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Abstract: Vimentin is a protein that has been linked to a large variety of pathophysiological conditions,
including cataracts, Crohn’s disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been
shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a
network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous
forms that can localise both within cells and within the extracellular microenvironment. The
vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing,
post-translational modifications and interacting proteins. Together with the observation that different
domains of vimentin might have evolved under different selection pressures that defined distinct
biological functions for different parts of the protein, the many diverse variants of vimentin might be
the cause of its functional diversity. A number of review articles have focussed on the biology and
medical aspects of intermediate filament proteins without particular commitment to vimentin, and
other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present
review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from
tissue culture and from living organisms, including a summary of the many phenotypes of vimentin
knockout animals. Our aim is to provide a comprehensive overview of the current understanding of
the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and
medical perspectives.

Keywords: vimentin; intermediate filaments; cell-extracellular matrix adhesions; extracellular
vimentin; cell mechanical stiffness or elasticity; cellular contractility; biomechanics; epithelial-
mesenchymal transition; tissue regeneration; cancer and metastasis; drug target; clinical biomarkers

1. Vimentin: An Introduction to the Protein

The intermediate filament protein vimentin is expressed in the cells and tissues of many
different organisms. The expression of vimentin variants showing high sequence homology and
similar expression in major tissues in organisms down to shark, indicates that vimentin has an
evolutionary role [1]. Although vimentin was first described in a limited number of physiological
and pathophysiological contexts, more recent findings have suggested that it has diverse roles across
a broad range of cell and tissue functions and is coupled to a large variety of human diseases. Such
diseases include cataracts, cancer, Crohn’s disease and HIV [2–5]. A number of review articles on
intermediate filament proteins have included information on how vimentin regulates important cellular
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and tissue functions [6–13]. Other reviews have focussed mainly on the in vitro protein properties
of the vimentin molecule [14–16], and the role of vimentin in specific diseases [3,17–19]. In contrast,
the present review is designed to provide an overview of the diverse functions of vimentin across a
wide variety of physiological and pathophysiological conditions. First, we describe the basis for the
high structural plasticity of the vimentin molecule, and the localization and function of vimentin in
cells and tissues. The primary focus of this review is an ex vivo (i.e., in cell and tissue cultures) and
in vivo (i.e., in living animals) perspective to describe role of vimentin the control of cellular functions
and the manifold phenotypes of vimentin knockout animals. Furthermore, we summarize vimentin’s
implication in a large set of diverse diseases and the potential of vimentin as a clinical biomarker
or drug target. Finally, we speculate about the basis for the functional diversity of this protein and
suggest avenues for the focus of future research.

Together with microfilaments and microtubules, the highly insoluble intermediate filaments make
up the basic cytoskeleton of metazoan cells. Functional interconnection between these three systems
maintain cellular structure and shape, and regulate the biochemical, mechanical and spatial properties
of the cell (for an overview, see [6,8,13]). The current biological understanding of intermediate filaments
stems from the advances in microscopy techniques in the late 1970s and early 1980s, when research in
the field of intermediate filament biology boomed. Intermediate filaments appear to have already been
identified in the late 1960s by Buckley and Porter [20]. However, it was not until the 1970s that these
were named as such, based on their localisation between filaments of actin and myosin in muscle cells.
These early-identified intermediate filaments were, however, not built of vimentin, but of desmin,
which at that time was named “skeletin” [21]. An alternative interpretation of the name, that appears to
have wide acceptance among researchers in this field, is that it relates more to the intermediate size of
these filaments than to their intracellular position. Thus, according to this interpretation, intermediate
filaments refers to the diameter of these filaments as intermediate, as compared to the other two
major components of the cytoskeleton, actin and microtubules [22,23]. Indeed, as these “intermediate”
filaments can be defined for any subcellular position in non-muscle cells, it appears more plausible to
associate the term with size rather than position.

1.1. Primary and Secondary Structure

The intermediate filament proteins have been classified into six categories based on their sequence
homology, as Types I to VI [24]. Here, we consider the Type III intermediate filaments that comprise
vimentin, desmin, glial fibrillary acidic protein (GFAP) and peripherin [24,25]. The first Type III class
gene to be cloned was that of vimentin; the complete cDNA was first cloned in hamster in 1983 [26–28].
Characterisation and cloning of parts of the vimentin gene was also performed in chicken and mouse
models in 1983 [29,30]. This was followed by the partial mapping of the human gene in 1985, with the
complete sequence published in 1988 [31,32]. Ten transcripts of the human gene (VIM; chromosome
loci: 10p13) have been identified to date. Of these, only four are protein coding with two translated
into the 57 kDa, 466 amino acid, vimentin protein (UniProtKB; P08670 VIME, CCDS 7120.1) [32].

The vimentin protein consists of a central, 310-amino-acid-long α-helical rod domain, which
contains 70 acidic and 46 basic amino acids (Figure 1A) [32–34]. The N-terminal part of this rod domain
is a coil 1 motif, which is organised into sequences of seven amino acid residues (i.e., heptads), where
every first and fourth residue is hydrophobic. The C-terminal half of the rod domain has a coil 2 motif
that shows a hydrophobic pattern with a different periodicity, 11-residue-long repeats (i.e., hendecads),
where the first, fourth and eighth residues create a hydrophobic core (Figure 1A) [35]. In contrast
to the acidity of the long α-helical rod, the domain located N-terminally to the rod domain, known
as the head domain, has been proposed to have a basic character due to 12 arginine residues in this
102-amino-acid-long sequence [34].
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1.2. Tertiary Structure

Crystallographic studies and prediction models have revealed that the periodic hydrophobic
patterns of the coiled-coil heptad and hendecad segments in the central rod domain result in the
formation of relatively regular left-handed coiled-coil dimers [27,36–38]. The N-terminal section of
the coil 1, defined as coil 1A, shows the predicted heptad pattern, and it is followed by the rigid,
α-helical linker L1 structure, which causes a shift in this pattern (Figure 1B). These domains are
followed by the C-terminal part of coil 1, defined as the coil 1B domain, which has been predicted to
mainly have a regular α-helical structure with a heptad pattern that results in a left-handed coiled-coil
structure [37,39] (Figure 1B). The C-terminus of the coil 1B is connected to a short β-strand linker,
L12, which can function as a flexible hinge to connect the relatively rigid coil 1B to the adjacent coil
2 domain (Figure 1B) [36].

Both the N-terminal and C-terminal regions of the coil 2 domain contain repeats that are conserved
between different intermediate filament proteins. The hendecad repeats of the N-terminal region
form parallel α-helical bundles [34], and this process is facilitated in vimentin by the N-terminal
capping by the Pro263 residue (Figure 1B). The remaining part of coil 2 has been shown to be a
regular left-handed coiled-coil structure that form two intertwined helices, which together form a
rigid structure that appear to be important for the mechanical properties of vimentin [34]. Hence,
the vimentin protein consists of structurally different domains. The observation that different parts of
the vimentin gene show higher degrees of similarity to the corresponding regions in the different Type
III genes desmin or GFAP suggests that different domains of the protein might have been subjected to
different evolutionary pressures [40]. This indicates that different domains of vimentin might have
evolved independently of each other, and therefore would have clearly defined, and distinct functions,
which might contribute to the functional diversity of this protein.

1.3. Protein Assembly

The assembly of intermediate filaments is fundamentally different to the assembly of actin
microfilaments and microtubules. While globular actin and microtubule proteins form polar filaments,
the intermediate filament dimers assemble in a stepwise process into non-polar filaments [36].
Furthermore, while the assembly of actin microfilaments and microtubules is dependent upon
nucleotide triphosphates, vimentin assembly occurs spontaneously in vitro. However, findings
indicate that in an ex vivo context, the initial steps of vimentin assembly are indeed ATP-dependent [41].
Experiments using X-ray crystallography and electron paramagnetic resonance have shown that
in vitro, the initial, rapid event in the assembly of vimentin into filaments is the formation of
a 46-nm-long dimer by the parallel alignment of the rod 1 domains of two different vimentin
polypeptides. The coil 1A and the linker L1 domains are important for the assembly of these dimers
(Figure 1B) [37]. In vitro data have further shown that two dimers then can interact in an anti-parallel
manner. The two glutamic acid residues at position 191 of each sequence are in close proximity
within the interphase between the protein dimers, which associate laterally into a non-polar tetramer
(Figure 1B) [35,37]. This event appears to be promoted by the complementary charges on the different
dimers [37]. In particular the lysine residue of coil 1A at position 139 and the positively charged
linker L1 of one dimer appear to interact with the negatively charged C-terminus of coil 1B of the
other dimer [34,37,42]. Furthermore, the head domain of vimentin has an essential role in the tetramer
formation, due to attraction between the 12 basic arginine residues of the head domain and the charges
of the acidic rod domain of the second dimer [34,39]. Thereafter, eight tetramers assemble laterally
to make up the unit-length filament (ULF), which consists of a central core of 32 coil 1 domains
and two flanking segments of 16 coil 2 domains [43]. However, in vitro, vimentin filaments can also
assemble with as few as four or as many as 12 tetramers per cross section [16,44]. In the slower
elongation step, these individual ULFs anneal in a longitudinal manner via the coil 2 domains, which
results in the molecular rearrangements within the individual ULFs. The formation of the short
filament units consists of two, three, or more ULFs [39,43]. During this last phase of assembly, the
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filaments undergo a radial compaction to form long compacted filaments of vimentin of a diameter of
~10 nm [43–48]. Hence, the vimentin intermediate filaments are built from coiled-coil multi-domain
amino acid sequences that are stabilised and connected by hydrophobic and ionic interactions, to form
the fibrous proteins [34,35,46,49–53].

Cells 2018, 7, x FOR PEER REVIEW  4 of 37 

 

sequences that are stabilised and connected by hydrophobic and ionic interactions, to form the 
fibrous proteins [34,35,46,49–53]. 

 
Figure 1. (A) The amino acid sequence of vimentin rod domain, with the amino acid position in the 
sequence indicated above the one-letter code. Heptad (not coloured) and hendecad (violet) motifs are 
indicated. Residues predicted to be buried in the hydrophobic core are highlighted in yellow. The coil 
1A, linker 1, coil 1B, coil 2 structures are indicated with pink, red, violet, and blue, respectively. (B) 
Schematic structure of a vimentin dimer (top) and tetramer (bottom) showing the antiparallel 
association of two coiled coil dimers, with the structures indicated with colours as in A. Each dimer 
is formed by a pair of parallel chains. The figure is adapted from Figure 4 in Chernyatina, PNAS 2015 
[36], and based on data by Chernyatina, PNAS 2012 [37]. 

The vimentin structure is dynamic in cells and can be rearranged to form filaments or the soluble 
tetrameric protein, ULF particles [45,46,51,53]. Studies using live-cell imaging have shown that 
vimentin filaments undergo constant and relatively rapid changes to their shape and localisation. 
However, in contrast to actin and microtubule polymerisation, vimentin filaments do not appear to 
completely disassemble, reassemble and exchange units with the soluble pool. Rather, vimentin 
filaments remodel by constant severing and reannealing of small clusters ex vivo, which allows for 
turnover of vimentin while maintaining the length and structural integrity of the network [43,46]. As 
mentioned above, the available evidence indicates that vimentin filaments can assemble with various 

Figure 1. (A) The amino acid sequence of vimentin rod domain, with the amino acid position in the
sequence indicated above the one-letter code. Heptad (not coloured) and hendecad (violet) motifs are
indicated. Residues predicted to be buried in the hydrophobic core are highlighted in yellow. The
coil 1A, linker 1, coil 1B, coil 2 structures are indicated with pink, red, violet, and blue, respectively.
(B) Schematic structure of a vimentin dimer (top) and tetramer (bottom) showing the antiparallel
association of two coiled coil dimers, with the structures indicated with colours as in A. Each dimer is
formed by a pair of parallel chains. The figure is adapted from Figure 4 in Chernyatina, PNAS 2015 [36],
and based on data by Chernyatina, PNAS 2012 [37].
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The vimentin structure is dynamic in cells and can be rearranged to form filaments or the soluble
tetrameric protein, ULF particles [45,46,51,53]. Studies using live-cell imaging have shown that
vimentin filaments undergo constant and relatively rapid changes to their shape and localisation.
However, in contrast to actin and microtubule polymerisation, vimentin filaments do not appear
to completely disassemble, reassemble and exchange units with the soluble pool. Rather, vimentin
filaments remodel by constant severing and reannealing of small clusters ex vivo, which allows for
turnover of vimentin while maintaining the length and structural integrity of the network [43,46].
As mentioned above, the available evidence indicates that vimentin filaments can assemble with
various amounts of tetramers per cross section, and filaments with more than the standard eight
tetramers per cross section have been proposed to form subunits that are more loosely bound and
therefore predisposed to release vimentin subunits [7,54]. The ULFs and the soluble pool of vimentin
tetramers have been observed to interchange molecules ex vivo [55,56], which can result in additional
oligomeric forms of vimentin. It is important to note that, according to Wickert et al., 2005, vimentin
can also assemble with other Type III intermediate filament proteins, to form heterodimers that
assemble into heterodimeric polymers [57]. As a consequence, the vimentin molecule is believed to
be involved with diverse types of multiprotein complexes, which will provide great biochemical and
functional diversity.

1.4. Post-Translational Modifications

Vimentin is also known to undergo several post-translational modifications [58,59] that
can regulate the functional properties of vimentin in the context of health and disease [59,60].
Concomitantly, crosstalk between different types of post-translational modifications extends the
possibilities for the regulation of vimentin function. The range of post-translational modifications that
have been reported to modify the vimentin protein includes phosphorylation [60], sumoylation [61]
acetylation [62], glycosylation [63], glycation [64] and ubiquitination [65]. Most of these
post-translational modifications have been shown to regulate the solubility of vimentin in vitro, e.g.,
sumoylation [59,61]. Recently, glycosylation was found to be required for the assembly of vimentin
filaments in cells [66]. The head and tail domains of vimentin contain more than 35 phosphorylation
sites [7] (PhosphoNET database). Current ex vivo data suggest that phosphorylation of vimentin serine
residues inhibits its subunit polymerisation, thus promoting the disassembly of vimentin filaments
and increasing the solubility of the protein [8,67–69]. Phosphorylation of vimentin has also been
shown to regulate protein-protein interactions and intracellular signalling [59,70]. The observation
that hyperphosphorylation of intermediate filaments can be linked to numerous diseases including
cancer, has indicated that the phosphorylation status of vimentin can be important for health and
diseases [59,71].

Taken together, these reports show that biochemical diversity of vimentin can be promoted
by the various sizes of the molecule, its assembly state, its potential to co-assemble with other
types of intermediate filaments and its posttranslational modifications. Additional factors can
control the properties of vimentin such as interactions with non-intermediate filament proteins.
For example, molecular chaperone activities towards vimentin have been reported to inhibit filament
polymerisation [72] and mutations in chaperones reduce their ability to interact with vimentin and
lead to vimentin aggregation [73]. In addition, Vmac, a protein in rat kidneys, has been reported to
regulate cellular morphology by binding, and regulating the dynamics and organisation of vimentin
filaments [74]. Given recent data showing that approximately 1% of the entire human proteome
(N = 186) localises to the intermediate filament network within cells [75], there might be a large
number of unidentified vimentin-associated and vimentin-regulating proteins.
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1.5. Vimentin: Location and Timing

The early studies of vimentin showed that the protein was present in bovine eye lenses [76,77].
Further studies in chicken and mice showed expression of the vimentin gene mainly in cells of the
connective tissue and central nervous system as well as in erythroid and muscle cells [30,78]. In studies
of the development of muscle and neural tissues in chickens and hamsters, vimentin mRNA was further
found to mainly be expressed in highly proliferative and undifferentiated cells [79,80]. In humans,
later expression studies reported the vimentin gene to be constitutively expressed across all major
tissues, as shown in the three major databases for RNA expression: HPA, GTEx and Fantom [81–83].
In the Human Protein Atlas database, the vimentin protein was found to be expressed in the majority
of the 44 tissues analysed, 14 of which showed high levels of vimentin expression. These tissues
included skin, lung, kidney, bone marrow and lymph node (Figure 2), https://www.proteinatlas.org/
ENSG00000026025-VIM/tissue [81].Cells 2018, 7, x FOR PEER REVIEW  6 of 37 
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In cells, vimentin forms a network that surrounds the nucleus. From there, it extends throughout
the entire cytoplasm, with shorter soluble forms more abundant in the cell periphery [8,23,84].
Efficient transport of vimentin is required for maintenance of the intracellular network. Vimentin
transport has been shown to occur along microtubules, and to depend upon actin filaments,
microtubules, the microtubule-associated motor protein kinesin-1 and the cytoskeletal regulators PAK
and ROCK [84–86]. The filaments can extend to the plasma membrane and are able to attach to the
nucleus. The soluble shorter forms of vimentin are found inside the cell, on the cell surface and in the
extracellular environment. The organisation of the filamentous intracellular network of vimentin varies
in different cells. For example, it can form relatively homogenous distributions within the cytoplasm of
primary, senescent or non-dividing mesenchymal cells, and is rapidly reorganised towards the nucleus
upon exposure to PDGF, oncogenes or viruses [87,88]. The subcellular spatial organisation of vimentin
fibres is regulated by the post-translational modifications and by the assembly state and solubility of
vimentin [41,89,90]. The many different forms of vimentin can result in binding of different types of
associated proteins and protein complexes.

2. Vimentin: Function

2.1. Knock-Out Mouse

When the mouse gene knockout techniques became available in the 1980s, mice that lacked genes
encoding actin, tubulin and vimentin were created. In contrast to the actin and tubulin knockout
mice that died in early embryogenesis, the first study of vimentin knockout mice showed that
the mice developed and reproduced with no obvious defects [91]. Vimentin was therefore called
“The conundrum of the intermediate filaments” [92]. However, later studies observed many, diverse
defects in vimentin-null mice.

To summarise these findings, we searched for vimentin knockout mouse phenotypes in the
bioinformatics resource database, Mouse Genome Informatics, and in the published literature.
More than 30 different phenotypes have been reported for vimentin-deficient mice, as summarised
in Table 1. The most commonly reported defects reported in vimentin knockout mice are the loss of
cell morphology and reduction in cell adhesion, polarisation, stiffness and migration. At the organ
level, these defective cellular functions have been linked to reduced wound-healing capacity, and
inability to properly remodel arteries and vasoactivity. At the organismal level, vimentin knockout
was connected to cataracts, hyperactivity, impaired balance, impaired coordination, and increased
anxiety-related responses. In addition, loss of vimentin has been reported to reduce inflammation
and infection (for references, see Table 1). These in-vivo mouse knockout phenotypes indicate the
functional role of vimentin in physiological systems, and can bridge the gap between in vitro, ex vivo
and clinical data. Although most of these studies are in line with a role for vimentin in the control
of cell shape, architecture, stiffness, adhesion and migration, they also point to roles of vimentin in
signalling and in many aspects of human diseases as will be described further below.

Table 1. Critical in vivo studies highlighting the effects of vimentin knockout in murine animal models,
classified according to the cellular effect.

Resulting Phenotype Reference

Vim−/−; no specific disease involvement, Vim R113C point mutation;
disease phenotype in the eye lens, with increased levels of vimentin
aggregates in the eye lens, ultimately leading to posterior cataracts

Bornheim, Müller et al., 2008 [93]

Vim−/−; delayed mammary duct growth in adult mice; reduces
basal-to-luminal epithelial cell ratio Peuhu, Virtakoivu et al., 2017 [94]

Vim−/−; underdeveloped Bergmann glia cells and Purkinje cells of the
cerebellum and motor coordination deficits Colucci-Guyon, Giménez et al., 1999 [95]
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Table 1. Cont.

Resulting Phenotype Reference

Vim−/−; desmin bundles restricted to the perinuclear region of cells Geerts et al., 2001 [96]

Vim−/−; compromised endothelial integrity; defective lymphocyte
migration and adhesion to endothelial cells Nieminen, Henttinen et al., 2006 [97]

Vim−/−; reorganisation and increased density of the basement membrane;
increased arterial stiffness Langlois, Belozertseva et al. 2017 [98]

Vim−/−; loss of a protective lymphocyte cage; more deformable splenocytes Brown, Hallam et al., 2001 [99]

Vim−/−; increased arterial stiffness and contractility; endothelial
dysfunction; no arterial remodelling Schiffers, Henrion et al., 2000 [100]

Vim−/−; disrupted Notch signalling; fewer aortic rings sprouts Antfolk, Sjöqvist et al., 2017 [101]

Vim−/−; 100% lethality when renal mass was decreased by 75%; decreased
nitric oxide synthesis, which impaired vasodilation. When treated with the
receptor antagonist bosentan proper kidney function maintained

Terzi, Henrion et al., 1997 [102]

Vim−/−; decreased gut inflammation and enhanced bacterial killing in
acute colitis Mor-Vaknin, Legendre 2013 [103]

Vim−/−; stunted fibroblast growth; slowed reepithelization; slowed and
incomplete wound healing Cheng, Shen et al., 2016 [104]

Vim−/−; delayed fibroblast migration to a wound site due to decreased
tractional forces; no wound healing Eckes, Colucci-Guyon et al., 2000 [105]

Vim−/−; protection against bacterial meningitis Huang, Chi et al., 2016 [106]

Vim−/−; impaired microglia activation; reduced cerebral ischemia and
neurotoxicity Jiang, Slinn et al., 2012 [107]

Vim−/−; no disease phenotype Colucci-Guyon, Portier et al., 1994 [91]

Vim−/−; normal inflammatory response; normal and similar apoptotic rate
of lipopolysaccharide-treated neutrophils Moisan, Chiasson et al., 2007 [108]

Vim−/−; halted nestin polymerization in neural stem cells; no increase
in apoptosis Park, Xiang et al., 2010 [109]

2.2. The Role of Vimentin in Cytoskeletal Cross-Linking and Intracellular Organization

The three different cytoskeletal filament systems of the cell are interconnected by protein-protein
interactions, and changes in one of these filamentous systems often results in changes in the other
systems [110,111]. This cross-talk provides flexibility to the cytoskeleton as a whole and allows
it to be constantly rearranged to meet the needs of the cell under various conditions, such as cell
migration and through the course of the cell cycle. Since the early 1980s, it has been widely accepted
that vimentin and microtubules are connected to each other, and that this connection is important
for the localisation and function of vimentin (for overview, see [112]). More recently, it was found
that the tumour suppressor, adenomatous polyposis coli (APC), can function as a bridge between
these cytoskeletal filaments [113]. Small units of vimentin have been observed to be transported by
microtubule-dependent motor proteins towards the cell periphery, where they can join and form
longer filaments that are later incorporated into the cellular network [84–86,114–118]. However, it is
important to note that the transport of vimentin is bidirectional and governed both by microtubules
and microfilaments [85,86].

Actin and vimentin have been observed to localise to the same subcellular environment.
For example, vimentin localises to the microdomain prior to podosome formation [119]. The tail
domain of vimentin has been reported to interact with actin both directly [120] and via cross-linking
proteins such as plectin [121]. As a consequence, versal F-actin stress fibres and transverse arcs interact
with vimentin, and the retrograde flow of these actin filaments results in retrograde transport of
vimentin filaments from the cell front [122]. Reduced levels of vimentin have also been shown to
result in increased stress fibre assembly and contractility, and, notably, this effect was reversed upon
expression of filamentous vimentin but not vimentin ULFs [123].

Vimentin-null mouse embryonic fibroblasts show increased motility of organelles compared to
wild-type fibroblasts [124,125]. Together with the observations that vimentin can interact with Golgi,
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and control the localisation of mitochondria, the late endosomal-lysosomal compartment, and the
nuclear size and shape [126–130], this indicates that vimentin might also regulate and stabilise the
organisation of organelles.

Vimentin might also have a more general role in protein function in the cytoplasm. It has long
been known that inclusion bodies of misfolded proteins are surrounded by a ‘cage’ of vimentin [131].
Recent data have shown that this cage is formed prior to the accumulation of misfolded proteins, which
suggests that vimentin might have a general role in protein quality control in the cytoplasm [132].
Vimentin, unlike actin and microtubules, is not divided symmetrically between two daughter cells
during mitosis, rather it is localised mainly to one daughter cell [132]. Taken together, these
observations suggest that vimentin has a role in the organisation of, and protection against misfolded
proteins in cells.

2.3. Cell Mechanics

Cell mechanics relate to cellular parameters such as the elastic or viscous responses of cells
after application of external forces (for overview, see [133]). An understanding of these mechanical
properties is necessary to define how cells interact and respond towards environmental changes, such
as during cell invasion and migration. Mechanical properties are adaptable and can be altered, e.g.,
in pathogenic cases such as cancer [134]. The mechanical behaviour of cells is mainly determined
by the nucleus and cytoskeleton, including cytoskeletal crosslinkers and molecular motors [135].
Over the years, actin and microtubules have been extensively studied in order to determine their
particular influence on the mechanical behaviour of cells (for overview, see [135]). In contrast,
the effects of intermediate filaments on cell mechanics has only been recently investigated, even
though the mechanical properties of intermediate filaments in vitro have been studied for more than
two decades [133].

The mechanical responses of cells to applied forces depend on several parameters influencing
the mechanical results obtained. It is possible to classify the observations of vimentin-dependent
control of cell mechanics based on the following methodological parameters: time scale of deformation
(i.e., fast, slow, short, long) [136]; repetitions of measurements, such as creep, step and oscillatory
(sines, cosines) measurements; pushing together or pulling apart of cells [137] or the way of interfering
with vimentin (e.g., chemicals [withaferin A, acrylamide], oncogenes, cytoskeletal crosslinkers (e.g.,
plectin), vimentin knockout cells, RNA, interference). Further parameters include the amount of
strain (i.e., small versus large); if the analysis is performed in vitro, ex vivo, or in vivo; if elastic or
viscous properties are probed [138]; if cells are deformed globally as whole cells or rather locally on a
subcellular level; and if cells adhere to a substrate during measurements or are in suspension. Finally,
many of these parameters of measure depend on the tool used for measurement. We could show
previously that state of adhesion (e.g., adhesive cells versus same cells in suspension) governs the
mechanical response [138]. Recently, it was shown that the direction from which cell mechanics is
probed can also have effects on the mechanical responses, e.g., smaller or larger values are added to the
nominal values, depending on the geometric setting [139]. Therefore, the manner in which the forces
are applied is important, such as in the direction of or orthogonal to the polarisation of the cells, or in a
rotational manner. It is also clear that mechanical responses depend upon whether a cell is probed
locally or globally. Here, the available data on the role of vimentin in cell mechanics are therefore
classified according to the methodological approaches used to acquire the data, with particular focus
on the state of adhesion while the cells are probed (as described in Table 2).
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Table 2. Publications measuring mechanical properties of cells depending on vimentin, classified according to the measurement method. Cells were adhered to an
underlying substrate if not described otherwise. An asterisk indicates studies showing that vimentin levels correlate with stiffness.

Methods Part of Cell Tested Cell Type Vimentin Interfering Method Result of Vimentin Perturbation Reference

Magnetic bead rheology
(rotational force) Cell cortex Fibroblasts Vim−/− * Reduced cell stiffness

Reduced mechanical stability Eckes et al., 1998 [140]

Magnetic bead rheology
(rotational force) Cell cortex Fibroblasts Vim−/−

* Reduced cell stiffness
Reduced cell stiffening after
large strains

Wang and Stamenovic 2000 [141]

Magnetic bead rheology
(rotational force) Cell cortex Fibroblasts Vim−/− No effect Guo, Ehrlicher et al., 2013 [124]

Optical tweezer Cytoplasm Fibroblasts Vim−/− * Decreased shear modulus Guo, Ehrlicher et al., 2013 [124]

Shear Flow Cell surface Endothelial cells No extra vimentin Higher variability in vimentin
fibre movement Helmke, Goldman et al., 2000 [142]

AFM Cell cortex Immortalised fibroblasts
Oncogenes increasing total
level and soluble fraction

of vimentin
* Increased cell stiffness Rathje, Nordgren et al., 2014 [88]

AFM Perinuclear region
(cytoplasm and cortex) Fibroblasts Non-filament-forming desmin

mutation; vimentin collapse
* Localized increase of stiffness in
perinuclear region of cytoplasm Plodinec, Loparic et al., 2011 [56]

AFM Cortex above nucleus Breast cancer cells SiRNA, ShRNA
Overexpression

* Reduced cell stiffness and
impaired mechanical strength
Increased cell stiffness

Liu, Lin et al., 2015 [143]

Micropost arrays Whole cell Breast cancer cells SiRNA, ShRNA * Reduced contractile force
Impaired force generation Liu, Lin et al., 2015 [143]

Magnetic bead rheology (rotational
force) + substrate stretching Cell cortex Chondrocytes Acrylamide

* Reduced cell stiffness
Decreased
fluidization-resolidification
response after stretch

Chen, Yin et al., 2016 [144]

Traction force microscopy Whole cell Chondrocytes Acrylamide Reduced traction force
after compression Chen, Yin et al., 2016 [144]

Image analysis Nuclear stiffness Human mesenchymal
stem cells * Stiffening of the nucleus Keeling, Flores et al., 2017 [145]

Thin film deformation with finite
element modelling Whole cell Fibroblasts Vim−/− Increase in contractile stress

(3-fold) van Loosdregt et al., 2018 [146]

Agarose-embedded cells
(<20% strain) Whole cell deformation Mesenchymal stem cells ShRNA * Decreased cell deformability Sharma, Bolten et al., 2017 [147]

Alginate-embedded cells
(<20% strain) Whole cell deformation Primary human

chondrocytes Acrylamide * Reduced cell stiffness Haudenschild, Chen et al., 2011 [148]

Optical stretcher on suspended cells Whole cell deformation Natural Killer cells Withaferin-A * Increased deformation Gladilin, Gonzalez et al., 2014 [149]
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The many and different types of probing methods used in studies of vimentin and cell mechanics
have shown that it is difficult to obtain a clear picture from the studies in the literature. The same
probing techniques have been used with different cell types, and different methods have been used
to alter vimentin levels, with miscellaneous data generated regarding the role of vimentin in cell
mechanics (see Table 2). This indicates that the method used to alter vimentin can influence the
response, as described earlier by Charrier and Janmey [150]. Although a number of studies have
indicated that vimentin is important for generation of contractile forces in cells [143,144], a recent study
reported that the loss of vimentin increased the generation of contractile stress 3-fold [146]. Moreover,
the viscous responses of cells have been suggested to depend upon vimentin [151]. In particular, many
lines of research indicate that the amount of vimentin correlates with the stiffness of cells (Table 2).
It is important to note that most of these studies have been based on probing methods that squeeze
adherent cells. A comprehensive, comparative study using the same method to interfere with vimentin
in adherent and suspended cells, and that probes cellular mechanics, as both pulling and pushing the
cell would be of importance for studies in the future. Such a study would reveal the full impact that
vimentin might have on the mechanical properties of living cells.

2.4. Cell Adhesion

2.4.1. Focal Adhesions

Cell-matrix adhesion, focal contacts and focal adhesions are large protein assemblies that connect
the cell to the extracellular matrix via integrins, and that mediate biochemical and mechanical signals
from the cell surroundings. Vimentin has been shown to be spatially localised to cell-matrix adhesions
in different cell types. While small squiggles or particle units of vimentin have been observed to
localise to small nascent adhesions, filamentous vimentin has been associated with mature, large
focal adhesions [152]. Long focal-adhesion-associated filaments have been observed at points where
F-actin stress fibres reach the focal-adhesion area [119]. Vimentin can bind directly to the cytoplasmic
tail of integrin α2β1 and it is enriched in integrin-β1-containing focal adhesions [153]. The spatial
localisation of vimentin at focal adhesions depends upon integrins [154]. The intermediate filament
system associates with both integrin α6β4 [155] and plectin [156]; vimentin has been shown to bind to
focal adhesions and fibrillar adhesions via the plectin isoform 1f (P1f) [157]. The binding of vimentin
and P1f has been shown to result in capture and fusion of mobile vimentin precursors, to form a
de-novo intermediate filament network close to the focal adhesions [157]. This interaction has been
shown to promote the lifetime, stability and mature morphology of focal adhesions. Kim et al. (2010)
showed that vimentin directly interacts with filamin A to stabilise cell adhesion [158], and that this
filamin A–vimentin interaction is necessary for cell adhesion to collagen [159]. Interactions between
vimentin and the actin cross-linking protein fimbrin might also control cell adhesion [160]. Additionally,
vimentin has been shown to promote factors that can enhance integrin activation, such as the clustering
and ligand affinity for β3 integrins [161] and ligand affinity of β1 integrins [162]. Taken together, these
studies suggest that vimentin promotes integrin clustering and activation, and thereby controls the
organisation and dynamics of focal adhesions. This concept is supported by a number of additional
observation, e.g., vimentin stabilises cell-matrix adhesions that are subjected to shear stress [163]; the
focal contacts of fibroblasts from vimentin-null mouse cells are more irregular, less distinct and less
mechanically stable, compared to wild-type control cells [140]; and thick vimentin bundles have been
associated with large focal contacts, while decreased vimentin levels result in reduced sizes of focal
contacts [163]. In addition to these observations that support a role for vimentin in promoting focal
adhesion growth, recent findings showing that cells that lack either plectin or vimentin show larger
focal adhesions, indicate that vimentin also can restrict the size of focal adhesion. However, upon
loss of tension, the enlarged focal adhesion phenotype was reduced in both cell types, indicating that
cytoskeletal tension is required for vimentin or plectin to limit the size of focal adhesions [164]. A role for
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vimentin in focal adhesion dynamics is further indicated by the observation that expression of vimentin
in epithelial cells increase turnover of the protein paxillin within focal adhesions by 4-fold [165].

The induction of lamellipodia and the concomitant disassembly of focal adhesions, result in
filamentous vimentin to be broken down into smaller units [166]. A comparison of the nanoscale
structures of vimentin and adhesions in normal and oncogenically modified fibroblasts showed that
the increased homogenous distribution and increased density of nanoscale adhesions in the modified
cells were linked to loss of directionality and increased entanglement of vimentin filaments [167].
Together, these observations indicate that vimentin controls the organisation, structure and function of
cell-matrix adhesions, possibly through long vimentin filaments, which result in strong, well-organised,
distinct, mature, stable and mechanically resistant focal adhesions, while short forms of vimentin
might have opposite effects on the stability of these adhesions.

2.4.2. The CD44 Receptor

Hyaluronan (hyaluronic acid) is a glycosaminoglycan that is widely found in epithelial, connective
and neural tissues. It is synthesised at the inner side of the plasma membrane and exported to the
extracellular environment by transmembrane transporter proteins [168]. It is a major component of
the extracellular matrix. Its primary receptors are CD44 and RHAMM, which both function in cell
adhesion. The CD44 receptor is crucial for adhesion in a hyaluronan-based cellular matrix [169–173].
Vimentin has also been reported to provide a direct binding site for CD44 on its N-terminal head
domain [173], and upregulation of hyaluronan has been shown to be correlated with increased vimentin
levels [174]. Taken together, these data suggest that vimentin–hyaluronan interactions mediated by
the CD44 receptor might have roles in cell adhesion.

2.4.3. Extracellular Vimentin

So far, the role of vimentin within the cell has been considered. However, vimentin is also
present on the surface of cells, as well as in the extracellular matrix, e.g., via secretion by activated
macrophages [175,176] or astrocytes [177,178]. Experiments using Golgi blockers have shown that
extracellular vimentin is actively secreted through the Golgi apparatus [175]. This extracellular
vimentin can bind to specific cell-surface receptors to activate them, e.g., by phosphorylation, as is
the case for insulin-like growth factor 1 [179]. Such an approach has been used experimentally to
enhance axonal growth both ex vivo and in vivo, with significant improvements in the recovery of
spinal cord injured mice [180,181]. In another case, extracellular vimentin was shown to bind to the
anti-LOB7 antibody, which resulted in significant increase in the formation of tubes of endothelial cells
after 5 h [182]. Additionally, extracellular vimentin has been shown to have a role in inflamed tissue in
atherosclerosis [183] and to interact with von Willebrand factor in platelets [184]. Specifically, vimentin
reduces the adhesion of human leucocytes to platelets and the endothelium by binding to P-selectin
on leukocytes and endothelial cells, which resulted in the suggestion to use recombinant vimentin to
attenuate inflammation [185].

An alteration to secreted extracellular vimentin can indicate a pathology. For example, the
citrullinated form of vimentin is expressed in patients with rheumatoid arthritis, as indicated further
below (3.11.). Detection of the citrullinated form of vimentin is thus used as an early marker
for this autoimmune disease [186–188]. These observation are in line with the finding that mice
lacking vimentin show increased production of reactive oxygen species, which suggests that vimentin
influences the immune response and supports inflammation through reduction of the bactericidal
capacity of macrophages [103]. Vimentin has also been reported to be present on the cell surface,
as physically attached to the cell membrane. In this location it has been shown to interact with
CD44 in umbilical vein endothelial cells [173], to bind to and inhibit the internalisation of human
papillomavirus [189] and to interact with listeria [190,191]. Surface vimentin has also been suggested
to promote infection by binding to dengue virus [192]. These observations suggest that extracellular
vimentin might modulate the functions of cell-surface receptors. Vimentin has also been observed in
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the exosomes and microparticles in body fluids from different disease conditions [193,194], suggesting
that also vimentin in extracellular small vesicles might serve as clinical markers for diseases.

2.5. Cell Motility

Cell motility is required for various types of physiological phenomena, such as tissue repair,
homeostasis and wound healing. A large variety of different types of cell motility have been described,
such as mesenchymal, amoeboid, pseudopodial and lobopodial migration [195–199]. Regardless
of the mode, migration requires acto-myosin contractile forces, interactions with the extracellular
environment, and the capacity to move the cell body forwards [200]. Vimentin has been reported to
regulate all of these factors [199]. For example, vimentin-deficient mice show defects in motility and
directional migration of fibroblast, as well as reduced capacity to heal wounds [105,201,202]. Close
correlation has been observed between the local disassembly of the vimentin network in migrating
cells and the formation of a lamellipodium, used for pseudopodial migration [166]. The width of the
lamellipodium has been suggested to be influenced by vimentin, which will restrict the actin retrograde
flow in migrating cells [122]. In addition, vimentin-deficient lymphocytes show defective adhesion and
migration [97] and cleavage of the vimentin is important for cell invasion [11]. Furthermore, increased
soluble fraction of vimentin and loss of directionality of vimentin fibres are linked to increased cell
invasion ex vivo [88,167]. These results suggest that vimentin is a regulator of cell migration [202],
although the exact mechanisms by which it interacts with the force-producing actin–myosin machinery
have not been identified yet.

2.6. Epithelial-Mesenchymal Transition

During epithelial-mesenchymal transition (EMT) epithelial cells undergo functional and
behavioural changes to differentiate into mesenchymal cells [203,204]. This event is crucial for
embryonic development, tissue regeneration, homeostasis and wound healing, and is also necessary
for formation of metastases in cancers. These changes are marked by key events, including loss of
epithelial cell-cell junctions, switch from apical-basal polarity to front-rear polarity, morphological
changes of cell shape, and reorganisation of the cellular cytoskeleton (for review see [205]).
Upregulation of vimentin is a canonical marker for EMT [206], as mesenchymal cells are vimentin
dominated [207], and the expression of vimentin promotes the transformation of cells to a flatter,
elongated, mesenchymal shape [165]. Furthermore, vimentin interacts with microtubules and
associated motor proteins [116,208–210], which can promote cell motility. Phosphorylation of vimentin
also sequesters members of the 14-3-3σ family [211], which are important factors in EMT due to their
control of Akt phosphorylation [212]. An active form of Akt phosphorylates vimentin at Ser39 and
upregulates vimentin to promote further motile and invasive behaviour [213].

2.7. Invadopodia, Filopodia, Lamellipodia and Microtentacles

Invadopodia are actin-rich, finger-like projections that can breach the plasma membrane of
invasive cells and degrade the extracellular matrix. Actin polymerisation is the driving force for
elongation of invadopodia, which arise from lamellipodia and filopodia [214–222]. Lamellipodia are
flat membrane protrusions that contain a meshwork of actin bundles [223]. Filopodia are parallel
actin structures that extend beyond lamellipodia, as the leading edge of invadopodia [224–226].
While invadopodia formation is reliant on actin, vimentin is required for the elongation of
invadopodia [227,228]. Vimentin further increases the invasive properties of cells via cGMP-dependent
kinase phosphorylation of VASP [229]. An additional motile property of vimentin is seen within the
leading edge of lung cancer cells, where vimentin can bind to and regulate focal adhesion kinase
(FAK) [230]. Vimentin can regulate cell adhesion by recruiting the active variant of the Rac1 GEF
VAV2 to focal adhesions [230]. As cellular adhesion is correlated with motility, upregulation of vimentin
is expected to increase the motile behaviour of cells.
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Serum stimulates phosphorylation of vimentin, which results in organisational changes to
vimentin filaments, and formation of lamellipodia [166]. This event might be important during
EMT, where vimentin expression drives the transition to mesenchymal cell shape, accompanied by
enhanced motility and focal adhesion dynamics, again pointing to interconnections between vimentin
and other cytoskeletal systems within cells.

Microtentacles are another type of membrane extension that are microtubule based, rather
than actin based. These membrane extensions have been shown to help circulating tumour cells to
reattach at the vasculature when leaving the blood stream, on their way to metastasis formation [231].
Microtentacles have been shown to contain vimentin [232,233], although the definition of the role of
vimentin in these protrusions requires further studies.

2.8. Cholesterol Metabolism

A number of studies have suggested a link between vimentin and lipids. For example, cell lines
that lack vimentin show notably lower storage of LDL-derived cholesterol than control cells [234],
and reduced transport of LDL-derived cholesterol from lysosomes to the esterification site [235].
Immunofluorescence-based microscopy studies have shown that vimentin is closely associated with
lipid droplets in cells [236].

2.9. Vimentin Control of Cell Proliferation, Apoptosis and Differentiation

A number of observations have indicated that vimentin controls cell proliferation. For example,
factors that promote cell proliferation, such as platelet-derived growth factor, serum (but not
platelet-poor plasma), and insulin or epidermal growth factor, have been reported to increase the
cytoplasmic vimentin mRNA levels in mouse 3T3 cells [237]. Loss of vimentin has been shown to
reduce the proliferation of fibroblasts, and reduce the levels of a major initiator of EMT, TGF-β1,
a phenotype that can be reversed upon re-expression of vimentin [104]. Expression of oncogenes that
result in increased proliferation of cells has been reported to result in higher levels of vimentin mRNA
and vimentin protein levels, and in increased fractions of the soluble form of vimentin [88]. Also,
cell apoptosis has been reported to depend upon vimentin, and more specifically for proteolysis of
vimentin into a pro-apoptotic amino-terminal fragment of vimentin that can induce apoptosis [238].

With regard to differentiation, in various model systems, the levels of mRNA and the vimentin
protein have been shown to be inversely proportional to differentiation of muscle, lens, bone
and neuronal tissue cells [239–241]. Furthermore, the lack of vimentin blocks the EMT-like
transdifferentiation of keratinocytes, which occurs during wound healing. This link between
vimentin, cell proliferation and suppressed differentiation has previously been highlighted by
Hol and Capetanaki 2017 [242], and that vimentin expression in differentiating cells might be
replaced by a tissue-specific intermediate filament protein in the fully differentiated cell. The
observation that decreased phosphorylation of vimentin results in increased neuronal differentiation
for ex vivo neuronal progenitor cells [243] suggests that vimentin phosphorylation is important for
vimentin-dependent control of cell differentiation.

Hence, it is possible that vimentin promotes cell plasticity, as the capacity of cells to change, either
by forming new cells through proliferation, or by differentiating into new types of cells. Stem cells
can give rise to multiple cell lineages and transdifferentiate into different cell types in their respective
environments. Indeed, the role of vimentin in the plasticity of stem cells is an area for future research.

2.10. Vimentin-Dependent Control of Protein Signal Transduction and Gene Transcription Involved

Intermediate filament proteins do not only serve to maintain the structural integrity of the cell,
they also have important roles in various intracellular signalling systems, such as TGF-β1 EMT [104],
Slug- and Ras-EMT [244], 14-3-3-, extracellular signal–regulated kinase (Erk)-, and pathway-AKT
dependent signalling [18]. A recent review has summarised how vimentin controls biochemical
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signalling in cells in various physiological and pathophysiological contexts [9]. An emerging theme is
that vimentin might act as a scaffold to stimulate signal transduction in cells.

Some observations support a role for vimentin as a regulator of gene transcription. First,
vimentin has been reported to bind directly to transcription factors, and thereby suppress osteoblast
differentiation [245]. Furthermore, observations of the structural similarities between vimentin and
the proto-oncogenes c-fos and c-jun, and oncogenic Raf and the v-mos oncogene have indicated that
vimentin-dependent control of gene expression can promote transformation of primary cells into
malignant cancer cells [242]. Additionally, viruses, growth factors such as PDGF, and oncogenes have
been shown to promote vimentin network relocalisation to the perinuclear ‘cage’ structure [87,88,246].
The observations that vimentin responds to and spatially reorganises upon exposure to various
factors that change cellular functions, support the concept that vimentin serves to protect cells against
sudden changes.

Collectively, the information above indicates that vimentin controls several, diverse cellular
functions, as summarised in Figure 3. We suggest that vimentin can have many roles in protecting cells
under physiological conditions when they are exposed to mechanical forces and biochemical stress
linked to tissue remodelling, or even the stress of misfolded proteins. Thereby, vimentin appears to
have a general role in facilitating changes, by protecting cells against stress.Cells 2018, 7, x FOR PEER REVIEW  15 of 37 
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3. Vimentin: A Drug Target and Biomarker in the Clinic

Vimentin has been linked to a large number of pathological conditions, such as neoplasms, eye
diseases, endocrine system diseases, fibrosis-related diseases, heart or vascular diseases, reproductive
system diseases, infectious diseases, skin diseases, skeletal system diseases, diabetes, and inflammatory
bowel diseases. Below, we briefly summarise the major findings in the studies that have investigated
the role of vimentin in disease, across a selection of the best-studied diseases.

3.1. Vimentin in Cancer

A variety of processes that occur in cells undergoing malignant transformation and metastasis
involve vimentin (for review, see Chen, Eriksson 2016) [18,202]. It is important to note that
overexpression of vimentin has been used for decades as a clinical marker for EMT, a critical process
in tumour cell dissemination. The initial observations that the expression of the vimentin gene was
mainly observed in proliferative and undifferentiated cells were followed by studies that together
indicate that vimentin is linked to the malignant transformation and metastatic spread of cancer
cells [206,247–249].

3.2. Lung Cancer

In lung cancer, vimentin expression has been seen in large-cell pulmonary carcinomas, and
well-differentiated pulmonary adenocarcinomas. Several studies have provided evidence for the
involvement of vimentin in the progression of various lung cancers [18,249]. Its expression has been
associated with metastases in non–small-cell lung carcinomas, and lack of differentiation in these
cancers [250]. Furthermore, vimentin overexpression in non–small-cell lung cancer is an independent
prognostic factor for poor survival [251]. One study of patients with non–small-cell lung cancer
showed that expression of vimentin and E-cadherin correlated with favourable patient outcome
for erlotinib treatment, which suggested that vimentin has a role as a predictive biomarker for this
therapy [252]. In support of this, in lung adenocarcinomas, glycosylated vimentin was shown to be
frequently downregulated, defining its potential as a biomarker both for treatment and diagnosis [253].
A more recent study showed that vimentin expression in cancer-associated fibroblasts is required for
dissemination of early stage lung adenocarcinoma, which indicates that vimentin might have a key role
in the cancer-promoting capacity of cancer-associated fibroblasts in the tumour microenvironment [254].
Fibroblasts that promote the growth of cancer cells in vivo have also been shown to have reorganised
vimentin filaments, compared to normal fibroblasts [255]. For further information on the role of
vimentin in lung cancer, we refer the reader to the review by Kidd et al. [18].

3.3. Breast Cancer

Breast cancer has also been reported to be related to overexpression of vimentin, with correlation
with increased invasive behaviour [256,257] and promotion of migration of mammary epithelial
cells [207]. Vimentin-associated migration in pre-malignant breast cancer cells has been shown to
be induced by H-Ras-V12G and Slug. Interestingly, the presence of vimentin during EMT leads to
upregulation of the receptor tyrosine kinase Axl that enhances the migratory behaviour of breast
epithelial cells [244]. Korsching et al. (2005) used immunohistochemistry for vimentin and 15 other
differentiation markers invasive breast cancer tissue samples, and concluded that neither EMT nor
myoepithelial histogenesis could fully explain the origin of the vimentin-expressing cells in the
tissues [258].

3.4. Malignant Melanoma

Many studies have identified vimentin as a key component of cell invasion and metastasis in
malignant melanoma [259–261]. Following their proteomic study on malignant melanoma, Li et al.
(2010) indicated increased vimentin as a haematogenous indicator of metastasis [262]. In this sense,
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vimentin might act as a clinical predictor for melanoma, to provide means to predict high-risk patients
for haematogenous metastasis, and thus to provide individualised treatment options [262].

3.5. Prostate Cancer

Studies have shown an inverse relationship between malignancy in prostate cancer and formation
of pancreatic exocrine cells [263,264]. In an in vivo analysis of prostate epithelial cells, vimentin was
shown to be key in maintaining homeostasis of the acinus in the prostate. This suggested that vimentin
expression in prostate cancer results in high tumorigenic activity. The study showed that vimentin is
required for the movement of integrin β1 to the leading edge of the cell, a migratory condition that
is necessary for metastasis. Thus, they proposed that a block of the vimentin–integrin relationship
represents a potential therapy for metastatic tumours [265]. Another possible treatment targets PKCε,
as cell motility is promoted by phosphorylation of vimentin by PKCε [266], and genetic deletion of
PKCε has been shown to inhibit development of prostate cancer in mouse model [267].

3.6. Gastrointestinal Cancer

In tumours of the gastrointestinal tract, overexpression of vimentin has generally been associated
with an increased aggressiveness [268]. Vimentin has been defined for both primary and metastatic
tumours of patients with oesophageal squamous-cell carcinoma [269]. In advanced colorectal cancers,
vimentin is known to be frequently methylated, which is also used as a diagnostic tool here [270].
A highly sensitive stool test uses vimentin as a biomarker [271,272]. Also, in colorectal cancer,
expression of vimentin has been correlated to the stage of neoplastic progression of neoplastic
cells. Furthermore, histone deacetylase inhibitor (HDACi)-resistant colorectal cancer cells show
overexpression of vimentin compared to HDACi-sensitive colorectal cancer cells. Taken together,
Lazarova et al. (2016) suggest that vimentin expression contribute both to the malignancy and
drug-resistance of colorectal cancer [19]. Gastric cancer is also associated with vimentin overexpression,
and as vimentin is correlated to metastasis formation, it has been suggested to be an indicator of
prognosis [273]. Vimentin might also contribute to an invasive phenotype in gastric cancer, which
means that it is potentially useful as a biomarker to define cancer aggressiveness [274].

3.7. Additional Types of Cancer

Additional cancers witness vimentin overexpression [3] including certain types of
lymphomas [275], endometrial carcinomas [276], papillary thyroid carcinomas [277], cervical
cancers [278], clear-cell renal-cell carcinomas [279], and central nervous system tumours [280,281].
In summary, the vimentin expression in various types of cancer cells and in cancer-associated fibroblasts
appears to be associated with malignancy and drug resistance.

3.8. Vimentin in Other Human Diseases

In addition to cancer, vimentin expression has been associated with a number of other diseases.
Cellular EMT has a role in many pathogenic pathways, which makes vimentin a key target for many
human diseases. Therefore, the use of intermediate filaments as a biomarker for disease is a promising
avenue for treatment. Specific mutations in vimentin are correlated with diseases such as cataracts,
Crohn’s disease, rheumatoid arthritis, and human immunodeficiency virus.

3.9. Cataracts

Cataracts are a common disease that is characterised by the clouding of the lens of the eye.
Vimentin filaments have been shown to have an integral role in maintenance of the structure and
integrity of the lens [282]. Low levels of vimentin are normally found in the epithelium of the
lens, patients with cataracts, however, show an increased expression of vimentin in lens epithelial
cells [283]. In a study of 90 patients with congenital cataract, a missense mutation in coil 1B of VIM
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was shown to result in abnormal cell cytoskeletal structure and pulverulent cataracts [2], possibly
due to misfolding of vimentin. Another study reported in an ex vivo model of diabetic cataract
tissue, the mesenchymal marker vimentin was upregulated while the epithelial marker E-cadherin was
downregulated [284]. This same study showed downregulation of the microRNA miR-30. However,
the induced overexpression of a variant of this microRNA, miR-30a-5p, decreased vimentin levels,
which suggested that miR-30a-5p is a novel therapeutic target for diabetic cataracts. Although not
all cataracts are believed to be due to aberrant EMT, these observations indicate that formation of
cataracts can arise from EMT transdifferentiation of the cells of the lens epithelium into mesenchymal
cells, which thereby cause the cataract opacification [283]. Therefore, repression of EMT regulators
might offer a novel means to treat this condition [284].

3.10. Crohn’s Disease

Crohn’s disease is a genetic inflammatory bowel disease within the gastrointestinal tract, and
is associated with upregulation of vimentin protein levels [285]. The invasive properties of the cells
of Crohn’s disease are linked to vimentin expression, as are inflammatory, bacterial, and signalling
events [286]. Further studies have shown tissue damage due to inflammation, and the corresponding
intestinal fibrosis might be due to EMT [287]. Fibrotic areas show EMT-related markers, and particularly
vimentin, which suggests that EMT is involved in the pathogenesis of Crohn’s disease [288]. Moreover,
vimentin-targeted treatment of Crohn’s-disease-associated Escherichia coli with withaferin-A promotes
the correct functioning of the inflammatory response, autophagy, and cell invasion [286].

3.11. Rheumatoid Arthritis

The synovial lining acts as the epithelium for joint tissues, and as such it shows similar
characteristics. Chronic joint pain associated with rheumatoid arthritis stems from hyperplasia of
the tissues surrounding the synovial membrane and cell invasion, a phenomenon that might be due
to EMT [289]. In a comparison of biopsies from normal and rheumatoid arthritis diseased tissues,
the healthy tissues expressed epithelial-like biomarkers (e.g., E-cadherin, collagen type IV), while
the pathological synovium expressed fibrotic markers (e.g., α-smooth muscle actin, vimentin) [289].
Approximately 40% of all sera from patients with rheumatoid arthritis showed autoantibodies directed
towards an auto-antigen, known as Sa. This antigen was then shown to be a mutated citrullinated
variant of vimentin (MCV) [183]. These anti-MCV antibodies can be detected early in the disease, and
anti-MCV titres are closely related to the progress of the disease. Therefore, these data allow for early
diagnosis and adequate prognosis of rheumatoid arthritis, and also the evaluation of the therapeutic
options [290,291]. Citrullination of vimentin during inflammation has been reported to trigger the
antigenic properties within the filament [292] Additional studies have reported that citrullination and
mutations of vimentin result in this autoantibody response [293]. These findings show that citrullinated
vimentin is an important biomarker for diagnosis and prognosis of rheumatoid arthritis.

3.12. Human Immunodeficiency Virus

In a comparative proteomic study, vimentin was recognized as a prospective therapeutic target
against HIV [5]. A human dialysable leukocyte extract was shown to regulate vimentin levels and to
have anti-HIV activity [5,294]. The vimentin levels and the structure of vimentin were also shown to
control the replication of HIV in MT4 cell lines [5]. Together with the findings that the intermediate
filament-mimicking synthetic peptide CIGB-210 that causes a reorganisation of vimentin filaments
towards the cell nucleus, also inhibits HIV replication [5], these data suggest that vimentin might be a
target for anti-HIV treatment.

3.13. Atherosclerosis

Endothelial cells can transdifferentiate into mesenchymal-like cells in an analogous manner to
EMT of epithelial cells, which is known as endothelial-to-mesenchymal transition (EndMT) [295]. This
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can cause various diseases of the cardiovascular system, as reviewed by Kovacic and colleagues [296].
For example, EndMT has been observed in atherosclerotic lesions, and has been suggested to be
linked to increased vimentin levels [297]. Furthermore, vimentin-null mice show defective capacity to
remodel arteries and increased stiffness, contractility and endothelial dysfunction in arteries. Although
the increased arterial stiffness in mice lacking vimentin is probably dependent upon endothelial
basement membrane reorganization [98], it is possible that vimentin contributes to the phenotypic
changes during EndMT.

3.14. Defective Wound Healing

Intermediate filaments are crucial for effective wound healing and tissue regeneration through
their promotion of cell motility and adhesion. Vimentin has a role in wound healing as it acts as a signal
integrator and coordinator for the actions that are necessary: fibroblast proliferation, keratinocyte
differentiation, collagen accumulation and re-epithelialisation [104,202].

In a comparative murine model of burn wounds, it was shown that loss of vimentin leads to
slow and incomplete healing. In this study, Vim−/− epithelial cells inhibited fibroblast growth, which
deprives a wound of the collagen that is necessary for healing [104]. Suppression of fibroblasts in turn
inhibits TGF-β1 and Slug signalling, which are two of the primary initiators of EMT [104]. TGF-β is
known to enhance the migratory behaviour of keratinocytes [298]. In vimentin-null mice, the reduced
EMT-like pathways and reduced mobility of keratinocytes result in the loss of keratinisation,
and therefore this slows re-epithelialisation. Reconstitution of vimentin in fibroblasts revives the
TGF-β–Slug–EMT pathway and reactivates keratinocyte transdifferentiation and migration [104].
As these data show, loss of vimentin leads to slowed and incomplete wound closure, and therefore
indicates that vimentin expression is necessary for correct wound healing.

Another study on the regenerative capacity in embryonic and adult mice reported that adult
Vim−/− mice showed delayed fibroblast migration to a wound site, while the vimentin-deficient
embryonic mice failed to heal altogether. Here, they concluded that fibroblasts require vimentin to
maintain the tractional forces that are necessary for migration to a wound site [105]. This conclusion is
in agreement with a previous ex vivo study in which Vim−/− fibroblasts showed slowed migration
and collagen contraction, compared to their wild-type counterparts. Delayed wound healing in
vimentin-null cells appears to be due to weakened contractile forces from diminished mechanical
stability and cell motility [140]. Phosphovimentin-deficient mice show defective wound healing [299],
which indicates that the phosphorylation of vimentin is critical for wound healing.

An ex vivo lens model showed that vimentin-rich mesenchymal cells promoted the cell migration
for the healing of the wounded epithelium [300]. Similarly, increased rates of migration and wound
repair have been associated with overexpression of vimentin in alveolar epithelial cell [201]. Taken
together, these studies demonstrate a critical role for vimentin in cellular repair, through regulation of
cell movement, adhesion and differentiation in response to wounding.

3.15. Vimentin Myopathies

Studies have reported increased expression of vimentin in myopathies, indicating that vimentin
can serve as a diagnostic marker for dystrophic muscles and myopathies [301–303].

3.16. Vimentin in Aging

Vimentin has also been linked to cell senescence, whereby senescent cells have been shown to
have increased vimentin mRNA and protein levels, and increased secretion of an oxidised form of
vimentin, suggesting that this vimentin variant could be a marker for oxidative stress and aging [304].
It has also been reported that glycation of vimentin in vivo is mainly seen in skin fibroblasts of elderly
donors [64]. Furthermore, a lack of serine phosphorylation of vimentin during mitosis results in
defective cytokinesis in fibroblasts and lens epithelial cells, and thence to increased senescence [299]
and increased skin aging in mice [305]. These data suggest that vimentin also has a role in aging.
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Taken together, these data indicate that vimentin can be used as a biomarker for diagnosis,
prognosis and treatment of a large variety of different diseases, which range from cancer to infectious
and inflammatory diseases, which might now allow for more efficient and personalised diagnosis and
treatment of these conditions (Figure 4).Cells 2018, 7, x FOR PEER REVIEW  20 of 37 
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3.17. Vimentin-Targeting Drugs

Due to its overexpression in many kinds of cancers and its function in tumorigenic events,
vimentin is an appealing drug target for cancer therapies. One drug that can interfere with vimentin is
withaferin-A, a compound that is known for its anti-tumour and anti-angiogenic activities [306,307].
Withaferin-A has been described to covalently bind to vimentin and result in aggregation of vimentin
and F-actin, which leads to cell apoptosis [306]. The apoptotic and antiangiogenic properties of
withaferin-A were shown to be significantly reduced in vimentin-deficient cells [308], and withaferin-A
treatments have been shown to be beneficial in vivo for patients with breast cancer [309], cervical
cancer [310], and pancreatic cancer [311]. In addition, the compound Arylquin 1 (a 3-arylquinoline
derivate) has been shown to specifically bind to vimentin, resulting in tumour cell apoptosis via
a secretion-dependent mechanism [312]. Also, Silibinin, a compound that has been shown to
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suppress vimentin expression, reverse EMT and inhibit tumour–stromal communication, also inhibits
cancer [313–316]. In addition, Salinomycin has been reported to suppress vimentin expression [317].
Furthermore, the DNA aptamer NAS-24 has been reported to promote apoptosis in adenocarcinoma
cells, potentially by binding to vimentin [318]. Additionally, the vimentin-binding compound, FiVe1
(for FOXC2-inhibiting Vimentin effector 1), has been shown to selectively inhibit the growth of
mesenchymally transformed breast cancer cells and soft tissue via mitotic disruption [319].

Another promising avenue for vimentin-targeted treatments was reported by Noh et al. (2016)
in their studies of vimentin at the cell surface. They observed that targeting vimentin at the cell
surface of glioblastoma stem using a monoclonal antibody, resulted in apoptosis and suppressed
proliferation of cells ex vivo, as well as reduced tumour size and increased survival in vivo [320].
Vimentin can have a further role in such treatments by directing therapeutic agents directly to
the tumour site. Interleukin-12 is a known cancer therapy, but it has toxic side effects for the
patient. However, by binding to the carcinoma cells, the peptide VNTANST can increase the
interleukin-12 specifically in the tumour microenvironment. This binding of the peptide to vimentin
can be used to better target interleukin-12, which can thus decrease its toxic side effects and increase
its direct anticancer effects [321].

Statins are a group of drugs that are known for their cholesterol-lowering properties, as well as
being efficient anticancer drugs; these can also target the vimentin intermediate filaments. Simvastatin
has been shown to promote cell death in cells expressing vimentin, while not affecting cells that lacked
vimentin expression [322]. Furthermore, vimentin has been shown to be a pharmacologically relevant
target of Simvastatin in cancer cells [323]. Fluvastatin has also been shown to induce proteolysis of
vimentin and to promote cell death in carcinoma cell lines [324]. Of the compounds in this article, these
two statin compounds are or have been in clinical trials (U.S. National Library of Medicine, Web-based
resource ClinicalTrials.gov).

Taken together, these data indicate that the targeting of vimentin is a promising approach for
anticancer drugs.

4. Conclusions and Future Perspectives

The aim of this review is to provide an overview of the current understanding of the diversity
of vimentin in health and disease, as is also summarised in Figures 2–4. However, it is not possible
to focus equally on all aspects of vimentin biology, and so all lines of vimentin research cannot be
included. The focus was thus on how a single gene product, vimentin, can influence so many cellular
functions and diseases.

Vimentin has a highly diverse set of biological functions, both in time and space, and also in terms
of the chemical, spatial and mechanical properties of this protein. Several factors are involved in the
functional diversity of vimentin. For example, the different domains of the vimentin protein appear to
have been subjected to distinct evolutionary pressures, which suggests that separate functions can be
performed by specific parts of the vimentin molecule.

The findings that vimentin has many different assembly stages, sizes and conformational forms
indicates that its structural plasticity is likely an important factor in the functional diversity of vimentin.
In addition, the co-assembly of vimentin with other types of intermediate filaments will increase its
functional diversity. Furthermore, cell-type-specific post-translational modifications of vimentin will
also change the properties of vimentin. Finally, as different levels of vimentin influence its binding
with varying downstream effectors, with different consequences for the signalling pathways involved,
both the intracellular and extracellular levels of vimentin are likely to be important for its functional
diversity. Further clarification of how these vimentin levels, domains, post-translational modifications
and various assembled forms contribute to the functions of vimentin is needed. Given the structural
plasticity and functional diversity of the vimentin protein, it is quite plausible that vimentin provides a
platform through which it both responds to and integrates biochemical and mechanical signals as well
as spatial transduction cues [325].

ClinicalTrials.gov
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One of the most repeated phrases in biology is: “Nothing in biology makes sense except in the light
of evolution.” This phrase was taken from an essay of the same name published in 1973by Theodosius
Dobzhansky, an evolutionary biologist and Eastern Orthodox Christian [33]. It highlights that the
process of change is an inherent characteristic of living organisms, which are therefore continuously
subjected to, and under the governance of, the laws of evolutionary selection. As a consequence, no
biological system can ever be stronger than the diversity that it encompasses. The functional diversity
of vimentin could allow it to act as a sensor of altered chemical, spatial and mechanical properties of
the cell, and coordinate cellular functions to provide resilience through processes of change. In line
with this hypothesis is the observation that the different vimentin functions often are linked to changed
cellular behaviour (Figure 3). Cells lacking vimentin appear to be unable to adapt to pathological
conditions to the same degree as vimentin-expressing cells. Hence, the increased levels of vimentin
that are observed in organisms under a wide variety of pathological conditions might be a consequence
of the upregulation of vimentin to provide resilience in a stressed cell, allowing changes that result in
pathological cell behaviour.

Future studies to determine how vimentin might control and coordinate the mechanical, spatial
and biochemical properties of cells that undergo change are needed. These studies may be aimed
at defining vimentin-dependent control of cell surface receptors, localisation of cell adhesions,
intracellular biochemical signalling cascades, and localisation of organelles to the relevant spatial
and mechanical subcellular areas. Combined with advances in new ‘-omics’ technologies that enable
analyses at a single cell level, these studies might ultimately capture the cell-to-cell variability and the
role of vimentin in three-dimensional environments. Future studies might examine how vimentin
controls the various cellular properties in a more complex tissue context, where different cell types
also interact. Such results would advance the understanding of the pathology of vimentin-dependent
changes in cell behaviour that result in specific tumour microenvironments, cancers, chronic
inflammation, de novo vascularisation, stem cell differentiation and tissue regeneration, as well
as defective wound healing.
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Modulates Infectious Internalization of Human Papillomavirus 16 Pseudovirions. J. Virol. 2017, 91, e00307-17.
[CrossRef] [PubMed]

190. Ghosh, P.; Halvorsen, E.M.; Ammendolia, D.A.; Mor-Vaknin, N.; O’Riordan, M.X.D.; Brumell, J.H.;
Markovitz, D.M.; Higgins, D.E. Invasion of the Brain by Listeria monocytogenes Is Mediated by InlF
and Host Cell Vimentin. mBio 2018, 9, e00160-18. [CrossRef] [PubMed]

191. Bastounis, E.E.; Yeh, Y.-T.; Theriot, J.A. Matrix stiffness modulates infection of endothelial cells by Listeria
monocytogenes via expression of cell surface vimentin. Mol. Biol. Cell 2018, 29, 1571–1589. [CrossRef]
[PubMed]

192. Yang, J.; Zou, L.; Yang, Y.; Yuan, J.; Hu, Z.; Liu, H.; Peng, H.; Shang, W.; Zhang, X.; Zhu, J.; et al. Superficial
vimentin mediates DENV-2 infection of vascular endothelial cells. Sci. Rep. 2016, 6, 69. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0029305
http://www.ncbi.nlm.nih.gov/pubmed/22216242
http://dx.doi.org/10.1074/jbc.M308168200
http://www.ncbi.nlm.nih.gov/pubmed/12954618
http://dx.doi.org/10.1038/ncb898
http://www.ncbi.nlm.nih.gov/pubmed/12483219
http://dx.doi.org/10.1128/MCB.24.20.9198-9206.2004
http://www.ncbi.nlm.nih.gov/pubmed/15456890
http://dx.doi.org/10.1021/pr100134n
http://www.ncbi.nlm.nih.gov/pubmed/20329800
http://dx.doi.org/10.1038/cdd.2010.169
http://www.ncbi.nlm.nih.gov/pubmed/21212797
http://dx.doi.org/10.1038/srep12055
http://www.ncbi.nlm.nih.gov/pubmed/26170015
http://dx.doi.org/10.1111/j.1476-5381.2012.02211.x
http://www.ncbi.nlm.nih.gov/pubmed/22978525
http://dx.doi.org/10.1038/srep28293
http://www.ncbi.nlm.nih.gov/pubmed/27323867
http://dx.doi.org/10.1038/s41598-017-03799-2
http://www.ncbi.nlm.nih.gov/pubmed/28620205
http://dx.doi.org/10.1093/cvr/cvt117
http://www.ncbi.nlm.nih.gov/pubmed/23674515
http://dx.doi.org/10.1182/blood-2013-10-530428
http://www.ncbi.nlm.nih.gov/pubmed/24642750
http://dx.doi.org/10.4049/jimmunol.1700784
http://www.ncbi.nlm.nih.gov/pubmed/29335256
http://dx.doi.org/10.1186/ar1149
http://www.ncbi.nlm.nih.gov/pubmed/15059278
http://dx.doi.org/10.1007/s12016-007-8016-3
http://www.ncbi.nlm.nih.gov/pubmed/18270850
http://dx.doi.org/10.1007/s11926-011-0193-7
http://www.ncbi.nlm.nih.gov/pubmed/21713412
http://dx.doi.org/10.1128/JVI.00307-17
http://www.ncbi.nlm.nih.gov/pubmed/28566373
http://dx.doi.org/10.1128/mBio.00160-18
http://www.ncbi.nlm.nih.gov/pubmed/29487235
http://dx.doi.org/10.1091/mbc.E18-04-0228
http://www.ncbi.nlm.nih.gov/pubmed/29718765
http://dx.doi.org/10.1038/srep38372
http://www.ncbi.nlm.nih.gov/pubmed/27910934


Cells 2018, 7, 147 32 of 38

193. Sharma, M.; Liu, W.; Perincheri, S.; Gunasekaran, M.; Mohanakumar, T. Exosomes expressing the
self-antigens myosin and vimentin play an important role in syngeneic cardiac transplant rejection induced
by antibodies to cardiac myosin. Am. J. Transplant. 2018, 18, 1626–1635. [CrossRef] [PubMed]

194. Press, J.Z.; Reyes, M.; Pitteri, S.J.; Pennil, C.; Garcia, R.; Goff, B.A.; Hanash, S.M.; Swisher, E.M. Microparticles
from ovarian carcinomas are shed into ascites and promote cell migration. Int. J. Gynecol. Cancer 2012, 22,
546–552. [CrossRef] [PubMed]

195. Paul, C.D.; Mistriotis, P.; Konstantopoulos, K. Cancer cell motility: Lessons from migration in confined
spaces. Nat. Rev. Cancer 2016, 17, 131–140. [CrossRef] [PubMed]

196. Reig, G.; Pulgar, E.; Concha, M.L. Cell migration: From tissue culture to embryos. Development 2014, 141,
1999–2013. [CrossRef] [PubMed]

197. De Pascalis, C.; Etienne-Manneville, S. Single and collective cell migration: The mechanics of adhesions.
Mol. Biol. Cell 2017, 28, 1833–1846. [CrossRef] [PubMed]

198. Mayor, R.; Etienne-Manneville, S. The front and rear of collective cell migration. Nat. Rev. Mol. Cell Biol.
2016, 17, 97–109. [CrossRef] [PubMed]

199. Petrie, R.J.; Koo, H.; Yamada, K.M. Generation of compartmentalized pressure by a nuclear piston governs
cell motility in a 3D matrix. Science 2014, 345, 1062–1065. [CrossRef] [PubMed]

200. Blanchoin, L.; Boujemaa-Paterski, R.; Sykes, C.; Plastino, J. Actin Dynamics, Architecture, and Mechanics in
Cell Motility. Physiol. Rev. 2014, 94, 235–263. [CrossRef] [PubMed]

201. Rogel, M.R.; Soni, P.N.; Troken, J.R.; Sitikov, A.; Trejo, H.E.; Ridge, K.M. Vimentin is sufficient and required
for wound repair and remodeling in alveolar epithelial cells. FASEB J. 2011, 25, 3873–3883. [CrossRef]
[PubMed]

202. Cheng, F.; Eriksson, J.E. Intermediate Filaments and the Regulation of Cell Motility during Regeneration and
Wound Healing. Cold Spring Harb. Perspect. Biol. 2017, 9, a022046. [CrossRef] [PubMed]

203. Hay, E.D. An Overview of Epithelio-Mesenchymal Transformation. Cells Tissues Organs 1995, 154, 8–20.
[CrossRef]

204. Kalluri, R.; Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Investig.
2003, 112, 1776–1784. [CrossRef] [PubMed]

205. Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119,
1420–1428. [CrossRef] [PubMed]

206. Ivaska, J. Vimentin: Central hub in EMT induction? Small GTPases 2011, 2, 51–53. [CrossRef] [PubMed]
207. Gilles, C.; Polette, M.; Zahm, J.M.; Tournier, J.M.; Volders, L.; Foidart, J.M.; Birembaut, P. Vimentin contributes

to human mammary epithelial cell migration. J. Cell Sci. 1999, 112 Pt 24, 4615–4625.
208. Liao, G.; Gundersen, G.G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments.

Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem. 1998, 273, 9797–9803.
[CrossRef] [PubMed]

209. Perlson, E.; Hanz, S.; Ben-Yaakov, K.; Segal-Ruder, Y.; Seger, R.; Fainzilber, M. Vimentin-dependent spatial
translocation of an activated MAP kinase in injured nerve. Neuron 2005, 45, 715–726. [CrossRef] [PubMed]

210. Gyoeva, F.K.; Gelfand, V.I. Coalignment of vimentin intermediate filaments with microtubules depends on
kinesin. Nature 1991, 353, 445–448. [CrossRef] [PubMed]

211. Tzivion, G.; Luo, Z.-J.; Avruch, J. Calyculin A-induced Vimentin Phosphorylation Sequesters 14-3-3 and
Displaces Other 14-3-3 Partners in Vivo. J. Biol. Chem. 2000, 275, 29772–29778. [CrossRef] [PubMed]

212. Gómez-Suárez, M.; Gutiérrez-Martínez, I.Z.; Hernández-Trejo, J.A.; Hernández-Ruiz, M.; Suárez-Pérez, D.;
Candelario, A.; Kamekura, R.; Medina-Contreras, O.; Schnoor, M.; Ortiz-Navarrete, V.; et al. 14-3-3 Proteins
regulate Akt Thr308 phosphorylation in intestinal epithelial cells. Cell Death Differ. 2016, 23, 1060–1072.
[CrossRef] [PubMed]

213. Fortier, A.-M.; Van Themsche, C.; Asselin, E.; Cadrin, M. Akt isoforms regulate intermediate filament protein
levels in epithelial carcinoma cells. FEBS Lett. 2010, 584, 984–988. [CrossRef] [PubMed]

214. Buccione, R.; Orth, J.D.; McNiven, M.A. Foot and mouth: Podosomes, invadopodia and circular dorsal
ruffles. Nat. Rev. Mol. Cell Biol. 2004, 5, 647–657. [CrossRef] [PubMed]

215. Lorenz, M.; Yamaguchi, H.; Wang, Y.; Singer, R.H.; Condeelis, J. Imaging Sites of N-WASP Activity in
Lamellipodia and Invadopodia of Carcinoma Cells. Curr. Biol. 2004, 14, 697–703. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/ajt.14650
http://www.ncbi.nlm.nih.gov/pubmed/29316217
http://dx.doi.org/10.1097/IGC.0b013e318241d9b9
http://www.ncbi.nlm.nih.gov/pubmed/22315094
http://dx.doi.org/10.1038/nrc.2016.123
http://www.ncbi.nlm.nih.gov/pubmed/27909339
http://dx.doi.org/10.1242/dev.101451
http://www.ncbi.nlm.nih.gov/pubmed/24803649
http://dx.doi.org/10.1091/mbc.e17-03-0134
http://www.ncbi.nlm.nih.gov/pubmed/28684609
http://dx.doi.org/10.1038/nrm.2015.14
http://www.ncbi.nlm.nih.gov/pubmed/26726037
http://dx.doi.org/10.1126/science.1256965
http://www.ncbi.nlm.nih.gov/pubmed/25170155
http://dx.doi.org/10.1152/physrev.00018.2013
http://www.ncbi.nlm.nih.gov/pubmed/24382887
http://dx.doi.org/10.1096/fj.10-170795
http://www.ncbi.nlm.nih.gov/pubmed/21803859
http://dx.doi.org/10.1101/cshperspect.a022046
http://www.ncbi.nlm.nih.gov/pubmed/28864602
http://dx.doi.org/10.1159/000147748
http://dx.doi.org/10.1172/JCI200320530
http://www.ncbi.nlm.nih.gov/pubmed/14679171
http://dx.doi.org/10.1172/JCI39104
http://www.ncbi.nlm.nih.gov/pubmed/19487818
http://dx.doi.org/10.4161/sgtp.2.1.15114
http://www.ncbi.nlm.nih.gov/pubmed/21686283
http://dx.doi.org/10.1074/jbc.273.16.9797
http://www.ncbi.nlm.nih.gov/pubmed/9545318
http://dx.doi.org/10.1016/j.neuron.2005.01.023
http://www.ncbi.nlm.nih.gov/pubmed/15748847
http://dx.doi.org/10.1038/353445a0
http://www.ncbi.nlm.nih.gov/pubmed/1832745
http://dx.doi.org/10.1074/jbc.M001207200
http://www.ncbi.nlm.nih.gov/pubmed/10887173
http://dx.doi.org/10.1038/cdd.2015.163
http://www.ncbi.nlm.nih.gov/pubmed/26846144
http://dx.doi.org/10.1016/j.febslet.2010.01.045
http://www.ncbi.nlm.nih.gov/pubmed/20109457
http://dx.doi.org/10.1038/nrm1436
http://www.ncbi.nlm.nih.gov/pubmed/15366708
http://dx.doi.org/10.1016/j.cub.2004.04.008
http://www.ncbi.nlm.nih.gov/pubmed/15084285


Cells 2018, 7, 147 33 of 38

216. Yamaguchi, H.; Lorenz, M.; Kempiak, S.; Sarmiento, C.; Coniglio, S.; Symons, M.; Segall, J.; Eddy, R.; Miki, H.;
Takenawa, T.; et al. Molecular mechanisms of invadopodium formation. J. Cell Biol. 2005, 168, 441–452.
[CrossRef] [PubMed]

217. Baldassarre, M.; Ayala, I.; Beznoussenko, G.; Giacchetti, G.; Machesky, L.M.; Luini, A.; Buccione, R. Actin
dynamics at sites of extracellular matrix degradation. Eur. J. Cell Biol. 2006, 85, 1217–1231. [CrossRef]
[PubMed]

218. Bowden, E.; Onikoyi, E.; Slack, R.; Myoui, A.; Yoneda, T.; Yamada, K.; Mueller, S. Co-localization of cortactin
and phosphotyrosine identifies active invadopodia in human breast cancer cells. Exp. Cell Res. 2006, 312,
1240–1253. [CrossRef] [PubMed]

219. Weaver, A.M. Invadopodia: Specialized Cell Structures for Cancer Invasion. Clin. Exp. Metastasis 2006, 23,
97–105. [CrossRef] [PubMed]

220. Clark, E.S.; Whigham, A.S.; Yarbrough, W.G.; Weaver, A.M. Cortactin is an essential regulator of matrix
metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res. 2007, 67,
4227–4235. [CrossRef] [PubMed]

221. Philippar, U.; Roussos, E.T.; Oser, M.; Yamaguchi, H.; Kim, H.-D.; Giampieri, S.; Wang, Y.; Goswami, S.;
Wyckoff, J.B.; Lauffenburger, D.A.; et al. A Mena Invasion Isoform Potentiates EGF-Induced Carcinoma Cell
Invasion and Metastasis. Dev. Cell 2008, 15, 813–828. [CrossRef] [PubMed]

222. Svitkina, T.M.; Borisy, G.G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic
organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 1999, 145, 1009–1026.
[CrossRef] [PubMed]

223. Lizárraga, F.; Poincloux, R.; Romao, M.; Montagnac, G.; Le Dez, G.; Bonne, I.; Rigaill, G.; Raposo, G.;
Chavrier, P. Diaphanous-related formins are required for invadopodia formation and invasion of breast
tumor cells. Cancer Res. 2009, 69, 2792–2800. [CrossRef] [PubMed]

224. Mattila, P.K.; Lappalainen, P. Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol.
2008, 9, 446–454. [CrossRef] [PubMed]

225. Gupton, S.L.; Gertler, F.B. Filopodia: The fingers that do the walking. Sci. STKE 2007, 2007, re5. [CrossRef]
[PubMed]

226. Schoumacher, M.; Goldman, R.D.; Louvard, D.; Vignjevic, D.M. Actin, microtubules, and vimentin
intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol. 2010, 189, 541–556. [CrossRef]
[PubMed]

227. Sutoh Yoneyama, M.; Hatakeyama, S.; Habuchi, T.; Inoue, T.; Nakamura, T.; Funyu, T.; Wiche, G.; Ohyama, C.;
Tsuboi, S. Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer
cell invasion and extravasation for metastasis. Eur. J. Cell Biol. 2014, 93, 157–169. [CrossRef] [PubMed]

228. Lund, N.; Henrion, D.; Tiede, P.; Ziche, M.; Schunkert, H.; Ito, W.D. Vimentin expression influences
flow dependent VASP phosphorylation and regulates cell migration and proliferation. Biochem. Biophys.
Res. Commun. 2010, 395, 401–406. [CrossRef] [PubMed]

229. Havel, L.S.; Kline, E.R.; Salgueiro, A.M.; Marcus, A.I. Vimentin regulates lung cancer cell adhesion through
a VAV2-Rac1 pathway to control focal adhesion kinase activity. Oncogene 2015, 34, 1979–1990. [CrossRef]
[PubMed]

230. Whipple, R.A.; Cheung, A.M.; Martin, S.S. Detyrosinated microtubule protrusions in suspended mammary
epithelial cells promote reattachment. Exp. Cell Res. 2007, 313, 1326–1336. [CrossRef] [PubMed]

231. Whipple, R.A.; Balzer, E.M.; Cho, E.H.; Matrone, M.A.; Yoon, J.R.; Martin, S.S. Vimentin filaments support
extension of tubulin-based microtentacles in detached breast tumor cells. Cancer Res. 2008, 68, 5678–5688.
[CrossRef] [PubMed]

232. Killilea, A.N.; Csencsits, R.; Le, E.B.N.T.; Patel, A.M.; Kenny, S.J.; Xu, K.; Downing, K.H. Cytoskeletal
organization in microtentacles. Exp. Cell Res. 2017, 357, 291–298. [CrossRef] [PubMed]

233. Brown, M.S.; Goldstein, J.L. A receptor-mediated pathway for cholesterol homeostasis. Science 1986, 232,
34–47. [CrossRef] [PubMed]

234. Sarria, A.J.; Panini, S.R.; Evans, R.M. A functional role for vimentin intermediate filaments in the metabolism
of lipoprotein-derived cholesterol in human SW-13 cells. J. Biol. Chem. 1992, 267, 19455–19463. [PubMed]

235. Almahbobi, G.; Hall, P.F. The role of intermediate filaments in adrenal steroidogenesis. J. Cell Sci. 1990, 97 Pt
4, 679–687.

http://dx.doi.org/10.1083/jcb.200407076
http://www.ncbi.nlm.nih.gov/pubmed/15684033
http://dx.doi.org/10.1016/j.ejcb.2006.08.003
http://www.ncbi.nlm.nih.gov/pubmed/17010475
http://dx.doi.org/10.1016/j.yexcr.2005.12.012
http://www.ncbi.nlm.nih.gov/pubmed/16442522
http://dx.doi.org/10.1007/s10585-006-9014-1
http://www.ncbi.nlm.nih.gov/pubmed/16830222
http://dx.doi.org/10.1158/0008-5472.CAN-06-3928
http://www.ncbi.nlm.nih.gov/pubmed/17483334
http://dx.doi.org/10.1016/j.devcel.2008.09.003
http://www.ncbi.nlm.nih.gov/pubmed/19081071
http://dx.doi.org/10.1083/jcb.145.5.1009
http://www.ncbi.nlm.nih.gov/pubmed/10352018
http://dx.doi.org/10.1158/0008-5472.CAN-08-3709
http://www.ncbi.nlm.nih.gov/pubmed/19276357
http://dx.doi.org/10.1038/nrm2406
http://www.ncbi.nlm.nih.gov/pubmed/18464790
http://dx.doi.org/10.1126/stke.4002007re5
http://www.ncbi.nlm.nih.gov/pubmed/17712139
http://dx.doi.org/10.1083/jcb.200909113
http://www.ncbi.nlm.nih.gov/pubmed/20421424
http://dx.doi.org/10.1016/j.ejcb.2014.03.002
http://www.ncbi.nlm.nih.gov/pubmed/24810881
http://dx.doi.org/10.1016/j.bbrc.2010.04.033
http://www.ncbi.nlm.nih.gov/pubmed/20382123
http://dx.doi.org/10.1038/onc.2014.123
http://www.ncbi.nlm.nih.gov/pubmed/24858039
http://dx.doi.org/10.1016/j.yexcr.2007.02.001
http://www.ncbi.nlm.nih.gov/pubmed/17359970
http://dx.doi.org/10.1158/0008-5472.CAN-07-6589
http://www.ncbi.nlm.nih.gov/pubmed/18632620
http://dx.doi.org/10.1016/j.yexcr.2017.05.024
http://www.ncbi.nlm.nih.gov/pubmed/28551375
http://dx.doi.org/10.1126/science.3513311
http://www.ncbi.nlm.nih.gov/pubmed/3513311
http://www.ncbi.nlm.nih.gov/pubmed/1527066


Cells 2018, 7, 147 34 of 38

236. Rittling, S.R.; Baserga, R. Functional analysis and growth factor regulation of the human vimentin promoter.
Mol. Cell. Biol. 1987, 7, 3908–3915. [CrossRef] [PubMed]

237. Byun, Y.; Chen, F.; Chang, R.; Trivedi, M.; Green, K.J.; Cryns, V.L. Caspase cleavage of vimentin disrupts
intermediate filaments and promotes apoptosis. Cell Death Differ. 2001, 8, 443–450. [CrossRef] [PubMed]

238. Olson, E.N.; Capetanaki, Y.G. Developmental regulation of intermediate filament and actin mRNAs during
myogenesis is disrupted by oncogenic ras genes. Oncogene 1989, 4, 907–913. [PubMed]

239. Capetanaki, Y.; Smith, S.; Heath, J.P. Overexpression of the vimentin gene in transgenic mice inhibits normal
lens cell differentiation. J. Cell Biol. 1989, 109, 1653–1664. [CrossRef] [PubMed]

240. Mou, L.; Xu, J.-Y.; Li, W.; Lei, X.; Wu, Y.; Xu, G.; Kong, X.; Xu, G.-T. Identification of vimentin as a novel
target of HSF4 in lens development and cataract by proteomic analysis. Investig. Ophthalmol. Vis. Sci. 2010,
51, 396–404. [CrossRef] [PubMed]

241. Hol, E.M.; Capetanaki, Y. Type III Intermediate Filaments Desmin, Glial Fibrillary Acidic Protein (GFAP),
Vimentin, and Peripherin. Cold Spring Harb. Perspect. Biol. 2017, 9, a021642. [CrossRef] [PubMed]

242. Chen, M.; Puschmann, T.B.; Marasek, P.; Inagaki, M.; Pekna, M.; Wilhelmsson, U.; Pekny, M. Increased
Neuronal Differentiation of Neural Progenitor Cells Derived from Phosphovimentin-Deficient Mice.
Mol. Neurobiol. 2018, 55, 5478–5489. [CrossRef] [PubMed]

243. Vuoriluoto, K.; Haugen, H.; Kiviluoto, S.; Mpindi, J.-P.; Nevo, J.; Gjerdrum, C.; Tiron, C.; Lorens, J.B.; Ivaska, J.
Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression
in breast cancer. Oncogene 2011, 30, 1436–1448. [CrossRef] [PubMed]

244. Lian, N.; Wang, W.; Li, L.; Elefteriou, F.; Yang, X. Vimentin Inhibits ATF4-mediated OsteocalcinTranscription
and Osteoblast Differentiation. J. Biol. Chem. 2009, 284, 30518–30525. [CrossRef] [PubMed]

245. Ferreira, L.R.; Moussatché, N.; Moura Neto, V. Rearrangement of intermediate filament network of
BHK-21 cells infected with vaccinia virus. Arch. Virol. 1994, 138, 273–285. [CrossRef] [PubMed]

246. Leader, M.; Collins, M.; Patel, J.; Henry, K. Vimentin: An evaluation of its role as a tumour marker.
Histopathology 2007, 11, 63–72. [CrossRef]

247. Virtakoivu, R.; Mai, A.; Mattila, E.; De Franceschi, N.; Imanishi, S.Y.; Corthals, G.; Kaukonen, R.; Saari, M.;
Cheng, F.; Torvaldson, E.; et al. Vimentin-ERK Signaling Uncouples Slug Gene Regulatory Function.
Cancer Res. 2015, 75, 2349–2362. [CrossRef] [PubMed]

248. Upton, M.P.; Hirohashi, S.; Tome, Y.; Miyazawa, N.; Suemasu, K.; Shimosato, Y. Expression of vimentin in
surgically resected adenocarcinomas and large cell carcinomas of lung. Am. J. Surg. Pathol. 1986, 10, 560–567.
[CrossRef] [PubMed]

249. Dauphin, M.; Barbe, C.; Lemaire, S.; Nawrocki-Raby, B.; Lagonotte, E.; Delepine, G.; Birembaut, P.; Gilles, C.;
Polette, M. Vimentin expression predicts the occurrence of metastases in non small cell lung carcinomas.
Lung Cancer 2013, 81, 117–122. [CrossRef] [PubMed]

250. Al-Saad, S.; Al-Shibli, K.; Donnem, T.; Persson, M.; Bremnes, R.M.; Busund, L.-T. The prognostic impact
of NF-kappaB p105, vimentin, E-cadherin and Par6 expression in epithelial and stromal compartment in
non-small-cell lung cancer. Br. J. Cancer 2008, 99, 1476–1483. [CrossRef] [PubMed]

251. Richardson, F.; Young, G.D.; Sennello, R.; Wolf, J.; Argast, G.M.; Mercado, P.; Davies, A.; Epstein, D.M.;
Wacker, B. The evaluation of E-Cadherin and vimentin as biomarkers of clinical outcomes among patients
with non-small cell lung cancer treated with erlotinib as second- or third-line therapy. Anticancer Res. 2012,
32, 537–552. [PubMed]

252. Rho, J.-H.; Roehrl, M.H.A.; Wang, J.Y. Glycoproteomic Analysis of Human Lung Adenocarcinomas Using
Glycoarrays and Tandem Mass Spectrometry: Differential Expression and Glycosylation Patterns of Vimentin
and Fetuin A Isoforms. Protein J. 2009, 28, 148–160. [CrossRef] [PubMed]

253. Richardson, A.M.; Havel, L.S.; Koyen, A.E.; Konen, J.M.; Shupe, J.; Wiles, W.G.; Martin, W.D.;
Grossniklaus, H.E.; Sica, G.; Gilbert-Ross, M.; et al. Vimentin Is Required for Lung Adenocarcinoma
Metastasis via Heterotypic Tumor Cell-Cancer-Associated Fibroblast Interactions during Collective Invasion.
Clin. Cancer Res. 2018, 24, 420–432. [CrossRef] [PubMed]

254. Alkasalias, T.; Alexeyenko, A.; Hennig, K.; Danielsson, F.; Lebbink, R.J.; Fielden, M.; Turunen, S.P.; Lehti, K.;
Kashuba, V.; Madapura, H.S.; et al. RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and
promote tumor growth in vivo. Proc. Natl. Acad. Sci. USA 2017, 114, E1413–E1421. [CrossRef] [PubMed]

http://dx.doi.org/10.1128/MCB.7.11.3908
http://www.ncbi.nlm.nih.gov/pubmed/3431546
http://dx.doi.org/10.1038/sj.cdd.4400840
http://www.ncbi.nlm.nih.gov/pubmed/11423904
http://www.ncbi.nlm.nih.gov/pubmed/2666910
http://dx.doi.org/10.1083/jcb.109.4.1653
http://www.ncbi.nlm.nih.gov/pubmed/2793935
http://dx.doi.org/10.1167/iovs.09-3772
http://www.ncbi.nlm.nih.gov/pubmed/19628735
http://dx.doi.org/10.1101/cshperspect.a021642
http://www.ncbi.nlm.nih.gov/pubmed/29196434
http://dx.doi.org/10.1007/s12035-017-0759-0
http://www.ncbi.nlm.nih.gov/pubmed/28956310
http://dx.doi.org/10.1038/onc.2010.509
http://www.ncbi.nlm.nih.gov/pubmed/21057535
http://dx.doi.org/10.1074/jbc.M109.052373
http://www.ncbi.nlm.nih.gov/pubmed/19726676
http://dx.doi.org/10.1007/BF01379131
http://www.ncbi.nlm.nih.gov/pubmed/7998834
http://dx.doi.org/10.1111/j.1365-2559.1987.tb02609.x
http://dx.doi.org/10.1158/0008-5472.CAN-14-2842
http://www.ncbi.nlm.nih.gov/pubmed/25855378
http://dx.doi.org/10.1097/00000478-198608000-00006
http://www.ncbi.nlm.nih.gov/pubmed/2426981
http://dx.doi.org/10.1016/j.lungcan.2013.03.011
http://www.ncbi.nlm.nih.gov/pubmed/23562674
http://dx.doi.org/10.1038/sj.bjc.6604713
http://www.ncbi.nlm.nih.gov/pubmed/18854838
http://www.ncbi.nlm.nih.gov/pubmed/22287743
http://dx.doi.org/10.1007/s10930-009-9177-0
http://www.ncbi.nlm.nih.gov/pubmed/19412661
http://dx.doi.org/10.1158/1078-0432.CCR-17-1776
http://www.ncbi.nlm.nih.gov/pubmed/29208669
http://dx.doi.org/10.1073/pnas.1621161114
http://www.ncbi.nlm.nih.gov/pubmed/28174275


Cells 2018, 7, 147 35 of 38

255. Gilles, C.; Polette, M.; Mestdagt, M.; Nawrocki-Raby, B.; Ruggeri, P.; Birembaut, P.; Foidart, J.-M.
Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res. 2003, 63, 2658–2664.
[PubMed]

256. Kokkinos, M.I.; Wafai, R.; Wong, M.K.; Newgreen, D.F.; Thompson, E.W.; Waltham, M. Vimentin and
epithelial-mesenchymal transition in human breast cancer–observations in vitro and in vivo. Cells Tissues
Organs 2007, 185, 191–203. [CrossRef] [PubMed]

257. Korsching, E.; Packeisen, J.; Liedtke, C.; Hungermann, D.; Wülfing, P.; van Diest, P.J.; Brandt, B.; Boecker, W.;
Buerger, H. The origin of vimentin expression in invasive breast cancer: Epithelial-mesenchymal transition,
myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential?
J. Pathol. 2005, 206, 451–457. [CrossRef] [PubMed]

258. Mikesh, L.M.; Kumar, M.; Erdag, G.; Hogan, K.T.; Molhoek, K.R.; Mayo, M.W.; Slingluff, C.L. Evaluation of
molecular markers of mesenchymal phenotype in melanoma. Melanoma Res. 2010, 20, 485–495. [CrossRef]
[PubMed]

259. Chu, Y.W.; Seftor, E.A.; Romer, L.H.; Hendrix, M.J. Experimental coexpression of vimentin and keratin
intermediate filaments in human melanoma cells augments motility. Am. J. Pathol. 1996, 148, 63–69.
[PubMed]

260. Hendrix, M.J.; Seftor, E.A.; Chu, Y.W.; Seftor, R.E.; Nagle, R.B.; McDaniel, K.M.; Leong, S.P.; Yohem, K.H.;
Leibovitz, A.M.; Meyskens, F.L. Coexpression of vimentin and keratins by human melanoma tumor cells:
Correlation with invasive and metastatic potential. J. Natl. Cancer Inst. 1992, 84, 165–174. [CrossRef]
[PubMed]

261. Li, M.; Zhang, B.; Sun, B.; Wang, X.; Ban, X.; Sun, T.; Liu, Z.; Zhao, X. A novel function for vimentin:
The potential biomarker for predicting melanoma hematogenous metastasis. J. Exp. Clin. Cancer Res. CR
2010, 29, 109. [CrossRef] [PubMed]

262. Webber, M. Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its
loss by malignant cells. Carcinogenesis 1997, 18, 1225–1231. [CrossRef] [PubMed]

263. Bello-DeOcampo, D.; Kleinman, H.K.; Webber, M.M. The role of α6β1 integrin and EGF in normal and
malignant acinar morphogenesis of human prostatic epithelial cells. Mutat. Res./Fundam. Mol. Mech.
Mutagen. 2001, 480–481, 209–217. [CrossRef]

264. Zhang, X.; Fournier, M.V.; Ware, J.L.; Bissell, M.J.; Yacoub, A.; Zehner, Z.E. Inhibition of vimentin or
beta1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels
and reduces tumor growth in vivo. Mol. Cancer Ther. 2009, 8, 499–508. [CrossRef] [PubMed]

265. Ivaska, J.; Vuoriluoto, K.; Huovinen, T.; Izawa, I.; Inagaki, M.; Parker, P.J. PKCepsilon-mediated
phosphorylation of vimentin controls integrin recycling and motility. EMBO J. 2005, 24, 3834–3845. [CrossRef]
[PubMed]

266. Hafeez, B.B.; Zhong, W.; Weichert, J.; Dreckschmidt, N.E.; Jamal, M.S.; Verma, A.K. Genetic ablation of
PKC epsilon inhibits prostate cancer development and metastasis in transgenic mouse model of prostate
adenocarcinoma. Cancer Res. 2011, 71, 2318–2327. [CrossRef] [PubMed]

267. Brzozowa, M.; Wyrobiec, G.; Kołodziej, I.; Sitarski, M.; Matysiak, N.; Reichman-Warmusz, E.; Żaba, M.;
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