Cellular Players in Gastrointestinal Involvement of Systemic Sclerosis: Insights into Pathogenesis
Abstract
1. Introduction
2. Materials and Methods
3. Enteric Nervous System and Interstitial Cells of Cajal
3.1. Interstitial Cells of Cajal: Loss and Smooth Muscle Atrophy
3.2. Enteric Nervous System: Structural Damage and Autoimmune Targets
| Autoantibody | Target Antigen/Localization |
Associated GI
Manifestations | Associated Clinical and Immunologic Features | Proposed Pathogenic Mechanism |
Key
References |
|---|---|---|---|---|---|
| Anti-M3R | Muscarinic M3 receptor (smooth muscle & enteric neurons) | Severe GI involvement; dysmotility | Diffuse cutaneous SSc, anti-RNPC3 and/or U1RNP positivity | Blockade of cholinergic signaling → impaired smooth muscle contraction and neuronal transmission | [13,33,34,35] |
| Anti-RNPC3 (U11/U12) | Ribonucleoprotein complex involved in RNA splicing | Moderate-to-severe GI disease (Medsger GI ≥ 2), esophageal dysmotility | Diffuse SSc; pulmonary fibrosis; anti-M3R and anti-U1RNP co-positivity | RNA-processing dysfunction; possible cross-talk with cholinergic pathway | [13,35,36] |
| Anti-U1RNP | Small nuclear ribonucleoprotein | Severe GI and pulmonary fibrosis when co-positive with anti-RNPC3 | Overlap or mixed connective tissue disease features | Dysregulation of RNA metabolism and fibrosis pathways | [13,36] |
| Anti-gephyrin | Cytoskeletal scaffolding protein at inhibitory synapses (GABA-A, glycine receptors) | Bloating, severe constipation | No specific associated extra-intestinal features | Impaired inhibitory ENS signaling → dysmotility | [37] |
| Antimitochondrial M2 (AMA-M2) | PDC-E2 (pyruvate dehydrogenase complex, inner mitochondrial membrane) | Delayed esophageal transit, gastric emptying | Sometimes overlap with PBC | Antibody internalization → mitochondrial dysfunction, impaired mitochondrial respiration | [38] |
| Anti-vinculin | Cytoskeletal protein linking actin to membrane (cell adhesion, motility) | Slower gastric emptying; high GI-VAS | n/a | Impaired cytoskeletal dynamics and neuromuscular transmission | [40,41,42,43] |
| Anti-CDT | Cytolethal distending toxin (Campylobacter jejuni byproduct) | Fecal soilage, GI symptoms | Co-occurrence with anti-RNPC3, anti-U1RNP | Infection-triggered molecular mimicry leading to enteric neural autoimmunity | [45] |
4. Fibroblasts and Myofibroblasts: Core Effectors of Fibrosis
5. Intestinal Epithelial Cells: Barrier Dysfunction and Microbiota Interactions
6. Endothelial Cells and Pericytes: Vascular Pathology
7. Immune Cells: Inflammation and Immune–Fibrotic Crosstalk
8. Expert Perspective: Gaps and Future Directions
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gyger, G.; Baron, M. Systemic Sclerosis: Gastrointestinal Disease and Its Management. Rheum. Dis. Clin. N. Am. 2015, 41, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Volkmann, E.R.; McMahan, Z. Gastrointestinal Involvement in Systemic Sclerosis: Pathogenesis, Assessment and Treatment. Curr. Opin. Rheumatol. 2022, 34, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.B.; Gandhi, N.; Clarke, J.; McMahan, Z. Gastrointestinal Involvement in Systemic Sclerosis: An Update. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskelet. Dis. 2018, 24, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Alcala-Gonzalez, L.G.; Guillen-Del-Castillo, A.; Aguilar, A.; Barber, C.; Codina, C.; Marin Garcia, A.; Malagelada, C.; Simeon-Aznar, C.P. Impact of Gastrointestinal Symptoms and Psychological Distress on Quality of Life in Systemic Sclerosis: A Cross-Sectional Study. BMJ Open 2024, 14, e089725. [Google Scholar] [CrossRef]
- Richard, N.; Hudson, M.; Wang, M.; Gyger, G.; Proudman, S.; Stevens, W.; Nikpour, M.; Canadian Scleroderma Research Group (CSRG); Australian Scleroderma Interest Group (ASIG); Baron, M. Severe Gastrointestinal Disease in Very Early Systemic Sclerosis Is Associated with Early Mortality. Rheumatology 2019, 58, 636–644. [Google Scholar] [CrossRef]
- Bandini, G.; Alunno, A.; Ruaro, B.; Galetti, I.; Hughes, M.; McMahan, Z.H. Significant Gastrointestinal Unmet Needs in Patients with Systemic Sclerosis: Insights from a Large International Patient Survey. Rheumatology 2023, 63, e92–e93. [Google Scholar] [CrossRef]
- Perin, J.; Hughes, M.; Mecoli, C.A.; Paik, J.J.; Gelber, A.C.; Wigley, F.M.; Hummers, L.K.; Shah, A.A.; Zeger, S.L.; McMahan, Z.H. Distinct Clinical Trajectories of Gastrointestinal Progression among Patients with Systemic Sclerosis. Rheumatology 2025, 64, 2766–2774. [Google Scholar] [CrossRef]
- Sjogren, R.W. Gastrointestinal Motility Disorders in Scleroderma. Arthritis Rheum. 1994, 37, 1265–1282. [Google Scholar] [CrossRef]
- Nguyen, V.A.; Eisendle, K.; Gruber, I.; Hugl, B.; Reider, D.; Reider, N. Effect of the Dual Endothelin Receptor Antagonist Bosentan on Raynaud’s Phenomenon Secondary to Systemic Sclerosis: A Double-Blind Prospective, Randomized, Placebo-Controlled Pilot Study. Rheumatology 2010, 49, 583–587. [Google Scholar] [CrossRef]
- Singh, J.; Mehendiratta, V.; Del Galdo, F.; Jimenez, S.A.; Cohen, S.; DiMarino, A.J.; Rattan, S. Immunoglobulins from Scleroderma Patients Inhibit the Muscarinic Receptor Activation in Internal Anal Sphincter Smooth Muscle Cells. Am. J. Physiol.-Gastrointest. Liver Physiol. 2009, 297, G1206–G1213. [Google Scholar] [CrossRef]
- Singh, J.; Cohen, S.; Mehendiratta, V.; Mendoza, F.; Jimenez, S.A.; Dimarino, A.J.; Rattan, S. Effects of Scleroderma Antibodies and Pooled Human Immunoglobulin on Anal Sphincter and Colonic Smooth Muscle Function. Gastroenterology 2012, 143, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Dein, E.; Kuo, P.L.; Hong, Y.S.; Hummers, L.K.; Mecoli, C.A.; McMahan, Z.H. Evaluation of Risk Factors for Pseudo-Obstruction in Systemic Sclerosis. Semin. Arthritis Rheum. 2019, 49, 405–410. [Google Scholar] [CrossRef] [PubMed]
- McMahan, Z.H.; Domsic, R.T.; Zhu, L.; Medsger, T.A.; Casciola-Rosen, L.; Shah, A.A. Anti-RNPC-3 (U11/U12) Antibodies in Systemic Sclerosis in Patients with Moderate-to-Severe Gastrointestinal Dysmotility. Arthritis Care Res. 2019, 71, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- McMahan, Z.H.; Paik, J.J.; Wigley, F.M.; Hummers, L.K. Determining the Risk Factors and Clinical Features Associated with Severe Gastrointestinal Dysmotility in Systemic Sclerosis. Arthritis Care Res. 2018, 70, 1385–1392. [Google Scholar] [CrossRef]
- Fung, C.; Vanden Berghe, P. Functional Circuits and Signal Processing in the Enteric Nervous System. Cell. Mol. Life Sci. 2020, 77, 4505–4522. [Google Scholar] [CrossRef]
- Duan, H.; Cai, X.; Luan, Y.; Yang, S.; Yang, J.; Dong, H.; Zeng, H.; Shao, L. Regulation of the Autonomic Nervous System on Intestine. Front. Physiol. 2021, 12, 700129. [Google Scholar] [CrossRef]
- Powley, T.L. Brain-Gut Communication: Vagovagal Reflexes Interconnect the Two “Brains”. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 321, G576–G587. [Google Scholar] [CrossRef]
- Masliukov, P.M.; Emanuilov, A.I.; Budnik, A.F. Sympathetic Innervation of the Development, Maturity, and Aging of the Gastrointestinal Tract. Anat. Rec. 2023, 306, 2249–2263. [Google Scholar] [CrossRef]
- Sharkey, K.A.; Mawe, G.M. The Enteric Nervous System. Physiol. Rev. 2023, 103, 1487–1564. [Google Scholar] [CrossRef]
- Spencer, N.J.; Hu, H. Enteric Nervous System: Sensory Transduction, Neural Circuits and Gastrointestinal Motility. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 338–351. [Google Scholar] [CrossRef]
- Faussone-Pellegrini, M.S.; Cortesini, C. Ultrastructural Features and Localization of the Interstitial Cells of Cajal in the Smooth Muscle Coat of Human Esophagus. J. Submicrosc. Cytol. 1985, 17, 187–197. [Google Scholar] [PubMed]
- Roberts, C.G.P.; Hummers, L.K.; Ravich, W.J.; Wigley, F.M.; Hutchins, G.M. A Case–Control Study of the Pathology of Oesophageal Disease in Systemic Sclerosis (Scleroderma). Gut 2006, 55, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- den Braber-Ymker, M.; Vonk, M.C.; Grünberg, K.; Lammens, M.; Nagtegaal, I.D. Intestinal Hypomotility in Systemic Sclerosis: A Histological Study into the Sequence of Events. Clin. Rheumatol. 2021, 40, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Malandrini, A.; Selvi, E.; Villanova, M.; Berti, G.; Sabadini, L.; Salvadori, C.; Gambelli, S.; De Stefano, R.; Vernillo, R.; Marcolongo, R.; et al. Autonomic Nervous System and Smooth Muscle Cell Involvement in Systemic Sclerosis: Ultrastructural Study of 3 Cases. J. Rheumatol. 2000, 27, 1203–1206. [Google Scholar]
- Ibba-Manneschi, L.; Del Rosso, A.; Pacini, S.; Tani, A.; Bechi, P.; Matucci Cerinic, M. Ultrastructural Study of the Muscle Coat of the Gastric Wall in a Case of Systemic Sclerosis. Ann. Rheum. Dis. 2002, 61, 754–756. [Google Scholar] [CrossRef]
- Manetti, M.; Milia, A.F.; Benelli, G.; Messerini, L.; Matucci-Cerinic, M.; Ibba-Manneschi, L. The Gastric Wall in Systemic Sclerosis Patients: A Morphological Study. Ital. J. Anat. Embryol. Arch. Ital. Anat. Embriol. 2010, 115, 115–121. [Google Scholar]
- Manetti, M.; Neumann, E.; Müller, A.; Schmeiser, T.; Saar, P.; Milia, A.F.; Endlicher, E.; Roeb, E.; Messerini, L.; Matucci-Cerinic, M.; et al. Endothelial/Lymphocyte Activation Leads to Prominent CD4+ T Cell Infiltration in the Gastric Mucosa of Patients with Systemic Sclerosis. Arthritis Rheum. 2008, 58, 2866–2873. [Google Scholar] [CrossRef]
- Suzuki, S.; Suzuki, H.; Horiguchi, K.; Tsugawa, H.; Matsuzaki, J.; Takagi, T.; Shimojima, N.; Hibi, T. Delayed Gastric Emptying and Disruption of the Interstitial Cells of Cajal Network after Gastric Ischaemia and Reperfusion. Neurogastroenterol. Motil. 2010, 22, 585-e126. [Google Scholar] [CrossRef]
- Yarandi, S.S.; Srinivasan, S. Diabetic Gastrointestinal Motility Disorders and the Role of Enteric Nervous System: Current Status and Future Directions. Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc. 2014, 26, 611–624. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Zhang, Y.-C.; Jiang, W.-F.; Yang, C.; Zou, G.-M.; Kong, Y.; Cai, W. Characterization of Interstitial Cajal Progenitors Cells and Their Changes in Hirschsprung’s Disease. PLoS ONE 2014, 9, e86100. [Google Scholar] [CrossRef]
- Senécal, J.-L.; Hoa, S.; Yang, R.; Koenig, M. Pathogenic Roles of Autoantibodies in Systemic Sclerosis: Current Understandings in Pathogenesis. J. Scleroderma Relat. Disord. 2020, 5, 103–129. [Google Scholar] [CrossRef] [PubMed]
- Kill, A.; Riemekasten, G. Functional Autoantibodies in Systemic Sclerosis Pathogenesis. Curr. Rheumatol. Rep. 2015, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Eaker, E.Y.; Kuldau, J.G.; Verne, G.N.; Ross, S.O.; Sallustio, J.E. Myenteric Neuronal Antibodies in Scleroderma: Passive Transfer Evokes Alterations in Intestinal Myoelectric Activity in a Rat Model. J. Lab. Clin. Med. 1999, 133, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y.; Nakamura, Y.; Matsumoto, I.; Nishimagi, E.; Satoh, T.; Kuwana, M.; Sumida, T.; Hara, M. Muscarinic-3 Acetylcholine Receptor Autoantibody in Patients with Systemic Sclerosis: Contribution to Severe Gastrointestinal Tract Dysmotility. Ann. Rheum. Dis. 2009, 68, 710–714. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, J.; Kedika, R.; Mendoza, F.; Jimenez, S.A.; Blomain, E.S.; DiMarino, A.J.; Cohen, S.; Rattan, S. Role of Muscarinic-3 Receptor Antibody in Systemic Sclerosis: Correlation with Disease Duration and Effects of IVIG. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G1052–G1060. [Google Scholar] [CrossRef]
- Ayla, A.Y.; Kalavar, N.R.; Pimentel, M.; Morales, W.; Hummers, L.K.; Shah, A.A.; Hughes, M.; McMahan, Z.H. Anti-Muscarinic 3 Antibodies Associate with a Severe Clinical Phenotype in Patients with Systemic Sclerosis. Rheumatology 2025, 64, 5230–5237. [Google Scholar] [CrossRef]
- Kolisnyk, B.; Al-Onaizi, M.A.; Xu, J.; Parfitt, G.M.; Ostapchenko, V.G.; Hanin, G.; Soreq, H.; Prado, M.A.M.; Prado, V.F. Cholinergic Regulation of hnRNPA2/B1 Translation by M1 Muscarinic Receptors. J. Neurosci. Off. J. Soc. Neurosci. 2016, 36, 6287–6296. [Google Scholar] [CrossRef]
- McMahan, Z.H.; Kulkarni, S.; Andrade, F.; Perin, J.; Zhang, C.; Hooper, J.E.; Wigley, F.M.; Rosen, A.; Pasricha, P.J.; Casciola-Rosen, L. Anti-Gephyrin Antibodies: A Novel Specificity in Patients with Systemic Sclerosis and Lower Bowel Dysfunction. Arthritis Rheumatol. 2024, 76, 92–99. [Google Scholar] [CrossRef]
- McMahan, Z.H.; Casciola-Rosen, L.; Kaniecki, T.; Gutierrez-Alamillo, L.; Ming, S.H.; Seika, P.; Kulkarni, S. Anti-Mitochondrial Antibodies in Systemic Sclerosis Target Enteric Neurons and Are Associated with GI Dysmotility. Ann. Rheum. Dis. 2025, 84, 1721–1732. [Google Scholar] [CrossRef]
- Ibrahim, N.H.; Fawzy, I.M.; Gouda, T.M.; El Sayed, R.A.H.; Morsi, M.H.; Sabry, A.S.M.; Hashaad, N.I. Anti-Vinculin Antibodies as a Novel Biomarker in Egyptian Patients with Systemic Sclerosis. Clin. Rheumatol. 2022, 41, 3401–3409. [Google Scholar] [CrossRef]
- Suliman, Y.; Kafaja, S.; Oh, S.J.; Alemam, M.; Bagnato, G.; Abignano, G.; Singh, R.R.; Barlow, G.; Liu, X.; Valera, I.; et al. Anti-Vinculin Antibodies in Scleroderma (SSc): A Potential Link between Autoimmunity and Gastrointestinal System Involvement in Two SSc Cohorts. Clin. Rheumatol. 2021, 40, 2277–2284. [Google Scholar] [CrossRef] [PubMed]
- Herrán, M.; Adler, B.L.; Perin, J.; Morales, W.; Pimentel, M.; McMahan, Z.H. Antivinculin Antibodies in Systemic Sclerosis: Associations with Slow Gastric Transit and Extraintestinal Clinical Phenotype. Arthritis Care Res. 2023, 75, 2166–2173. [Google Scholar] [CrossRef] [PubMed]
- Bays, J.L.; DeMali, K.A. Vinculin in Cell-Cell and Cell-Matrix Adhesions. Cell. Mol. Life Sci. 2017, 74, 2999–3009. [Google Scholar] [CrossRef] [PubMed]
- Deroanne, C.F.; Colige, A.C.; Nusgens, B.V.; Lapiere, C.M. Modulation of Expression and Assembly of Vinculin during in Vitro Fibrillar Collagen-Induced Angiogenesis and Its Reversal. Exp. Cell Res. 1996, 224, 215–223. [Google Scholar] [CrossRef]
- Di Ciommo, F.R.; Casciola-Rosen, L.; Ayla, A.Y.; Balar, A.; Shah, A.A.; Hughes, M.; Morales, W.; Pimentel, M.; Adler, B.L.; McMahan, Z.H. Anti-Cytolethal Distending Toxin Antibodies in Systemic Sclerosis: Associations with Gastrointestinal Disease and Immune Dysregulation. Rheumatology 2025, 64, 6349–6353. [Google Scholar] [CrossRef]
- Manetti, M.; Neumann, E.; Milia, A.F.; Tarner, I.H.; Bechi, P.; Matucci-Cerinic, M.; Ibba-Manneschi, L.; Müller-Ladner, U. Severe Fibrosis and Increased Expression of Fibrogenic Cytokines in the Gastric Wall of Systemic Sclerosis Patients. Arthritis Rheum. 2007, 56, 3442–3447. [Google Scholar] [CrossRef]
- Chrysanthopoulou, A.; Mitroulis, I.; Kambas, K.; Skendros, P.; Kourtzelis, I.; Vradelis, S.; Kolios, G.; Aslanidis, S.; Doumas, M.; Ritis, K. Tissue Factor-Thrombin Signaling Enhances the Fibrotic Activity of Myofibroblasts in Systemic Sclerosis through up-Regulation of Endothelin Receptor A. Arthritis Rheum. 2011, 63, 3586–3597. [Google Scholar] [CrossRef]
- Arismendi, M.; Giraud, M.; Ruzehaji, N.; Dieudé, P.; Koumakis, E.; Ruiz, B.; Airo, P.; Cusi, D.; Matucci-Cerinic, M.; Salvi, E.; et al. Identification of NF-κB and PLCL2 as New Susceptibility Genes and Highlights on a Potential Role of IRF8 through Interferon Signature Modulation in Systemic Sclerosis. Arthritis Res. Ther. 2015, 17, 71. [Google Scholar] [CrossRef]
- Manetti, M.; Romano, E.; Rosa, I.; Guiducci, S.; Bellando-Randone, S.; De Paulis, A.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Endothelial-to-Mesenchymal Transition Contributes to Endothelial Dysfunction and Dermal Fibrosis in Systemic Sclerosis. Ann. Rheum. Dis. 2017, 76, 924–934. [Google Scholar] [CrossRef]
- Boric, K.; Mardesic, S.; Martinovic Kaliterna, D.; Radic, M.; Tadin Hadjina, I.; Vukojevic, K.; Kosovic, I.; Solic, I.; Zekic Tomas, S.; Saraga-Babic, M. Expression of Apoptotic and Proliferation Factors in Gastric Mucosa of Patients with Systemic Sclerosis Correlates with Form of the Disease. Sci. Rep. 2019, 9, 18461. [Google Scholar] [CrossRef]
- Cobden, I.; Rothwell, J.; Axon, A.T.; Dixon, M.F.; Lintott, D.J.; Rowell, N.R. Small Intestinal Structure and Passive Permeability in Systemic Sclerosis. Gut 1980, 21, 293–298. [Google Scholar] [CrossRef]
- Adarsh, M.B.; Sharma, S.K.; Prasad, K.K.; Dhir, V.; Singh, S.; Sinha, S.K. Esophageal Manometry, Esophagogastroduodenoscopy, and Duodenal Mucosal Histopathology in Systemic Sclerosis. JGH Open Open Access J. Gastroenterol. Hepatol. 2019, 3, 206–209. [Google Scholar] [CrossRef]
- Pellicano, C.; Oliva, A.; Colalillo, A.; Gigante, A.; D’Aliesio, E.; Al Ismail, D.; Miele, M.C.; Cianci, R.; Mastroianni, C.M.; Rosato, E. Serum Markers of Microbial Translocation and Intestinal Damage in Assessment of Gastrointestinal Tract Involvement in Systemic Sclerosis. Clin. Exp. Med. 2024, 24, 225. [Google Scholar] [CrossRef] [PubMed]
- Patrone, V.; Puglisi, E.; Cardinali, M.; Schnitzler, T.S.; Svegliati, S.; Festa, A.; Gabrielli, A.; Morelli, L. Gut Microbiota Profile in Systemic Sclerosis Patients with and without Clinical Evidence of Gastrointestinal Involvement. Sci. Rep. 2017, 7, 14874. [Google Scholar] [CrossRef] [PubMed]
- Lemos, M.P.C.; Zucoloto, T.G.; Oliveira, M.C.; de Oliveira, G.L.V. Dysbiosis and Gut Microbiota Modulation in Systemic Sclerosis. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskelet. Dis. 2022, 28, e568–e573. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.D.; Andréasson, K.; McMahan, Z.H.; Bukiri, H.; Howlett, N.; Lagishetty, V.; Lee, S.M.; Jacobs, J.P.; Volkmann, E.R. Gastrointestinal Tract Involvement in Systemic Sclerosis: The Roles of Diet and the Microbiome. Semin. Arthritis Rheum. 2023, 60, 152185. [Google Scholar] [CrossRef]
- Fretheim, H.; Chung, B.K.; Didriksen, H.; Bækkevold, E.S.; Midtvedt, Ø.; Brunborg, C.; Holm, K.; Valeur, J.; Tennøe, A.H.; Garen, T.; et al. Fecal Microbiota Transplantation in Systemic Sclerosis: A Double-Blind, Placebo-Controlled Randomized Pilot Trial. PLoS ONE 2020, 15, e0232739. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The Basics of Epithelial-Mesenchymal Transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef]
- Bandini, G.; Monami, M.; Ciuti, G.; Mercatelli, P.; Lo Cricchio, A.; De Santis, M.C.; Bonomi, F.; Bellando Randone, S.; Campochiaro, C.; El Aoufy, K.; et al. Doppler Ultrasound, a Noninvasive Tool for the Study of Mesenteric Arterial Flow in Systemic Sclerosis: A Cross-Sectional Study of a Patient Cohort with Review and Meta-Analysis of the Literature. Intern. Emerg. Med. 2025, 20, 381–394. [Google Scholar] [CrossRef]
- Bandini, G.; Bellando Randone, S.; Manetti, M.; Dagna, L.; Matucci Cerinic, M.; Moggi Pignone, A. Endotheliopathy in Systemic Sclerosis: From Endothelium-Dependent Vasodilation to the Dysfunction of the Vascular Reserve, Is the Paradise Lost? Arthritis Res. Ther. 2025, 27, 107. [Google Scholar] [CrossRef]
- Fuccio, L.; Mussetto, A.; Laterza, L.; Eusebi, L.H.; Bazzoli, F. Diagnosis and Management of Gastric Antral Vascular Ectasia. World J. Gastrointest. Endosc. 2013, 5, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.; Hally, R.J.; McCue, P.A.; Varga, J.; Jiménez, S.A. Gastric Antral Vascular Ectasia (Watermelon Stomach) in Patients with Systemic Sclerosis. Arthritis Rheum. 1996, 39, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Braun-Moscovici, Y.; Brun, R.; Braun, M. Systemic Sclerosis and the Gastrointestinal Tract-Clinical Approach. Rambam Maimonides Med. J. 2016, 7, e0031. [Google Scholar] [CrossRef] [PubMed]
- McFarlane, I.M.; Bhamra, M.S.; Kreps, A.; Iqbal, S.; Al-Ani, F.; Saladini-Aponte, C.; Grant, C.; Singh, S.; Awwal, K.; Koci, K.; et al. Gastrointestinal Manifestations of Systemic Sclerosis. Rheumatology 2018, 8, 235. [Google Scholar] [CrossRef]
- Marie, I.; Antonietti, M.; Houivet, E.; Hachulla, E.; Maunoury, V.; Bienvenu, B.; Viennot, S.; Smail, A.; Duhaut, P.; Dupas, J.-L.; et al. Gastrointestinal Mucosal Abnormalities Using Videocapsule Endoscopy in Systemic Sclerosis. Aliment. Pharmacol. Ther. 2014, 40, 189–199. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, J.; Rattan, S.; DiMarino, A.J.; Cohen, S.; Jimenez, S.A. Review Article: Pathogenesis and Clinical Manifestations of Gastrointestinal Involvement in Systemic Sclerosis. Aliment. Pharmacol. Ther. 2017, 45, 883–898. [Google Scholar] [CrossRef]
- Matsushita, T.; Hamaguchi, Y.; Hasegawa, M.; Takehara, K.; Fujimoto, M. Decreased Levels of Regulatory B Cells in Patients with Systemic Sclerosis: Association with Autoantibody Production and Disease Activity. Rheumatology 2016, 55, 263–267. [Google Scholar] [CrossRef]
- Fuschiotti, P. Current Perspectives on the Role of CD8+ T Cells in Systemic Sclerosis. Immunol. Lett. 2018, 195, 55–60. [Google Scholar] [CrossRef]
- Beesley, C.F.; Goldman, N.R.; Taher, T.E.; Denton, C.P.; Abraham, D.J.; Mageed, R.A.; Ong, V.H. Dysregulated B Cell Function and Disease Pathogenesis in Systemic Sclerosis. Front. Immunol. 2023, 13, 999008. [Google Scholar] [CrossRef]
- Neumann, E.; Lepper, N.; Vasile, M.; Riccieri, V.; Peters, M.; Meier, F.; Hülser, M.-L.; Distler, O.; Gay, S.; Mahavadi, P.; et al. Adipokine Expression in Systemic Sclerosis Lung and Gastrointestinal Organ Involvement. Cytokine 2019, 117, 41–49. [Google Scholar] [CrossRef]
- Navrátilová, A.; Oreská, S.; Wünsch, H.; Mocová, K.; Kodet, O.; Rybar, M.; Alquicer, G.; Prokopcová, A.; Bečvář, V.; Bečvář, R.; et al. Serum IL-40 Is Elevated in Systemic Sclerosis and Is Linked to Disease Activity, Gastrointestinal Involvement, Immune Regulation and Fibrotic Processes. Arthritis Res. Ther. 2025, 27, 119. [Google Scholar] [CrossRef]
- Del Galdo, F.; Lescoat, A.; Conaghan, P.G.; Bertoldo, E.; Čolić, J.; Santiago, T.; Suliman, Y.A.; Matucci-Cerinic, M.; Gabrielli, A.; Distler, O.; et al. EULAR recommendations for the treatment of systemic sclerosis: 2023 update. Ann Rheum Dis. 2025, 84, 29–40. [Google Scholar] [CrossRef]
- McMahan, Z.H.; Hughes, M. Is There a Therapeutic Role for Immunosuppression for Gastrointestinal Involvement in Patients with Systemic Sclerosis? Rheumatology 2024, 63, 1766–1768. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peretti, S.; Bonomi, F.; Bandini, G.; Barbetta, C.; Hughes, M.; Del Galdo, F.; Matucci Cerinic, M.; McMahan, Z.H.; Bellando Randone, S. Cellular Players in Gastrointestinal Involvement of Systemic Sclerosis: Insights into Pathogenesis. Cells 2025, 14, 1930. https://doi.org/10.3390/cells14231930
Peretti S, Bonomi F, Bandini G, Barbetta C, Hughes M, Del Galdo F, Matucci Cerinic M, McMahan ZH, Bellando Randone S. Cellular Players in Gastrointestinal Involvement of Systemic Sclerosis: Insights into Pathogenesis. Cells. 2025; 14(23):1930. https://doi.org/10.3390/cells14231930
Chicago/Turabian StylePeretti, Silvia, Francesco Bonomi, Giulia Bandini, Cristiano Barbetta, Michael Hughes, Francesco Del Galdo, Marco Matucci Cerinic, Zsuzsanna H. McMahan, and Silvia Bellando Randone. 2025. "Cellular Players in Gastrointestinal Involvement of Systemic Sclerosis: Insights into Pathogenesis" Cells 14, no. 23: 1930. https://doi.org/10.3390/cells14231930
APA StylePeretti, S., Bonomi, F., Bandini, G., Barbetta, C., Hughes, M., Del Galdo, F., Matucci Cerinic, M., McMahan, Z. H., & Bellando Randone, S. (2025). Cellular Players in Gastrointestinal Involvement of Systemic Sclerosis: Insights into Pathogenesis. Cells, 14(23), 1930. https://doi.org/10.3390/cells14231930

