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Abstract: The short noncoding RNAs, known as microRNAs, are of undisputed 

importance in cellular signaling during differentiation and development, and during 

adaptive and maladaptive responses of adult tissues, including those that comprise the 

heart. Cardiac microRNAs are regulated by hemodynamic overload resulting from exercise 

or hypertension, in the response of surviving myocardium to myocardial infarction, and in 

response to environmental or systemic disruptions to homeostasis, such as those arising 

from diabetes. A large body of work has explored microRNA responses in both 

physiological and pathological contexts but there is still much to learn about their 

integrated actions on individual mRNAs and signaling pathways. This review will 

highlight key studies of microRNA regulation in cardiac stress and suggest possible 

approaches for more precise identification of microRNA targets, with a view to exploiting 

the resulting data for therapeutic purposes. 
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1. Introduction 

Cells need to respond to changes in their external environment to ensure continued optimum 

function and survival. This occurs not only through the actions of the proteins they initially 

manufacture in accordance with their tissue role, but by the capacity to alter their internal 

programming to turn the expression of groups of proteins on and off. Francis Crick’s “central dogma” 
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of DNA-to-messenger RNA (mRNA)-to-protein focused attention on the activation or repression of 

mRNA transcriptional programs, which take place via mechanisms including altered promoter DNA 

methylation, histone-regulated DNA availability and transcription factor shuttling between the 

cytoplasm and nucleus. However, a large proportion of mammalian DNA is transcribed into noncoding 

RNA (which does not serve as mRNA). While noncoding RNAs can take many forms, investigations 

into the role of endogenous small, noncoding RNAs of approximately 22 nt in length (known as 

microRNAs) in suppressing the translation of mRNAs were sparked by Fire and Mello’s Nobel  

Prize-winning work on RNA interference by injected dsRNAs in C. elegans [1]. Like their mRNA 

cousins, the production of microRNAs is responsive to cues from the external environment and other 

cellular signals; microRNAs arise from introns spliced out of pre-mRNAs or via RNA polymerase  

II-driven transcription from their own promoters. Hairpin or ‘stem-loop’ pre-microRNAs are exported 

from the nucleus and then further processed into a duplex encoding two microRNA strands with 

different but partly complementary sequences. In most instances one strand (the guide) is primarily 

incorporated into RNA-induced silencing complexes (RISCs) while the other (passenger strand) is 

degraded, but in some cases, both the -5p and -3p strands of the duplex can be retained and inserted 

into RISCs, in a manner dependent on the thermodynamic stability of strand 5′ ends [2,3]. Thus, 

cellular reprogramming of protein translation involves not only alteration in coding mRNA levels, but 

also alterations in levels of noncoding microRNAs that serve to restrain expression of mRNAs. The 

study of microRNAs in cellular differentiation and organismal development, in stress-dependent 

signaling, and in diseases ranging from cancer to diabetes has delineated a constellation of individual 

microRNAs and target mRNAs involved in key cellular processes. 

One reason that microRNAs have received much attention is the apparent capacity of individual 

microRNAs to regulate numerous downstream targets in related signaling pathways, and another is 

their relative ease of manipulation in vivo with reagents that can be considered as prodrugs. Traditional 

genetic overexpression or knockout studies of even single microRNAs have shown profound effects on 

cardiac gene expression, leading to amelioration or exacerbation of stress-induced cardiac phenotypes, 

and in some cases, disrupting mRNA translation in the heart sufficiently to cause spontaneous  

disease [4–9]. Several excellent, comprehensive reviews have been published recently that highlight 

roles for particular microRNAs in adaptive and maladaptive responses to demands for increased 

cardiac workload [10–12], in the response to myocardial infarction [13,14] and in the progression to 

heart failure [15–17], and it is not the primary intent of this article to re-tread the same ground. Rather, 

I would like to re-focus attention on several principles and practices that may guide interpretation of 

published studies and the planning of future investigations, but that are not always considered when 

integrating detailed mechanistic studies of specific microRNAs and their targets into a wider 

framework. The ability of microRNAs to engender large-scale changes in cellular behavior is the basis 

of both their potential and their peril, and suggests that a detailed understanding of which mRNAs they 

target, and how this may vary with context, is needed to fully understand the biology of these 

noncoding RNAs and thus to enable developing microRNA-based therapeutic strategies to be properly 

deployed. The experimental and analytic approaches outlined below may be valuable not just in 

studies and possible therapeutic uses of microRNAs in the heart, but also in a wide variety of 

microRNA-based investigations. 
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2. A ‘Systems’ Approach is Key to Understanding MicroRNA Signaling 

An integrative or ‘systems’ approach is needed to understand the function of any gene or gene 

product in its appropriate cell or tissue context, and in the appropriate milieu of simultaneously 

occurring transcriptional and translational processes. Integrative approaches take into account the 

influence of individual biomolecules on related signaling processes, and current methods model 

biological pathways as so-called ‘scale-free’ networks, in which central ‘hub’ genes form vital links 

amongst relatively sparsely-connected entities [18,19]. In the case of microRNAs, the need for an 

integrative approach is made particularly acute by the predicted ability of microRNAs to influence a 

large number of downstream targets. As one example, studies from the Loscalzo and Chan laboratories 

using both informatic and experimental approaches have designated miR-21 as a critical ‘hub’ in 

multiple distinct processes leading to pulmonary hypertension [20]. However, there has been 

considerable difficulty in accurately and comprehensively defining mRNA targets of microRNAs in 

vivo (not only in the heart but in general). The relatively small degree of repression often observed for 

individual microRNAs on individual putative mRNA targets (consistent with a model of microRNA 

action that involves multiple co-operative effects on a large number of targets, rather than large effects 

on a few ‘dominant targets’, as suggested by findings from the ENCODE project [21] and others [22]) 

adds a further level of difficulty to the task. Other limiting factors likely relate to the fact that multiple, 

rather than single, microRNAs are regulated in response to stress with potentially co-operative or 

antagonistic actions, and that experimental validation of predicted microRNA targets is necessarily 

performed in cellular models that may not fully recapitulate the microRNA and mRNA environment of 

an intact heart responding to a stimulus. In addition, while even straightforward cataloging of 

microRNA targets to construct putative signaling networks needs to be completed, understanding 

which regulatory relationships between microRNAs and mRNAs may have the most powerful effects 

on the resulting phenotype will be critical to form useful, predictive models. 

Thus, despite considerable progress in defining suppressive actions of microRNAs on particular 

mRNAs, there remain two major obstacles that must be overcome, regardless of tissue or disease 

context. The first is that of establishing which mRNAs a particular microRNA targets. Mammalian 

genomes encode ~1,000 microRNAs in comparison to ~20,000 mRNAs [23], and it is no small 

challenge to predict a priori which mRNAs may be subject to microRNA action. Amongst many 

variables, the mammalian requirement for only partial sequence complementarity, and the differing 

accessibility of potential microRNA binding sites arising from the influence of mRNA secondary 

structures, are two of the most important that complicate prediction of likely microRNA-mRNA 

interactions. Almost any review or experimental article on microRNA biology will bemoan the long 

list of probable false positives and false negatives arising from even the most fastidious computational 

procedures, although it is worth noting that establishing lists of true positives and true negatives from 

current empirical data is almost as problematic. However, novel combined RNA cross-linking and 

informatic approaches established in recent years [24–29] are beginning to close the knowledge gap of 

which microRNA-mRNA interactions are biophysically possible. The second obstacle relates to the 

oft-repeated principle, based largely on sequence comparison but also indicated from RNA  

cross-linking studies, that an individual microRNA might regulate hundreds of mRNAs and that an 

individual mRNA may have many microRNA binding partners. Given this complexity, which 
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microRNA alterations in response to stressors will meaningfully affect mRNA translation and which 

microRNA actions in a given state are dominant amongst the myriad that could occur?  

3. Assessing MicroRNAs Altered in the Stressed Heart 

3.1. Which Altered MicroRNAs may be of the Most Biological Significance? 

Having assayed microRNA expression in response to a physiological or pathological stimulus, an 

immediate question is which microRNA alterations underlie at least part of the observed phenotype. 

As an example, in the early response to cardiac pressure overload, a large number of microRNAs are 

regulated, spanning a wide range of abundances (Figure 1). One approach could be to choose a 

microRNA based on any or all of its degree of regulation, its abundance, and its possible targets, 

followed by replication of its regulation in a cell model or genetically engineered animal, and assess 

whether this is sufficient to provoke a spontaneous phenotype, e.g., [6,7,30–33]. In a genetically 

engineered animal, the same stimulus could be applied with exacerbated or reversed regulation of the 

microRNA of interest and the effect on phenotype studied. In the absence of a suitable genetic model, 

viral microRNA overexpression or anti-microRNA administration may be possible. 

Figure 1. (a) 300 microRNAs expressed in mouse hearts, plotted according to abundance 

(log10 of Reads per Million microRNA reads, RpM), in descending order (light gray bars). 

Red bars denote microRNAs upregulated by at least 25%, false discovery rate (FDR) < 0.02, 

after 1 week pressure overload, as previously described [34]; blue bars denote microRNAs 

downregulated under the same conditions. (b) MicroRNAs stably expressed (not regulated) 

after 1 week pressure overload (i.e., the light gray bars from (a)). For both (a) and (b), data 

are redrawn from [34] and NCBI GEO accession GSE56891. The most abundant 100 

microRNAs represent 99% of the total cardiac microRNA content [35]. 

 

Of course, there are many limitations inherent in an approach of altering just one signaling 

molecule and measuring only a broad phenotypic readout, in an attempt to find the one or the few most 

important to a given response. Chief among these is the assumption that changes in phenotype are the 

result of independent signals and that synergistic actions of several co-regulated entities are minor 

contributors. No less important is the demand on resources needed to evaluate enhancement or 

inhibition of ~60 different microRNAs in vivo (in the example of early pressure overload shown in 
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Figure 1). In this respect the study of microRNAs is no different to the study of any other biomolecule. 

We could employ brute-force, one-at-a-time overexpression and knockdown strategies to try to find a 

single approach that best ameliorates a disease, but we could also develop an understanding of how 

each component works together with others to influence biological responses. In the case of 

microRNAs, it may not necessarily be the case that the most abundant or the most strongly regulated 

microRNA(s) are the most important microRNA contributors to pathological responses to cardiac 

stress; it depends which mRNAs they suppress and to what extent. While relatively uncommon, mature 

microRNAs do exhibit genomic sequence variation with downstream signaling consequences, as 

typified for miR-96 [36] and miR-499 [37]. An additional source of variation arises from 5′-isomers 

(isomiRs) that cause a frameshift in the ‘seed’ sequence of a given microRNA. In the case of the 

archetypal cardiac microRNA miR-133a, two 5′-isomiRs are present in almost equal proportions and 

the mRNAs targeted by each of these isomiRs may differ [38]. Taken together, these variables beg the 

question of how best to determine which mRNAs are targeted by regulated microRNAs. 

3.2. Challenges Faced by MicroRNA Target Prediction Algorithms 

As noted in Section 2, identifying which mRNAs are subject to microRNA action in vivo is a 

challenge. No matter the computational approach taken, predicting such interactions in the absence of 

experimental data, especially quantitative data that can define whether individual microRNAs or 

mRNAs are indeed present in the cell or tissue of interest, forces any algorithm between a rock and a 

hard place. Without the ability to narrow the search space to the few hundred microRNAs and ~10,000 

mRNAs reliably detected in the heart, and to rank the degree to which predicted interactions are likely 

to occur on the basis of stoichiometry, a large trade-off needs to be made between prediction 

sensitivity and specificity. Algorithms for microRNA target prediction employ to varying degrees 

parameters such as cross-species conservation of putative binding sites (since sequence conservation 

implies a relationship to function), free energy calculations for microRNA-mRNA hybrids, local GC 

content, and the degree to which hybridization of microRNA nucleotide 2–7 ‘seed’ sequence occurs. 

Some examples amongst many web-accessible, user-friendly engines are TargetScan [39,40], Pictar [41], 

and miRDB [42,43]. However, as new experimental data are reported, such as the binding of 

microRNAs to noncanonical target sites [44], the observation that microRNAs often appear to bind 

outside the originally-defined 3′ UTR of mRNAs [45], and the influence of microRNA sequence in 

regions downstream of the ‘seed’ [37,40,46] there appears to be a constant need to update the ‘rules’ 

under which these predictors operate. A lateral approach to overcoming prediction difficulties assumes 

that microRNAs target mRNAs in biologically-related signaling pathways, and assesses whether 

predefined functional gene sets are enriched in binding sites for a given microRNA (mirBridge; [47]). 

Nonetheless, such enrichment procedures do themselves depend on the veracity of the direct 

microRNA-mRNA interactions used as input. 

Until recently, statements from various sources suggesting that a large number of direct  

microRNA-mRNA interactions involving the same microRNA could take place within cells seemed to 

be at odds with the numbers that had been experimentally validated. The advent of CLIP (cross-linking 

and immunoprecipitation) techniques (discussed further in Section 3.3.1) has revealed a wide variety 

and large number of possible microRNA-mRNA interactions, and integration of these data sets with 
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other sequence- and structure-based prediction engines [27] has permitted a dialog between 

computational prediction and experimental observation to begin [28,29]. Nonetheless, we are still 

some distance from integrating parameters derived from whole transcriptome-based prediction 

algorithms together with empirical data from hearts, not to mention other tissues, beyond model cell 

systems. As a consequence, the most appropriate methods for identifying microRNA-dependent, 

differentially regulated mRNAs in the context of cardiac stress would still appear to be those that are 

primarily grounded in experimental measurements of microRNA and mRNA abundance and 

interactions, with informatic procedures serving to assist rather than to drive the analysis. 

3.3. Quantifying MicroRNA-Dependent Regulation of mRNAs 

There are at least four steps of the microRNA-mRNA regulatory process that need to be assayed in 

order to determine which mRNAs are regulated by individual microRNAs, and to what degree; these 

are described schematically in Figure 2. Assessment of overall microRNA and mRNA expression in 

steps 1 and 3 is relatively straightforward and may be accomplished by either microarray or  

RNA-sequencing techniques. While microarrays represent a more mature technology platform for 

which most of the problematic data analysis issues have likely been worked out, it is difficult to 

dispute that RNA-sequencing offers a more quantitative platform for defining abundances of RNAs 

(enabling stoichiometric calculations to be attempted), enables easier detection of spurious signals (via 

knowledge of the exact sequence of RNA fragments) and has a theoretically limitless dynamic range [48]. 

Importantly, overall microRNA expression level (assessed by whole-cell assays) correlates well with 

microRNA abundance in the RISC [34]. Steps 2 and 4 represent key junctures for the evaluation of 

microRNA-dependent mRNA regulation; data from these assays reveal whether the binding of a 

particular mRNA is increased in the RISC, indicating greater targeting by microRNAs (step 2), while 

quantitation of ribosomal mRNA binding reflects the degree to which translation has been altered (as 

an alternative to quantitative proteomic methods). Numerous variations are possible in these assay 

steps, and merit separate discussion below in Sections 3.3.1. – 3.3.3. 

Figure 2. Quantitative and comprehensive ‘next-generation’ sequencing determinations 

used to measure mature microRNAs (step 1), to measure RISC-bound mRNA at step 2, to 

measure global RNA at step 3 and to measure ribosome-translated mRNA at step 4. 
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3.3.1. Assays for mRNA Presence in, and Targeting by, the RISC 

mRNAs undergoing suppression in the RISC can be captured via immunoprecipitation of the 

microRNA-binding Ago protein, either with isoform-specific antibodies or pan-Ago antibodies, or 

alternatively via pulldown of the Ago binding partner and RISC scaffold GW182 [49–51]. Most 

mammalian studies to date have used immunoprecipitation of endogenous Ago2, e.g., [7,34,52–57]; 

some in vitro studies have employed an epitope-tagged Ago2 in cultured cells to facilitate retrieval of 

RISC-bound mRNA [51,58,59]. As pointed out by Karginov et al. [58] an important consideration 

when performing measurements of differential mRNA-binding in the RISC is to determine, in parallel, 

whether the initiating stimulus altered global levels of the same mRNA in the same direction, i.e., 

through alterations in primary transcription, and whether the changes in the RISC simply reflect a 

greater abundance of the same mRNAs in the cell. Our laboratory does not classify such mRNA 

alterations as primarily microRNA-dependent (Figure 3). Assays of this kind are able to define 

whether or not the microRNA alterations arising as part of a stress response have caused sufficient 

reprogramming of the RISC to change the degree to which an individual mRNA is associated with the 

RISC, which on its own often comprises valuable data [34]. However, they do not offer empirical data 

on direct, individual microRNA-mRNA interactions and interaction data from hearts overexpressing or 

without microRNAs of interest are not a full substitute [7,37,55]. To this end, a number of crosslinking 

approaches have been developed. 

Figure 3. Regulatory parameters used to define microRNA-dependent mRNAs. Since 

suppression of mRNA translation without detectable decreases in global mRNA content 

has been widely reported in mammalian cells [45,60,61], it is worth considering as 

microRNA-dependent mRNAs those mRNAs whose abundance changes in the RISC in 

response to a given stimulus without exhibiting changes of global mRNA abundance (rows 

2 and 4). mRNAs that do not exhibit alterations consistent with any one of these four rows 

are not considered to be microRNA-dependent under the paradigm outlined in this article.  

 

The first of these, HITS-CLIP (high throughput sequencing with crosslinking and 

immunoprecipitation), employs UV irradiation to generate covalent crosslinks between protein and a 

directly bound RNA species [52]. Subsequent Ago purification and size-selection enables 

Ago:microRNA and Ago:microRNA:mRNA complexes to be distinguished, and the RNA fragments 

protected by Ago binding are isolated and quantitated. The data obtained reveal microRNAs and 

mRNAs present in the RISC, but pinpointing exact microRNA interaction sites on mRNAs, thus 
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revealing the identities of microRNAs that regulate individual mRNAs, was not initially described as 

possible (although see below for recent refinements to the technique). Reconstitution of likely binding 

maps relied upon fitting the most likely microRNA (obtained from hybridization rules defined a 

priori) to a given Ago-protected mRNA fragment. Notably, HITS-CLIP can be performed both from 

cultured cells and from intact tissue such as brain slices [52], although no such studies have yet been 

reported from intact hearts. An extension of HITS-CLIP known as CLASH (crosslinking, ligation and 

sequencing of hybrids) exploits the fact that microRNAs and mRNAs present on the same Ago 

molecule are able to be ligated together, following crosslinking and partial hydrolysis [59]. As a result, 

so-called ‘chimeric’ reads are obtained via RNA-sequencing, in which the 5′ segment corresponds to 

the microRNA of interest and the 3′ segment of the same read corresponds to its mRNA binding site. 

While CLASH was initially described in HEK293 cells overexpressing epitope-tagged Ago, the 

presence of chimeric reads corresponding to microRNA-mRNA ligation has been reported from 

human pancreatic islet cells subjected to Ago2 HITS-CLIP [62], suggesting that this approach will also 

be useful in vivo. 

Another technique, PAR-CLIP, takes advantage of a specific ‘lesion’ created by the UV 

crosslinking of nucleic acid analogues such as 4-thiouridine (4SU) to protein when RNA subsequently 

undergoes reverse transcription. Prior cell labeling and incorporation of 4SU into RNA leads to T-to-C 

transitions in resulting cDNA, meaning that the precise site of mRNA interaction with Ago2 can be 

revealed via identifying mRNA fragments containing specific T-to-C ‘mismatches’ [51]. Refinements 

to the original method have been published to increase specificity [25] and other groups have enhanced 

the bioinformatic procedures necessary to distinguish specific 4SU-induced ‘lesions’ from other 

sequencing errors or polymorphisms [26]. Like noncrosslinking RISC immunoprecipitation and the 

originally-described HITS-CLIP method, PAR-CLIP is unable to distinguish exact sites of microRNA 

interaction and the identities of interacting microRNAs, but the search space for interacting 

microRNAs is limited to the nucleotides immediately surrounding the T-to-C ‘lesion’. Interestingly, 

improved HITS-CLIP data analysis methods have observed an increased frequency of reverse 

transcriptase errors at the nucleotides involved in crosslinking to RNA-binding proteins (CIMS, or 

cross-link-induced mutation sites) [24]. While these errors are not as prevalent as in e.g., RNA labeled 

to equilibrium with 4SU and their variety adds additional challenges when analyzing RNA-sequencing 

data, their occurrence suggests that proper analysis of HITS-CLIP data may offer some of the benefits 

of PAR-CLIP methods without the need to prelabel cells of interest (which is an obvious barrier to 

application of PAR-CLIP in intact tissue). Furthermore, recent studies have identified nucleolar stress 

and rRNA depletion induced by 4SU labeling, which may represent a confounder in the interpretation 

of PAR-CLIP experiments [63]. 

Data obtained on individual microRNA-mRNA interactions from cardiomyocyte-like cell lines may 

not correspond well to the interactions taking place within cardiomyocytes of the intact heart, even less 

within cardiomyocytes of the stressed heart (see Section 5). This places a limit on the applicability of 

data derived from CLIP techniques in cultured cells. An ingenious possible solution to this issue 

involves addition of anti-miRs against a microRNA of interest to lysates generated for ‘standard’, 

noncrosslinking RISC immunoprecipitation procedures; the anti-miR competes with bound mRNAs 

for access to Ago2 and mRNA levels in the immunoprecipitate can be measured with and without  
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anti-miR present [64]. While this has been validated only for liver lysates and miR-122 at present [64], 

it is likely that a similar approach can be applied to a wide variety of tissues. 

There is a clear need to determine the overlap in microRNA-mRNA regulatory information gained 

from these techniques, in a cell or tissue system at baseline, and when that same cell or tissue system is 

subjected to an identical stimulus (and thus the same reprogramming of the RISC) prior to analysis by 

multiple techniques. HITS-CLIP, PAR-CLIP and CLASH provide largely overlapping data sets in 

HEK293 cells cultured under basal conditions [59,65] but whether they exhibit the same overlap in 

regulatory data when performing stimulus vs. control analyses is not known. The correspondence of 

differential RISC mRNA abundance and microRNA-binding data obtained from CLIP techniques with 

the RISC mRNA abundance data (and inferential microRNA-mRNA binding data) obtained from 

noncrosslinking approaches has also not been established. The establishment of a CLIP method in the 

intact heart and its comparison to existing RISC immunoprecipitation data sets would be highly 

valuable for directing the best approach to use in future experiments aimed at deciphering direct 

microRNA-mRNA interactions in the heart and their changes in response to stimuli. 

3.3.2. Pinning the MicroRNA to the Target—Approaches in the Absence of CLIP Experiments 

Two previous studies from our laboratory have predicted changes in individual cardiac  

microRNA-mRNA interactions, using as input differentially expressed microRNAs and mRNAs [35] 

or differentially expressed microRNAs and microRNA-dependent mRNAs, defined as shown in Figure 3 

using noncrosslinking RISC immunoprecipitation and requiring the more stringent criteria of opposing 

regulation in RISC and global mRNA [34]. The relatively small number of altered microRNAs and 

altered mRNAs defined in these studies facilitated the use of a simplistic, sequence-based comparison, 

which if applied to the entire known microRNA and mRNA transcriptomes would result in extremely 

poor specificity but had the advantage, in this context, of offering high sensitivity by only limited 

enforcement of the RNA interaction ‘rules’ used by other algorithms [39–41,43]. While helpful in 

obtaining putative microRNA-mRNA pairs for further validation, this approach did not attempt to take 

into account the importance of mRNA secondary structure in the vicinity of microRNA-binding sites 

(modeled by e.g., Mfold [66] or Sfold [67]), the free energy of sterically unrestricted binding, 

calculated by e.g., the RNAhybrid tool [68], the possible requirement for ordered secondary structure 

in the 5′UTR (not the 3′UTR) of microRNA-targeted mRNAs [69] and steric constraints on microRNA 

conformation imposed by the Ago binding pocket [27]. A number of these structural considerations 

have been allied to HITS-CLIP and PAR-CLIP data sets by the Sfold-STarMir web server, which has 

recently become publicly available [29]. This suite of procedures integrates linear sequence 

considerations, RNA secondary structure estimations and empirical data to make its binding 

predictions. With the inclusion of a machine learning approach, STarMir is capable of inferring 

microRNA-mRNA binding likelihood even for RNAs that are not represented in the underlying CLIP 

training data sets [28]. The continued development of this and other tools should be highly valuable in 

the interpretation of microRNA and mRNA changes in experimental situations where CLIP techniques 

prove difficult to establish. 

In our workflow, RISC and ribosome profiling (see Section 3.3.3.) experimental data always serve 

as the primary criteria for classifying mRNAs as regulated by microRNAs in vivo; the informatic 
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procedures only assist in attributing the regulation of particular mRNAs to the action of particular 

microRNAs. A key advantage of next-generation sequencing procedures is their ability to accurately 

quantitate RNA abundances, and thus to allow consideration of microRNA and mRNA stoichiometry 

when deciding which among several potential microRNA binding partners may be the most important 

contributors to downregulating a particular mRNA. There are two further, important considerations for 

appropriate data interpretation, which are applicable to both crosslinked and non-crosslinked 

immunoprecipitation methods: (1) assays using material from whole hearts naturally include RNA 

from cardiomyocytes and non-cardiomyocytes. While some RNAs are highly enriched in one cell 

fraction vs the other, many are more evenly distributed, and assessing whether these are altered in one 

or both fractions will require cell separation prior to RNA isolation. Preliminary determinations of 

RNA abundances in each cell fraction, prior to experiments examining effects of cardiac stress, should 

be valuable; (2) while RNA-sequencing procedures are highly quantitative in comparison to array 

methods or RT-qPCR, when evaluating RISC RNA assays it is only really possible to quantitate any 

RISC RNA vs. any other RISC RNA. Without determining what proportion of total cellular RNAs are 

bound to Ago proteins and captured by RISC immunoprecipitation, the measured abundances of RNAs 

in the RISC cannot be directly related to the amount of cellular mRNA that is undergoing  

RISC-mediated suppression. Nonetheless, alterations in RISC mRNA abundance should be indicative 

of changes at the whole-cell level. 

3.3.3. Assays for Altered Translation of mRNAs 

In a similar manner to the direct and indirect data on microRNA-mRNA interactions captured by 

RISC RNA assessment vs measurement of global mRNA, the ultimate effects on mRNA translation 

can be captured by a direct method (mRNA ribosome profiling) or less direct methods (proteomic or 

single-protein evaluations). Neither approach gives information on the responsible microRNAs; this is 

the task of the previously mentioned assays (Figure 2, steps 1–3); but they serve to demonstrate that 

the previously acquired data can be directly related to altered translational output, rather than being 

used merely to infer the outcome. Ribosome profiling methods employ cell lysis in the presence of 

cycloheximide (to arrest ribosome translation) followed by RNase-mediated ‘trimming’ of RNAs not 

protected by ribosome binding [70], and can be applied to flash-frozen solid tissue [71]. Subsequent 

procedures recover ribosomes on the basis of buoyant density, isolate RNAs, perform reverse 

transcription, deplete rRNA content and prepare remaining cDNAs for high-throughput sequencing [70]. 

While technically demanding, ribosome profiling assays have given unprecedented insight into the 

mechanisms by which microRNAs may inhibit translation [61,69] and should be highly valuable for 

confirming microRNA-dependent suppression for those mRNAs observed to be altered in their RISC 

abundance (Figure 2, step 2), but not necessarily at the global mRNA level (Figure 2, step 3). 

Evaluation of the protein products of mRNAs is the more common approach for validating 

microRNA effects on mRNAs in context. For a limited number of targets of interest, traditional 

immunoblotting is widely used to evaluate protein abundance, e.g., [4,6,34,72]. In large-scale 

investigations of RISC reprogramming, proteomic approaches have been used to interrogate the effects 

of microRNA overexpression and knockdown on thousands of proteins at once, using stable  

isotope-labeled cultured cells to provide high-throughput and highly quantitative data [73,74].  
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Two-dimensional gel electrophoresis has been employed in H9c2 cardiomyocyte-like cells [75] and in 

mouse hearts overexpressing microRNAs [7,37] but the number of recognizable protein species is 

relatively small and quantitation is more difficult [76]. One advantage, however, is that microRNA 

effects on enzyme species such as kinases and phosphatases can be further explored by monitoring 

phosphoprotein profiles [7]. 

4. Assessing microRNAs not Altered in the Stressed Heart 

As shown in Figure 1, while a number of microRNAs are altered during early pressure-overload 

there are even more that do not change, including some of the most abundant species. In fact, there are 

likely to be a number of cardiac microRNAs that appear impervious to most stimuli or stressors. Given 

that mRNAs are expected to be targeted by multiple microRNAs, it is therefore worthwhile to consider 

which mRNAs they are serving to suppress. Especially in the case of abundant microRNAs, these may 

potentially buffer mRNAs against fluctuations in other microRNAs or other signals. 

CLIP techniques (as discussed in Section 3), if established and validated for the adult heart, would 

prove invaluable in such determinations, since they are able to provide highly accurate  

microRNA-mRNA pairing data without the need for a stimulus vs control, differential expression 

experiment. While such techniques are readily applicable to cultured cells, there are significant caveats 

in transferring information gained from cardiomyocyte-like cells (and perhaps even isolated 

cardiomyocytes from an adult heart) to the realm of a functioning, intact heart, as will be discussed in 

Section 5. In the absence of CLIP data, transgenic or knockout microRNA strategies coupled with  

non-crosslinking RISC immunoprecipitation methods and informatic assistance (as described in 

Section 3.3.2.) will comprise another source of quantitative microRNA-mRNA interaction data. The 

presence of mature microRNAs in general is required in the immediate postnatal period, as shown by 

the early lethality of the cardiac-specific Dicer knockout [77], while miR-133a represents an abundant 

species that is critically important to the correct embryonic development and postnatal maturation of 

the heart [5]. However, the aim of experiments designed to elucidate the targets of stably–expressed 

microRNAs in the adult heart would not be to provide insight into developmental and postnatal growth 

signaling pathways, but rather what homeostatic functions these microRNAs continue to serve in the 

adult heart. Knockouts of miRs-208a, -208b and -499 (the ‘myomiR’ family) in the heart have 

demonstrated an interplay between these microRNAs in specifying myosin expression and myofiber 

type [31]; knockout of miR-22, one of the most abundant microRNAs in the heart [35], interferes with 

multiple aspects of cardiac Ca
2+

 control and myofibrillar protein content [8,9]. 

Interestingly, knockout of miR-378, another highly abundant cardiac species, was without obvious 

cardiac phenotype under baseline conditions [78] although miR-378 decreases considerably during 

pressure-overload hypertrophy [79]. It has been noted that microRNA knockout animals may display 

their most significant phenotypes under conditions of imposed stress [80] when a high number of other 

transcriptional and translational alterations are taking place and may require effective buffering by 

microRNAs. It will be of interest to understand which, or all, of the following conditions might be 

true: the mRNAs most importantly regulated by miR-378 could differ under baseline and stress 

(hypertrophic) conditions; the mRNAs de-repressed by downregulation of miR-378 may only exhibit a 

marked biological effect in the context of a hypertrophic stimulus; and significant changes in the 
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regulation of miR-378-targeted mRNAs may only occur when other microRNAs, that co-regulate the 

same mRNAs, are also affected by a hypertrophic stimulus. Administration of exogenous miR-378 

(via adeno-associated viral transduction) ameliorated the degree of hypertrophy and improved cardiac 

function after pressure overload, which represents a highly desirable outcome [79], but based on our 

understanding of the pleiotropic nature of microRNAs it is likely that the mechanism underlying the 

effect involves more than the three MAPK species investigated. A more complete understanding of the 

functions of stably-expressed (and often highly abundant) microRNAs in the heart may suggest 

benefits arising from either unleashing, or further repressing, the mRNAs and pathways that they 

control, in a stressed or diseased state. 

5. Contextual Interpretation of Direct MicroRNA-mRNA Interaction Data 

Consider that the mRNAs under suppression by an individual microRNA will depend on the 

following factors: 

1. mRNA sequence and structural considerations that permit microRNA/RISC-binding. While 

these parameters are likely to be quite stable among different contexts, what might be the 

effects of alternate 3′UTRs, other splice variants, or polymorphisms on microRNA binding 

sites? (A noteworthy example is the human angiotensin II type I receptor polymorphism that 

disrupts binding of miR-155 [81], a microRNA that also has cardiac functions [82].)  

2. Abundances of microRNAs and mRNAs and their possible stoichiometries are likely to differ 

between cell and tissue contexts. 

3. Competition may take place between mRNAs of different abundances but similar binding sites 

for access to the same microRNA. Furthermore, microRNAs have been reported to bind to long 

noncoding RNAs (lncRNAs), e.g., [83], amongst other competing endogenous RNAs (ceRNAs) 

such as circular RNAs [84]; at least one study has cast doubts on the significance of ceRNAs in 

titrating microRNA availability [85]. Nonetheless, the binding of microRNAs to mRNAs is a 

process that depends on multiple RNA interaction equilibria and will be altered by abundances 

of these other participants. 

The mRNAs under active repression by a microRNA will thus partly depend on cellular context, 

meaning not just cellular identity (e.g., cardiomyocyte or fibroblast) but also including cellular state 

(stressed / nonstressed / diseased). Different RNA interaction equilibria that eventually affect the 

strength of a given microRNA-mRNA association would be expected amongst cells expressing 

different cohorts of RNAs. An illustration of this point is given in Figure 4a, in which the abundance 

profiles of a set of microRNAs commonly expressed between mouse heart, liver and cultured islet  

-cells are quite dissimilar, and correspondingly the RISC abundance vs global abundance ‘ratios’ for 

a common set of mRNAs are markedly different. Within the same tissue (heart), the contrast of 

pressure-overload to sham conditions generates considerable differences in the RISC-vs-global mRNA 

‘ratios’, even though the sum total of the alterations in microRNA and mRNA expression (when 

averaged over all expressed microRNAs and mRNAs) is relatively slight (Figure 4b). 
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Figure 4. (a) Left, Heatmap displaying abundances of 300 microRNAs expressed in mouse 

heart, liver and MIN-6 cultured -cells. Right, graphs of log (RISC ratio), where RISC 

ratio equals (RISC abundance / global mRNA abundance), for 7300 mRNAs expressed in 

common between heart (red), liver (blue) and -cells (green). (b) Transcriptome-wide 

differences in microRNAs, global mRNAs, and mRNA RISC ratios in sham-operated and 

1-week pressure-overloaded (TAC) mouse hearts. Data in (b) are redrawn from [34] and 

NCBI GEO accession GSE56890.  

 

Armed with a greater understanding of cell-specific microRNA-mRNA interactions, there remains a 

need to ‘connect the dots’ from the direct mRNA targets of microRNAs, through highly complex webs 

of interactions and secondary effects, to comprehend the outcome of microRNA changes on the overall 

transcriptome and proteome. To determine the specific roles and biological importance of individual, 

microRNA-regulated mRNAs, it will be necessary to ‘stand on the shoulders of giants’; our knowledge 

of the function of any gene is aided by existing studies on how its encoded protein interacts with others 

and what signals are thus transduced. While the endeavor is large and constantly benefiting from new 

data, it is reasonable to suggest that modern knowledge aggregators (e.g., Gene Set Enrichment 

Analysis from the Broad Institute [86,87], DAVID [88], and MetaCore [89]) will offer insight into 

how microRNA-regulated mRNAs will make an impact on the downstream responses and interactions 

represented by global mRNA profiling and ribosome mRNA profiling from hearts. Relatively small 

changes in individual protein levels are often seen in response to altered microRNAs (e.g. [74]) and it 

is possible that constitutively-expressed proteins such as cytoskeletal and structural membrane 

constituents and metabolite processing enzymes, even when taken together, may not represent the most 
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biologically significant targets of microRNAs. Those genes which are highly sensitive to abundance 

changes; i.e., transcription factors and cofactors, kinases, phosphatases and other post-translational 

protein modifiers, may be among the most important regulated mRNAs. Our work in early  

pressure-overload hypertrophy has demonstrated that transcription factors are amongst the most highly 

microRNA-regulated functional groups [34] and microRNA-targeted transcription factors have been 

uncovered in studies of cardiac miR-22 overexpression [90] and the ‘myomiR’ family [31]. The work 

of others has shown microRNA regulation of key kinases [6] and phosphatases [91]. 

If the direct mRNA targets of a regulated microRNA are involved in well-understood processes 

(such as sarcoplasmic reticulum Ca
2+

 loading and release, action potential shaping or apoptotic 

pathways), there may be benefits in delivering exogenous microRNAs or using anti-miRs to turn up or 

turn down the level of such signals. Conversely, less well-understood gene networks in the heart that 

are revealed to be regulated by a stress-responsive microRNA may now be judged worthy of deeper 

characterization. Should the use of a microRNA-based reagent lead to both beneficial and deleterious 

effects in the stressed heart (hypothetical combinations such as increased contractile force but 

increased apoptosis, or reduced apoptosis but increased electrical instability), a more complete 

understanding of the microRNA-affected mRNAs and downstream pathways may permit the 

application of adjunct therapies so that benefits can be obtained with a minimum of unwanted effects. 

While the above represent only conjectures, a more complete understanding of the actions of 

individual stress-responsive cardiac microRNAs and of the way these integrate to affect mRNA 

translation will likely be necessary to plan future microRNA-based therapeutic interventions. 

6. Validation, Perturbation and Integration 

Before embarking on further mechanistic or even pre-clinical studies, the microRNA-mRNA 

relationships derived from transcriptome-wide profiling procedures such as those described in the 

foregoing sections require further validation. One resource for work of this kind is the large number of 

transgenic animals overexpressing microRNAs of interest in the heart, and a number of germline and 

conditional microRNA knockout alleles, which suggest the possibility of validating microRNA actions 

in the appropriate intact heart context. Naturally, the issues at hand with these approaches are familiar, 

no matter the biomolecule under investigation; namely that transgene-driven expression or knockout 

strategies may well lead to much greater alterations in individual microRNA levels than those induced 

during cardiac stress. On the one hand, a ‘larger-than-life’ disruption may be seen as an advantage by 

facilitating experimental readouts, but on the other hand, limited understanding of the role of a 

microRNA in a complex system of interactions may mean that some of the resulting effects are other 

than those predicted. A case in point is that Myh6-driven overexpression of miR-378 and miR-499 in 

the mouse heart, but not of miR-143, leads to secondary changes in a large number of other 

microRNAs by feedback on their initial transcription [35]. This unexpectedly broad alteration of RISC 

microRNA programming complicates the assignment of microRNA-dependent mRNA regulation in 

these hearts to individual microRNAs and adds a further challenge to delineating the precise actions of 

miR-378 and miR-499 in stressed or unstressed hearts by using transgenic approaches. 

Given that attempting to validate the role of a molecule in context often involves perturbing that 

molecule more than is customary in that context, moving entirely outside the cardiac environment 
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offers an alternative with both advantages and disadvantages. Well-established and widely-used in 

vitro testing platforms include co-transfection of microRNA precursors or mimics with luciferase 

reporter plasmids harboring putative target cDNA fragments, co-transfection of anti-miRs and 

luciferase reporters, and co-transfection of ‘target-protection’ oligonucleotides which serve as decoys 

for microRNA binding sites on target mRNAs (e.g. [72]). In addition, the possibility exists for 

simultaneous transfection of multiple microRNAs for those mRNAs predicted to be most actively 

suppressed by a combination of regulated microRNAs. Successful validation assays in these 

environments demonstrate that particular microRNA-mRNA interactions are biophysically possible, 

but depending on the differences in expression of other microRNAs, mRNAs, lncRNAs, ceRNAs etc. 

which can compete for binding partners, the correspondence of these in vitro data to the magnitude of 

signaling events involving a particular RNA pair in the heart may be limited. Once again, the 

challenges brought up by these validation approaches are familiar from mechanistic studies on other 

biomolecules, and suggest that validation assays need to take multiple forms as a way of overcoming 

the drawbacks inherent in each. 

Despite the imperfections and difficulties involved in judging the correspondence of  

microRNA-mRNA interaction data obtained outside the heart to the complex situation occurring 

within, the rewards may be considerable. While biological signaling networks derived with the help of 

knowledge aggregators [86–89] may offer much insight into the behavior of complex systems, they 

tend to be descriptive in nature rather than quantitative, since interaction equilibria and substrate 

concentrations are highly tissue-dependent. If quantitative effects can be measured or at least closely 

approximated, circuit design and bioengineering principles may be brought to bear to model network 

behavior and predict outcomes in a way that a purely descriptive approach cannot. As a result, 

particular mRNAs may be classified as more important to signaling outcomes than otherwise expected. 

Two studies using such mathematical modeling but integrating primary experimental findings, involve 

defining key regulators in the CREB signaling network of neurons [92] and identifying Ras as the 

primary network ‘hub’ for control of neonatal rat cardiomyocyte hypertrophy [93]. These studies 

represent examples of the advantages that may be gained by interpreting empirical data using these 

approaches. While it may be a stretch at present to envisage how such methods could be used to render 

all the diverse signaling events from initial microRNA-mRNA recognition and suppression, through 

layers of downstream effects leading to an overall cardiac phenotype, into a predictive network, it 

seems possible that similar, integrative methods could be used to address the more limited question of 

how a multiplicity of regulated microRNAs with different affinities for, and accessibility to a given 

mRNA, affects its eventual translation. 

7. MicroRNA Therapeutics for Stress Relief? 

As stated in the Introduction, much of the current interest in microRNAs in the heart, and in other 

tissues, is focused on understanding their mechanisms of action sufficiently to contemplate their 

manipulation for therapeutic purposes. The clinical use of microRNA mimics (including viral 

expression strategies) and anti-miRs, faces similar hurdles to the use of RNA interference; delivery to 

the appropriate tissue, effective uptake and intracellular trafficking, and lack of effects on undesired 

targets. New approaches to delivery and efficacy are under development, spearheaded by the growth of 
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companies invested in microRNA therapeutic approaches (comprehensively reviewed in  

references [17] and [94]). The unbiased and systematic approaches suggested by this article to the 

identification of microRNA targets, and the contribution of microRNAs to functional outcomes, should 

be valuable for optimizing microRNA-based therapies in the heart. 

The most popular microRNA ‘prodrug’, widely used in cellular and whole-animal studies, is that of 

cholesterol-conjugated or locked nucleic acid-modified anti-miRs. While the first of these was 

developed to target miR-122 in the liver [95] and significant accumulation of anti-miRs in the liver 

appears unavoidable, such reagents do effectively target microRNAs in the heart even when injected 

into the peripheral circulation and are stable for relatively long periods. More importantly, certain  

anti-miRs have salutary effects: an anti-miR-21 reagent inhibits stress-induced cardiac hypertrophy 

and fibrosis [96] while one directed against miR-208 combats hypertension-induced heart failure in the 

Dahl salt-sensitive rat [97]. Anti-miRs against miR-34a [98] and the miR-212/132 family [99] offer 

protection against cardiac pressure-overload while anti-miR-34 reagents also protect against  

age-dependent cardiac cell death and injury resulting from myocardial infarction [100]; an anti-miR-24 

is able to improve the outcome of pressure-overload by inhibiting decompensation after prolonged 

hypertrophy [101]. 

The fact that all of these reagents have beneficial effects is perhaps sufficient to render precise 

dissection of their mechanisms of action a moot point. Nonetheless, it is worthwhile to consider that 

while a cholesterol-conjugated anti-miR-21 antagomiR inhibited stress-induced cardiac hypertrophy 

and fibrosis [96], treatment with an alternate locked nucleic acid-modified anti-miR-21 or gene 

ablation of miR-21 had no effect [33]; possible reasons for these disparities have been discussed by 

both groups [102,103]. While completely speculative, it is interesting that miR-34 and miR-212/132 

have a high degree of similarity in the ‘seed’ region (4 contiguous nucleotides, as shown in Figure 5) 

and given a likely molar excess of anti-miR to endogenous microRNA there is the possibility that these 

anti-miRs, which have been reported to have similar effects on cardiac hypertrophy [98,99], may 

utilize at least some mechanisms in common. The foregoing suggests that at least some anti-miR 

reagents, especially those that target less than the full length of a microRNA, may have effects beyond 

the initially chosen microRNA. Certainly this does not disqualify them as therapeutics, but it does 

suggest that caution should be exercised when using such reagents for the dissection or validation of 

signaling mechanisms in model animals. 

Figure 5. Nucleotide sequences of miRs-132-3p, -212-3p and -34a-5p (following current 

miRBase [23] nomenclature), given in the 5′ to 3′ direction. A red box denotes the 

nucleotide 2–7 ‘seed’ sequence. 
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8. Conclusions 

The pursuit of microRNAs as therapeutic vehicles is promising, since it appears they may have 

higher potential for producing specific biological effects, or at least offer more facile manipulation, 

than designing strategies for targeting individual enzymes, proteins or other biomolecules. While the 

likelihood that they will affect multiple mRNAs simultaneously is sometimes quoted as a benefit, it is 

equally possible that this will prove to be a double-edged sword should beneficial responses be ablated 

together with deleterious ones. Cells may not give up their regulatory keys as easily as we would like, 

and their complex circuitry may yield unanticipated effects of manipulating molecules that could 

represent nodal control points. A rather detailed understanding of microRNA actions might be required 

to best minimize harmful responses to stress while promoting beneficial ones, through e.g. overriding 

unwanted anti-miR interference with other signaling modalities via the use of other therapeutics.  

A great deal of effort from research groups operating at structural, genomic and functional levels has 

been required to achieve the current level of understanding of microRNAs, and ongoing efforts are 

needed together with contributions from network biologists and bioengineers to promote our 

understanding to a higher level. Despite these hurdles, some of the early in vivo successes of anti-miRs 

such as miraversen against hepatitis C [104] and microRNA mimic strategies such as miR-34 against 

hepatic cancer [105], not to mention the surprising anti-obesity phenotype of anti-miR-208a in mice [106], 

indicate that delivery methods and chemistry are unlikely to restrict the potential of these molecules; 

rather, our ability to understand their mechanisms and predict their effects on cells and tissues is likely 

to prove the limiting factor. With a more comprehensive knowledge of these mechanisms, there is thus 

hope for exploiting microRNA-regulated signaling networks to optimize the function and survival of 

hearts responding to the stresses of hypertension, infarct damage, nutrient dysregulation and 

inflammation. 
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