 

wanted to investigate whether we could show the converse effect of Survivin inhibition and its effect 

on ERS. Consistent with the ERS inhibition, Survivin inhibition by YM155 also resulted in the 

decrement of ERS markers both at the transcription and the protein level. We investigated the 

potential of Survivin inhibition in ameliorating ERS in the LS174T cell line. Exposure to TUN 10 

µg/mL resulted in a significant increase of the UPR genes along with Survivin. Upon treatment with 

YM155, the expression of Survivin as expected reduced from 3.2 fold to 1 fold (shown in Figure 8A). 

YM155 showed marked reduction of UPR genes like GRP78 from 30-fold to two-fold (Figure 8B). 

Additionally, 0.9-fold to 0.2-fold for XBP1 (Figure 8C) and a startling four-fold from 22-fold for PERK 

(Figure 8D) and a drop to 1.8-fold from eight-fold for ATF6 (Figure 8E). 

Similar responses were also observed in the cellular protein levels of Grp78 and Survivin as 

shown by Western blot analysis where Survivin inhibition also lead to ERS inhibition (Figure 8F–H), 

which confirms that modulation of mRNA expression is reflected in active protein suppression of 

Survivin and ERS through Grp78 as well. 

Functional inhibition of Survivin showed a striking change in inflammation in LS174T cells 

where YM155 modulated IL8, IL4, and IL6 (Figure 8I,J,L). The grounded levels of cytokines (584.48 ± 

9.7, 573.5 ± 15.8, and 2.11 ± 0.19 pg/mL) increased to 1258.39 ± 89.6, 1996.8 ± 13.42, and 2.9 ± 0.1 pg/mL. 

Upon treatment with YM155, there was a marked decrease in pro-inflammatory markers to 707.18 ± 

16.2, 1388.8 ± 10.38, and N.S pg/mL (p < 0.0001). There was also a positive variation in the anti-

inflammatory cytokine IL10 from 3.0 ± 0.1 to 9.7 ± 1.1 upon YM155 treatment shown in Figure 8J. 

Combined treatment of YM155 with TUN also exhibited significant activity where the cytokine levels 

were 910.27 ± 29.8, 1258.30 ± 13.10, and 1.89 ± 0.1 pg/mL (p < 0.0001). 
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Figure 8. Gene expressions of UPR genes, Survivin, and measurement of inflammatory cytokines of 

cells treated with YM155.mRNA expression of UPR genes: (A) IAP gene Survivin, (B) Grp78, (C) 

XBP1, (D) PERK, and (E) ATF6 in LS174T cells treated with TUN 10 µg/mL and 100 nM of YM155 for 

6hours normalized to GAPDH (n = 3).The data are shown as the mean fold change ± SEM (significance 

testing vs TUN: *, **, ***; p < 0.05, p < 0.01, and p < 0.001, respectively). (F) Representative Western blot 

for Survivin and Grp78. The bands were normalized with β-Actin and quantified. (G,H) represents 

Western blot quantification. Cytokine expression of (I) IL8, (J) IL10, (K) IL4, and (L) IL6 in LS174T 

cells treated with TUN 10 µg/mL and 100 nM of YM155. 

3.7. YM155 Initiates Cell Death in LS174T Cells via Caspase3/7 

As IAPs target the Caspase pathways specifically, we wanted to evaluate whether Survivin 

inhibition by YM155 could elevate Caspase 3/7. Figure 9 presents the effect of YM155, which, at a 

concentration of 100 nM, increased the expression of Caspase 3/7 significantly when compared to the 

TUN group and also the control group. The YM155 + TUN group also induced Caspase 3/7 activity. 

This clearly confirms that Survivin inhibition may lead to cancer cell apoptosis in the intrinsic death 

pathway. 
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Figure 9. The effect of Survivin inhibition on Caspase 3/7 assay.LS174T cells were treated with YM155 

for 6 h and apoptosis was determined by the Caspase 3/7 assay representing the following 

groups:control or non-treated, YM155 at a concentration of 100 nM, TUN at a concentration of 10 

µg/mL, and TUN + YM155. 

4. Discussion 

Our study provides evidence that ERS mediated signaling pathways are one of the major 

protective mechanisms adopted by cancer cells where they inhibit the ERS responses including 

apoptosis. We have described the role of Survivin in the above described mechanism. In the present 

study, we have demonstrated the effects of ERS inhibition by 4PBA over reduction of UPR markers 

and also Survivin. We have also enumerated that ERS inhibition leads to amelioration of ERS 

mediated inflammation, increases apoptosis in LS174T cells, and lessens cancer cell proliferation. 

First, in order to validate the expression of Survivin in vivo, we determined the expression of Survivin 

in the colon tissue and goblet cells isolated from Winnie, which is a chronic model of severe ERS. We 

noticed that Survivin expression was elevated compared to the wild type, which presents a similar 

trend to that of previous studies on colon cancer [16,19]. This prompted us to further investigate 

goblet cell like Muc2 expressing the cell line LS174T for linking between Survivin and ERS. Even 

thoughJayakumar et al. has explored the molecular dynamics of Survivin recently in cancer cells [20], 

the expression dynamics was not described with regard to ERS induced by chemical agents such as 

TUN. The 6th hour time point, which was regarded as the highest expression of Survivin, along with 

Grp78 identified this as the end time point for all the experiments in our studies into the path of ERS-

mediated apoptosis. 

It is well established that ERS leads to pathogenesis of numerous diseases including cancer. The 

ERS aids in the adaptation against non-favorable conditions and is involved in tumor growth. The 

UPR markers namely IRE1, XBP1, PERK, and Grp78 are involved in tumorigenesis [21]. ER resident 

chaperones including calreticulin lowered cell death and have been associated with ERS induction in 

tumor cells [21]. TUN at a dose of 10µg was able to increase the expression of UPR genes (Grp78, 

PERK, XBP1, and ATF6) and IAP protein Survivin, which indicates the role of ERS in tumor 

promotion. Likewise, 4PBA reduced the expression of all ERS markers (UPR genes) alongside the 

expression of Survivin, which denotes that ERS inhibition leads to Survivin reduction. We have 

additionally evaluated the potential of ERS inhibitor 4PBA in ameliorating the ERS mediated 

inflammation induced by TUN. In recent studies, 4PBA was employed to ameliorate LPS-induced 

lung inflammation through modulation of the NF-κB/IκB and HIF-1αsignaling pathways, which 

highlights the benefit of reducing ERS [22]. 

There is a mounting evidence involving cytokines such as IL8, IL4, and IL6 in inflammation 

mediated carcinogenesis. IL8 expression correlates with the angiogenesis, tumorigenicity, and 

metastasis of tumors in numerous xenograft and orthotopic in vivo models [23]. IL8 in association 

with CXCR1 was related to a high prognosis of human pancreatic cancer [24]. 4PBA 
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exhibitedareduction of IL-8 significantly when compared to the TUN group in our study and suggests 

that ERS inhibition may lead to reduced tumorigenesis. As stated earlier, interleukins are involved 

in growth, differentiation, and migration in various cancers. Apart from decreasing apoptosis in cell 

lines such as HCT116 [25], IL4Rα contributed to tumor formation in a mouse model of colitis-

associated cancer and mediated proliferation of epithelial tumor cells [25]. Previous studies indicated 

efficacious treatment against cancer due to the blockade of IL4 where the functional role of IL4 

cytokine was demonstrated as an important mechanism that protects the tumorigenic CD133+ cells 

from apoptosis [26]. Similar to the above mentioned description, our data also demonstrated a role 

of IL4 in TUN mediated inflammation. We aimed to observe the effects of ERS inhibition by 4PBA 

over IL4 in TUN-mediated inflammation where we observed a significant reduction of IL4 levels in 

the groups (4PBA and 4PBA + TUN), which was in line with previous findings where the blocking of 

IL4 signaling sensitized cancer stem cells (CSCs) to apoptotic stimuli and increased the in vivo 

efficacy of cytotoxic therapy [27]. Additionally, in colon cancer stem cells, Survivin was regulated by 

IL4 through STAT-6 signaling and allowscancer cells to escape chemo sensitizing [28], which can be 

explained through our study that ERS inhibition may have reduced Survivin expression via IL4. The 

fact that the ERS inhibition in our study with 4PBA led to IL-10 elevation was a significant finding 

because IL10 stimulated cytotoxicity in CD8+ cells and cancer cells treated with pegylated IL-10 led 

to tumor rejection, anti-tumor effects, and tumor-associated inflammation [29]. It was also notable 

that IL10−/− mice were found to be particularly susceptible to chemically induced skin cancers, which 

highlights its protective role. IL10 along with PD-1 exhibited an anti-tumor response in ID8 ovarian 

tumor bearing mice, which leads to a decrease in tumor mass and a significant increase in survival 

[30]. Lastly, IL6 evaluated in our study was previously related to an advanced stage of CRC 

development [31] where it was proved that IL6 promoted tumor cell proliferation and inhibited 

apoptosis through gp130 activation. IL6 levels not only increased in patients but also in the tumor. 

The same study reported that IL-6 levels greatly determined patient survival. IL6 was one of the 

cytokines, which was linked directly between IBD and CRC [31]. 4PBA in our study reduced the 

expression of IL-6 along with other inflammatory cytokines, which can be related to previous studies 

of attenuation of angiogenesis and tumor formation in colon cancer [32]. 

UPR mediators are regarded as being fundamental to ERS-mediated apoptosis [33]. Knocking 

down of Grp78 in tumor-associated endothelial cells led to an increase in apoptosis, which reveals 

that ER chaperone inhibition would result in reducing carcinogenesis [34]. The evaluation of early 

apoptosis was carried out by Annexin V flowcytometry and IF assays where it was evident that the 

ERS inhibition by 4PBA leads to significant apoptosis induction. Programmed cell death is an 

important mechanism that leads to collateral destruction of cancer cells with occasional killing of 

normal cells and without an inflammatory response, which leads to the maintenance of proper 

homeostasis. Therefore, an apoptosis-inducing compound is beneficial as a useful chemotherapeutic 

agent against carcinogenic effects [35]. The ERS inhibition (4PBA alone) exhibited early apoptosis, 

which was evident by immune fluorescence and also the flow cytometry where the cell population 

was shifted from viable to apoptotic in the 4PBA alone treated group. This is comparable to a previous 

study by Kwan et al. on MCF-7 breast cancer cells [36]. 

Although Caspase 9 is a trigger of the intrinsic death pathway, Caspases 3 and 7 are regarded as 

the major effectors for apoptosis execution [36]. There are numerous roles played by Caspase 3 

including apoptosis-associated chromatin margination and DNA fragmentation [37]. Our results 

showed that the concentration-dependent 4PBA increasedcaspase-3/7 activity in LS174T cells, which 

suggests that ERS inhibition by 4PBA-induced apoptosis is a Caspase-dependent mechanism (Figure 

10), as induced in a previous study where the breast cancer cells were treated by plant extracts [38]. 

PARP activation and subsequent cleavage play a major role in programmed cell death [39]. 4PBA 

via ERS inhibition in our study could induce the cleavage of PARP, which is regarded as the hallmark 

of apoptosis [40]. Previous similar studies have reported a similar condition of calcium-dependent 

protease and calpain being activated in various models of apoptotic cell death, which results in 

atypical PARP cleavage [41]. Cancer cells standout from normal cells in aspects such as being 

proliferative, being anaerobic, and creating a microenvironment that is deprived of nutrients, which 
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makes them resistant to cancer therapy [42]. This microenvironment also triggers ERS leading to 

apoptosis, but cancer cells have adapted themselves against the UPR alterations to avoid cell death. 

In our study, we have unraveled the connection between the changes in UPR and proliferation. The 

ERS induced by TUN escalated the proliferation rate in our study similar to a previous study where

bleomycin activated ER stress-associated proteins including Grp78, CHOP, and ATF-4 both in vitro 

and in vivo, which increased the lung fibroblast proliferation via upstream activation of ERS by 

PI3K/AKT [43]. 4PBA could markedly reduce the proliferation rate (4PBA alone and 4PBA+TUN). 

The surprising decrease of proliferation by ERS inhibition paves the way for the therapeutic potential. 

UPR activation can enable cancer cells to survive and adapt to harsh environments, which indicates 

the example of ER stress being a key secondary event in melanoma development and which 

contributes to the resistance of apoptosis through the persistent expression of pro-survival instead of 

pro-apoptotic proteins [44]. It was no surprise that the sixth hour time point had the highest 

proliferation recorded where the rate of relative expression of Grp78 and Survivin was the highest. 

The levels of Mucin2 (Muc2) is highly controversial in cancers especially colon and colorectal cancers. 

Patients with advanced mucinous colorectal carcinomas had a strong expression of Muc2 with 

increased metastasis [45] and it has been correlated with another proliferative protein known as 

Galectin-3, which is highly involved in migration and survival. Muc2 levels in the TUN-treated group 

skyrocketed when compared to the treated groups (4PBA and 4PBA+TUN). These treated groups 

were similarly shown in a study by Lakshmanan et al. where mucins were associated with poor 

prognosis in terms of lung cancer [46] and Muc2 over-expression was found to be an independent 

prognostic factor for ovarian cancer patients [47]. ERS reduction significantly curtailed the Muc2 

expression, which indicated a clear anti-proliferative potential observed in our study. 

 

Figure 10. Mechanism and role of 4PBA and YM155. (A) 4PBA. (B) YM155.ERS is a distress signal 

triggered due to accumulation of misfolded proteins in the ER. 4PBA (A), which is an ERS inhibitor 

in our study, played a role in inhibiting the UPR genes by acting as an agent and by reducing the 

protein misfolding in the ER and also aiding in apoptosis via cytochrome-c release. The post-apoptotic 

signaling, Survivin, is released from the mitochondria block cytochrome-c and inhibits the Caspases, 

which inhibits programmed cell death. (B) YM155, which is a Survivin inhibitor, was found to escalate 



Cells 2018, 7, 171 19 of 22 

 

apoptosis via the caspase3/7 pathway and aiding the free flow release of Caspases and facilitating cell 

death. 

YM155 was proved to act as metastasis antagonism in a mouse model of triple negative breast 

cancer [48]. YM155 was also utilized in a single-center study alongside docetaxel in patients with 

advanced hormone refractory prostate cancer and other tumors showed a partial positive response. 

A similar response was observed in patients with melanoma [49]. We initially assayed the effects of 

YM155 on LS174T cells treated with TUN and YM155 alone and noticed that YM155 could reduce the 

gene expression and protein expression of UPR genes in parallel to reducing Survivin expression 

along with the reduction in pro-inflammatory markers such asIL8 and IL4. Wagner et al. have 

revealed that YM155 played a pivotal role in reducing STAT3 signaling and UPR and was also used 

in the clinical evaluation of YM155 in patients with multiple myeloma [50]. There is a major regulation 

of apoptotic cell death by Caspases especially downstream Caspases such as 3 and 7. IAP proteins 

such as Survivin apart from controlling the Caspase activation platform also aid in cell survival via 

NF-κB signaling [51]. In line with previous findings by Wagner et al. where they have shown the pro-

apoptotic potential of YM155 on myeloma cells [50] and head neck squamous cell carcinoma tissues 

[52], we found that YM155 could elevate the levels of Caspase 3/7 in the LS174T cell line in both the 

TUN and YM155 alone groups (Figure 10). With our findings, we can attest 4PBA and YM155 as 

therapeutic agents in colorectal cancer via ERS mediated effects. It would be appropriate to evaluate 

the above effects in a mouse model of colorectal cancer and observe the downstream effects. 

5. Conclusions 

In conclusions, this study, for the first time, unfolds the interconnection between ERS and 

Survivin and proves that they are directly related and reciprocate effects like apoptosis and 

inflammation. The study has also exposed that ERS induction has a negative effect including 

worsening of carcinogenicity and proliferation while inhibition has a profound effect on apoptosis 

enhancement and proliferation reduction in LS174T cells by 4PBA and YM155, which clearly depicts 

a therapeutic scope. We have also revealed that Survivin is a key molecule that links ERS and 

apoptosis. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: mRNA 

expression of IRE1, FigureS2: Pathway representing IRE1 orchestrating XBP1. 
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