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Abstract: Cardiac arrest survivors suffer the repercussions of anoxic brain injury, a critical factor
influencing long-term prognosis. This injury is characterised by profound and enduring metabolic
impairment. Ketone bodies, an alternative energetic resource in physiological states such as exercise,
fasting, and extended starvation, are avidly taken up and used by the brain. Both the ketogenic
diet and exogenous ketone supplementation have been associated with neuroprotective effects
across a spectrum of conditions. These include refractory epilepsy, neurodegenerative disorders,
cognitive impairment, focal cerebral ischemia, and traumatic brain injuries. Beyond this, ketone
bodies possess a plethora of attributes that appear to be particularly favourable after cardiac arrest.
These encompass anti-inflammatory effects, the attenuation of oxidative stress, the improvement of
mitochondrial function, a glucose-sparing effect, and the enhancement of cardiac function. The aim
of this manuscript is to appraise pertinent scientific literature on the topic through a narrative review.
We aim to encapsulate the existing evidence and underscore the potential therapeutic value of ketone
bodies in the context of cardiac arrest to provide a rationale for their use in forthcoming translational
research efforts.
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1. Introduction

The human brain, despite its modest size, is an avid consumer of energy. Remarkably,
it utilises approximately 25% of the body’s available glucose and 20% of the systemic oxygen
delivery [1,2]. Given its lack of significant energy storage capacity, the brain’s functionality
hinges on a consistent and adequate supply of substrates, rendering it especially vulnerable
to abrupt energy shortages.

Cardiac arrest (CA) represents a dramatic clinical condition where systemic perfusion
is compromised, leading to a rapid depletion in the available energetic supply. Without the
prompt restoration of organ perfusion, cells undergo profound metabolic failure, leading
initially to deep cellular sufferance and culminating in cell death. Cardiopulmonary
resuscitation manoeuvres reinstate a minimal organ perfusion in the attempt to delay this
process while facilitating therapeutic interventions, such as electrical defibrillation and
pharmacological support. Yet, even with the restoration of blood flow and cardiovascular
function, a cascade of deleterious processes, including neuroinflammation, oxidative stress,
and metabolic dysfunction, can exacerbate organ damage in the aftermath of CA [3]. Such
a phenomenon is generally identified as the “post cardiac arrest syndrome” [4].
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Despite its significant prevalence and the profound impact on mortality and morbidity,
no specific treatment is available in the clinical practice to adequately reduce the burden
of brain injury, and even therapeutic hypothermia, considered effective for a long time,
has been recently challenged [5]. The ketogenic diet (KD) and ketone bodies (KBs) have
gathered attention across a spectrum of medical conditions for their potential therapeutic
benefits. KBs have been consistently linked with neuroprotective effects in preclinical
research, with the mitigation of neuronal hyperexcitability, decreases in neuronal degenera-
tion, and enhanced brain energetics, as recently reviewed [6]. Moreover, the administration
of KBs has shown promising results in experimental models of, among others, traumatic
brain injury [7] and acute cerebral ischemia [8].

While a vast body of the literature has explored their role in various acute pathologies,
a paucity of research specifically addressing their utility in the context of CA remains.

In this manuscript, we provide an overview of KB metabolism, we resume the current
knowledge on the subject by conducting a narrative review, and we discuss the potential
favourable properties of KBs in the context of CA.

2. Metabolism of Ketone Bodies

The liver can synthesise up to 300 g of ketones daily [9]; this production primarily
stems from the long-chain fatty acids stored in the adipose tissue. As illustrated in Figure 1,
these fatty acids are mobilised as free fatty acids (FFAs) in response to reduced insulin
release, a phenomenon observed during prolonged fasting or starvation [10]. FFAs are
then oxidised to Acetyl-CoA, which can then feed into the tricarboxylic acid cycle to
generate ATP. However, when the mitochondrial capacity to process Acetyl-CoA via the
Krebs cycle is surpassed, ketone bodies (KBs)—specifically D/L-ß-hydroxybutyric acid
and Acetoacetate—are produced from Acetyl-CoA. Given the liver’s inability to metabolise
these compounds, they are released into the bloodstream, becoming accessible to various
organs, including the brain and heart.
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acid cycle. 
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and brain cancer cells [11,12]. 

Figure 1. The metabolic pathway of ketone body production during states of reduced insulin release.
A decrease in insulin triggers the release of fatty acids in the form of free fatty acids (FFAs). These
FFAs are then converted into Acetyl-CoA through oxidation. When the capacity of mitochondria to
utilise Acetyl-CoA in the tricarboxylic acid (TCA) cycle is exceeded, a different metabolic route is
engaged, leading to the creation of ketone bodies. Once formed, these ketone bodies are dispersed
into the bloodstream and delivered to various organs, including the brain and heart, for energy use.
FFAs: free fatty acids; BHB: D/L-ß-hydroxybutyric acid; AcAc: acetoacetic acid; TCA: tricarboxylic
acid cycle.

Besides the brain, KB synthesis have been described elsewhere, including astrocytes
and brain cancer cells [11,12].

The brain’s ability to employ KBs as an energy substrate is well established [6,10].
Under typical conditions or brief fasting periods, the rate of KB production matches with
their peripheral uptake. Consequently, plasma ketone levels do not normally exceed
0.3 mM [9]. High levels of circulating KBs, often referred to as hyperketonaemia, are
characterised by circulating KB concentrations surpassing 0.5 mM [13].
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The cerebral uptake of circulating KBs is dependent on the expression of monocar-
boxylic transporters (MCTs), which rapidly rise in response to hyperketonaemia [6]; as
the KB levels rise, glucose availability to the brain diminishes [14]. In particular, glial and
endothelial cells on the blood–brain barrier as well as astrocytes express the isoforms with
relatively low affinity for BHB (MCT1 and MCT4), while neurons mostly possess the MCT2
isoform [15,16]. Expressions of these transporters can be upregulated in rodents through
both fasting and exercises [17,18]. Of note, previous preclinical research has described the
enhancement of MCT expression following transient global ischemia [19], as well as after
permanent unilateral mean cerebral artery occlusion [20], and, in a model of focal ischemia
48 h after unilateral extradural compression, MCT 1 and MCT 2 expression increased in
both the ipsilateral and contralateral areas of the brain [21].

Intriguingly, the brain’s KB uptake is proportional to their circulating concentration,
irrespective of the glucose levels [22], and, for such a reason, it is often considered that they
constitute a preferred energetic substrate for the brain.

However, elevated circulating KB levels are also notoriously associated with patholog-
ical conditions. Diabetic ketoacidosis, a condition arising from diminished insulin levels
relative to circulating glucose, is a case in point; typically observed in type 1 diabetic pa-
tients who cease insulin administration, it results in a paradoxical hyperglycaemic state in
which glucose remains inaccessible to cells [23]. Consequently, KB production escalates, of-
ten exceeding 10 mM, associated with metabolic acidosis, hyperglycaemia, and dehydration
due to osmotic diuresis [23]. Furthermore, during ketoacidosis, a decline in CoA transferase
(Succinyl-CoA:3-oxoacid-CoA transferase, or SCOT) activity, which is vital for ketolysis, is
observed in many cells, including cardiomyocytes. Since SCOT-dependent extra-hepatic
oxidation represents a key pathway for the metabolisation of liver-derived KBs, the net
effect represents the reduced peripheral capability of KB usage. This is attributed to the
overexpression of glucose transporters, which downregulates ketone oxidation [6,24]. The
accumulation of poorly metabolised β-hydroxybutyric acid (ßOHB) and acetoacetic acid
in the bloodstream results in bicarbonate depletion and a subsequent pH drop, creating a
potentially lethal medical emergency.

Contrastingly, nutritional ketosis, a physiological response to fasting or starvation, is
not coupled with pH alterations, and is typically associated with a modest elevation in
circulating KBs over a relative long period of time (days). Even when induced by exogenous
KB supplementation, concentrations rarely surpass 5 mM in healthy adults [25]. Beyond
the ketogenic diet, which is deemed unpleasant and poses challenges for maintenance in
the long term, KBs can be effectively supplemented either orally or intravenously. This
supplementation occurs in the presence of normal insulin and glucose levels, unlike the
physiological conditions during fasting, starvation, or exercise.

As mentioned before, the potential therapeutic benefits of exogenous KB supplemen-
tation have gathered significant attention, especially in the context of various pathologies,
including acute illnesses [26].

3. Cerebral Metabolism Is Impaired following Cardiac Arrest

In the proximity of the return of spontaneous circulation (ROSC) after CA, commonly
with other critical conditions, glucose regulation disturbances are often observed, culminat-
ing in hyperacute hyperglycaemia [27,28]. Several endogenous as well as exogenous factors
might influence the capacity to metabolise glucose in humans, such as increased cortisol
production, catecholamines, and glucagon [27], as well as the administration of epinephrine
during resuscitation manoeuvres. Those events favour lipolysis and ketogenesis, but liver
function is often impaired after CA, although the clinical impacts of such phenomena is not
well described [29,30].

Following ROSC, the post-resuscitation phase is marked by profound and endur-
ing metabolic disturbances, including metabolic acidosis, hyperlactatemia, electrolyte
imbalances, and impairments in glucose homeostasis [31], as pointed out by the evidence
provided from experimental cardiac arrest (CA) studies, which have revealed that a signifi-
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cant number of animals exhibit a secondary rise in the cerebral lactate/pyruvate (L/P) ratio,
often reported as a marker of the redox state of cells, suggesting severe energetic failure
due to ischemia and mitochondrial dysfunction [32]. Moreover, this metabolic disruption is
only partially ameliorated by therapeutic hypothermia [32], and the cellular metabolic shift
towards lactate accumulation and the rise in the L/P ratio can be the result of increased
aerobic glycolysis, a situation that occurs when, despite oxygen availability, the cell con-
tinues to produce ATP through glycolysis, with the minimal or absent involvement of the
tricarboxylic acid cycle, or can be due to mitochondrial impairment [33]. To this regard, in
a murine investigation, cerebral positron emission tomography scans (PET-CT) conducted
72 h after CA demonstrated an elevated uptake of 2-deoxy-2-[18F]fluoro-D-glucose (18F-
FDG) in mice when compared to control groups [34], suggesting an increased metabolic
demand in the proximity of a global cerebral anoxic injury. Furthermore, compromised
mitochondrial function has been observed both during cardiopulmonary resuscitation
(CPR) and following experimental CA, despite optimal resuscitation efforts [35,36].

Post resuscitation, elevated blood glucose levels and their fluctuations have been
associated with an unfavourable prognosis [37]. However, the experimental evidence
regarding this association remains a topic of debate [38,39]. Notably, experimentally in-
duced variations in pre-arrest glucose levels have been linked to altered gene expression in
resuscitated animals after cardiac arrest, suggesting that hyperglycaemia could induce a
different early cerebral response that could be implicated in pathological processes [40].
Additionally, in acute brain injury patients, hyperglycaemia has been associated with an
increased risk of death and poor neurological outcomes [41]. Intriguingly, a rodent study
examining prolonged CA found that, while metabolic disturbances in the heart and liver
were rectified after 30 min of cardiopulmonary bypass resuscitation, these disturbances
intensified in the brain and kidneys [42]. This suggests a differential organ response to
reperfusion following CA. A fundamental role in cellular metabolism is attributed to mito-
chondria, which produce ATP through oxidative phosphorylation, and thereby assure the
continuity of cellular physiologic functions. Extensive preclinical and translational research
has established a connection between ischemia–reperfusion events and mitochondrial
dysfunction. Interestingly, alterations in mitochondria phospholipids have been deemed
specific to the brain and not peripheral mitochondria, suggesting an increased vulnera-
bility to ischemia–reperfusion [43], and, after CA, damaged mitochondria could release
cytochrome C and apoptotic signals, thus promoting necrosis [44]. Moreover, excessive
mitochondrial elimination through selective autophagy (mitophagy) has been described in
an experimental model of asphyxial CA in rats [45].

In summary, both during CPR and throughout the post-resuscitation phase, the brain
endures severe metabolic alterations. These alterations may contribute to the progression
of cerebral injuries, even when perfusion is adequately restored.

4. Rationale in Cardiac Arrest

The human brain, while resilient in many ways, is particularly vulnerable to hypoxic-
ischemic injuries. Recent research has highlighted the potential therapeutic benefits of KBs
in addressing these challenges. The following paragraphs provide a comprehensive look at
the multifaceted benefits of KBs in this context.

In normal conditions, KBs do not present a more favourable metabolic profile than
glucose, having a less favourable phosphate to oxygen ratio (2.50 vs. 2.58, representing
the amount of ATP produced per oxygen atom reduced by the respiratory chain) [46,47].
Nevertheless, insulin resistance is present after CA [27,31], and it is known that insulin plays
a key role in the activation of pyruvate dehydrogenase in multiple tissue [48–50] which
leads to pyruvate dehydrogenase inactivation, decreasing the overall cellular capacity to
convert pyruvate to acetyl-CoA to fuel the tricarboxylic acid cycle. [46]. in such conditions,
KBs represent a direct source of acetyl-CoA, and thus could represent a readily usable
energetic substrate.
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4.1. Glucose Sparing Effect

KBs provide an alternative energy substrate for the brain, allowing available glucose
to be redirected from the glycolytic pathway to the pentose phosphate pathway, which is
crucial for cellular membrane regeneration [51]. By inhibiting hepatic gluconeogenesis, KBs
reduce glucose production and lipolysis, while maintaining stable insulin and glucagon
levels [52]. This results in a favourable cardiovascular profile. In fact, in a randomised
controlled trial in humans, the increase in ßOHB induced by lipopolysaccharide infusion
was associated with a reduced cerebral glucose uptake and an increased cerebral blood flow,
without a tangible effect on cerebral oxygen uptake [53]. Figure 2 illustrates the glucose-
sparing effect in the brain and in the liver, induced by the presence of ketone bodies.
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Figure 2. Glucose-Sparing Effect in the brain and in the liver by Ketone Bodies. Ketone bodies (KBs)
serve as an alternative energy source for the brain and the liver, thereby conserving glucose, which
can be redirected to the pentose phosphate pathway allowing an increase in biosynthesis. In the liver,
KBs inhibit hepatic gluconeogenesis, reducing glucose production and lipolysis, while maintaining
stable insulin and glucagon levels.

4.2. Seizure Control, Modulation of Oxidative Stress and Inflammation

Both the ketogenic diet and medium-chain triglyceride (MCT) supplementation have
been effective in managing resistant epilepsy in children [54,55]. Post-cardiac arrest
(CA) patients often experience epileptic activity [56], which is linked to unfavourable
outcomes [57,58]. KB supplementation has shown anti-seizure activity [59,60], suggesting
its potential as a coadjutant therapeutic strategy for epilepsy [61].

KBs, especially ßOHB, play a pivotal role in reducing oxidative stress via influenc-
ing histone acetylation [6,62] and blocking the inflammasome-mediated inflammatory
response [63]. ßOHB also decrease reactive oxygen species production following glutamate
excitotoxicity [64], and similar results have been reported in an experimental model of
traumatic brain injury [65] and during hypoglycaemic conditions [66].

In recent years, KBs have been linked with both pro- and anti-inflammatory prop-
erties as follows: acetoacetic acid (AcAc) has been associated with increased endothelial
injury [67], and ketosis has been associated with type 1 diabetes with increased inflam-
mation [68], whereas ßOHB seems to exert anti-inflammatory properties in a variety of
tissues via hydrocarboxylic acid receptors (HCA) [69]. In a culture of murine microglial
cells, ßOHB suppresses LPS-induced inflammation by modulating NF-kß [70] and was as-
sociated with the recruitment of a neuroprotective population of monocytes/macrophages
in a rodent model of a stroke [71]. Furthermore, ketone bodies have been deemed to
mediate inflammation in both experimental models of heart failure and cardiovascular
disease [72,73].
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4.3. Sodium Load and Osmolarity

Ketone bodies, derived primarily from medium-chain fatty acids (MCFA)—abundantly
found in breast milk—have gathered significant attention in the medical community.
Medium-chain triglycerides (MCT) serve as a noteworthy alternative to the ketogenic
diet, especially in paediatric patients with refractory epilepsy [74]. Beyond dietary sources,
ketone bodies can be introduced directly into the system, either orally or intravenously in
the form of esters or salts. While ketone salts are bound to minerals like sodium, esters
are linked to alcohols [75]. Although ketone esters are typically favoured to prevent an
excessive sodium load, the implications of a sodium-rich solution become particularly
significant in the aftermath of CA.

A pivotal concern post-cerebral reperfusion is neuronal swelling. This phenomenon,
believed to be triggered by the activation of voltage-gated chloride channels, results in a
rapid influx of negatively charged ions into the cellular environment. This ion imbalance
prompts a sharp increase in intracellular sodium, leading to a substantial water influx, caus-
ing cellular swelling and distress [76]. Notably, both hypo- and hypernatremia, observed
upon arrival following out-of-hospital CAs, have been associate with worst neurological
outcomes [77]. However, there is a silver lining: hypertonic saline combined with starches
has shown promise, with a higher rate of returning spontaneous circulation in a human
trial [78]. This suggests that a controlled sodium load for a limited period of time, when
paired with ketone body salt administration, might mitigate the cellular membrane sodium
gradient, potentially curbing neuronal swelling during the acute phase.

Furthermore, injectable salt esters of ßOHB can be formulated into hyperosmotic
solutions. In the context of post-CA syndrome, such solutions might offer relief from
episodes of elevated intracranial pressure, as previously documented [79,80]. Additionally,
they may play a role in enhancing cerebral blood flow [81]. Supporting this notion, a study
involving an electrically induced CA model in pigs found that hypertonic crystalloids were
associated with improved cerebral perfusion pressure, increased mean arterial pressure,
and reduced intracranial pressure when compared to isotonic counterparts [82]. Moreover,
hypertonic–hyperoncotic solutions have been linked to decreased cardiac and astroglial
injury markers post CA in pigs [83].

4.4. Improvement of Cardiac Function

In the immediate aftermath of CA, the prognosis remains grim. Within the initial
three days following a CA, approximately one-third of patients who are admitted alive
to the hospital die due to cardiovascular complications [84]. This high mortality rate is
unsurprising given that a significant proportion of CA is precipitated by underlying cardiac
pathologies, and that the recurrence of these conditions is most probable in the proximity
of the acute event. Moreover, a substantial number of CA survivors must deal with cardiac
impairment during the post-resuscitation phase [4], which can compromise both cerebral
and systemic perfusion, thus triggering a cascade of detrimental events that often culminate
in adverse clinical outcomes.

Emerging experimental evidence underscores the potential cardioprotective properties
of KBs. For instance, KBs have demonstrated protective effects in models of ischemia–
reperfusion injury [85,86], and have shown promising results in a porcine model of myocar-
dial infarction [87]. Furthermore, a recent clinical trial revealed that the infusion of ßOHB
resulted in notable cardiac and hemodynamic improvements without adversely affecting
cardiac mechano-energetics in both chronic heart failure patients and their healthy counter-
parts [88]. Collectively, the data suggest that interventions such as dietary-induced ketosis,
ßOHB infusion, or ketone ester supplementation, could improve recovery in ischemic
hearts [89].

Taken together, the body of evidence advocates for the therapeutic potential of exoge-
nous KB supplementation. Such interventions could offer a robust energy source during
metabolic dysfunction, supporting cellular repair processes. Whether they can be consid-
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ered for acute neuroprotection rather than neurological recovery enhancement remains an
interesting investigational challenge that is yet to be clarified.

5. Ketone Bodies and Cardiac Arrest

Recent advancements in the field of cardiac arrest research have shed light on the
potential therapeutic benefits of empagliflozin, a novel inhibitor of the sodium-glucose
co-transporter 2 (SGLT2) commonly prescribed for diabetes management. In a rat model
of cardiac arrest, Tan et al. explored the effects of empagliflozin, drawing some intrigu-
ing observations. Rats treated with this drug exhibited enhanced myocardial function,
prolonged survival, and a notable reduction in myocardial fibrosis, troponin-I levels, and
oxidative stress when compared to their untreated counterparts. Notably, empagliflozin
administration was associated with elevated myocardial ketone concentrations and ßOHB-
lysis-associated myocardial gene expression [90].

In another experimental setup, rats subjected to transient cerebral ischemia induced by
the occlusion of all four cerebral vessels demonstrated intriguing outcomes when exposed
to a 48 h fasting regimen. These animals exhibited a significant reduction in neuronal
death across various brain regions 72 h post ischemia, accompanied by decreased brain
lactate concentrations [91]. Furthermore, KB supplementation was also proven useful in
reducing cerebral damage in a similar model of total cerebral ischemia as follows: rats that
received an isotonic ßOHB infusion either 30 min prior to ischemia induction (at a dose of
50 mg/Kg/h) or immediately post induction (at 30 mg/Kg/h) exhibited extended survival,
diminished cerebral water and sodium content, and increased cerebral ATP levels [92].

While these transient global ischemia models offer valuable insights into global anoxic
brain injuries similar to those seen in cardiac arrest, it is crucial to note the potential
differences. The systemic ischemia–reperfusion events characteristic of CA, coupled with
profound cardiovascular dysfunction, might attenuate, or even neutralise, the observed
benefits of ketone body supplementation seen in vessel occlusion-based cerebral ischemia
models. Hence, it is imperative to conduct studies that accurately replicate the multifaceted
physiological disturbances associated with CA resuscitation.

In an effort to consolidate the existing literature on the potential therapeutic role of
KBs in CA, a literature search was undertaken. Searches were conducted according to the
PRISMA guidelines for systematic reviews [93] across Medline, Embase, and CENTRAL
databases as of 01 October 2023. The search sought to specifically identify studies in
which ketone bodies or ketogenic diets have been tested as interventions in the context
of cardiac arrest, and the search was not intended to collect data on a specific outcome
to perform a secondary analysis. The results were not restricted for language, and only
articles published on scientific journals were included in the review, aiming to gather a
comprehensive overview. Using MeSH terms, keywords, and Boolean operators “AND”
and “OR”, the aim was to pinpoint studies where ketone bodies or the ketogenic diet were
evaluated as interventions specifically in the context of cardiac arrest. Language restrictions
were not imposed, and only articles from scientific journals were considered. The detailed
search strategy for each database is available in Appendix A.

Two independent investigators (FA and EGB) screened the identified manuscripts.
Discrepancies were resolved through discussions. From the initial 88 articles, 11 duplicates
were removed. Based on title and abstract reviews, 68 articles were excluded. Of the
remaining nine articles assessed in-depth, four were excluded, resulting in five articles that
met the inclusion criteria for this review, as illustrated in Figure 3.
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Figure 3. Flowchart of the narrative review.

The included studies, detailed in Table 1, were experimental designs involving small
animals, predominantly rodents. Notably, three studies emanated from the same research
group [94–96]. All articles were published after 2007. In all but one study, the effects of
a ketogenic diet (spanning 25 or 28 days) were compared against a standard diet [94–97].
One study employed the intraperitoneal injection of KBs (i.e., ßOHB) prior to inducing
cardiac arrest [98]. Typically, the sample sizes were small, with most studies involving
4–6 animals [94–96,98]. An exception was one study with seventeen animals subjected
to a ketogenic diet, followed by CA [97]. All studies were planned to investigate the
neuroprotective properties of KBs in the proximity of a CA of various origins (chemical,
mechanical, or hypoxic), lasting between 8 min and 8 min and 30 s.
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Table 1. Studies including KB administration in cardiac arrest.

Author Year Title Species/CA Intervention Groups Main Findings

Tai KK [94] 2007

Ketogenic diet
prevents seizure and
reduces myoclonic
jerks in rats with

cardiac arrest-induced
cerebral hypoxia

Rat,
mechanical

(8′)

Ketogenic diet
(KD, 25 days)
vs. Standard

diet (SD)

1—Ketogenic diet
(n = 5)

2—Standard diet
(n = 5)

Rats on SD developed seizures
within 24 h and none in the KD.

Animals in the SD group
developed more severe myoclonic
jerks induced by auditory stimuli
when compared to the KD group.

Tai KK [95] 2008

Ketogenic diet
prevents cardiac
arrest-induced

cerebral ischemic
neurodegeneration

Rat,
mechanical

(8′30′′)

Ketogenic diet
(KD, 25 days)
vs. Standard

diet (SD) +/−
levetiracetam

1—SD (sham, n = 4)
2—SD/CA (Control,

n = 4)
3—KD/CA (n = 4)

4—SD-
Levetiracetam/CA
(negative Control,

n = 4)

KD decreased the number of
Fluoro-Jade-stained neurons in the

hippocampus, cerebellum,
and thalamus

Tai KK [96] 2009

Intracisternal
administration of
glibenclamide or

5-hydroxydecanoate
does not reverse the

neuroprotective effect
of ketogenic diet

against ischemic brain
injury-induced

neurodegeneration

Rat,
mechanical

(8′30′′)

Standard diet
(SD) or

Ketogenic diet
(25 days) +/−
intracisternal
injection of

glibenclamide
or 5-

hydroxydecanoate
4 h before CA

1—SD/no CA (n = 6)
2—SD/CA (n = 6)
3—KD/CA (n = 6)

4—
KD/Glibenclamide

(n = 6)
5—KD/5-

hydroxydecanoate
(n = 6)

6— SD/amiloride
(n = 6)

7— SD/saline (n = 6)

Fluoro-Jade-stained neurons in the
hippocampus and cerebellum

were lower in the KD exposed rats,
regardless the intracisternal
injection of glibenclamide or

5-hydroxybenzoate, confirming
the neuroprotective effect of KD

and suggesting that KATP
channels do not play a significant

role in KD-mediated
neuroprotection

Peng F [97] 2022

Ketogenic diet
attenuates

post-cardiac arrest
brain injury via the

upregulation of
pentose phosphate
pathway-mediated

antioxidant defence in
a mouse model of

cardiac arrest

Mouse,
chemical (K+)

(8′)

Ketogenic diet
(KD, 4 weeks)
vs. Standard

diet (SD)

1—KD/CPR (n = 17)
2—SD/CPR (n = 14)
3—KD/Sham (n = 6)
4—SD/Sham (n = 6)

KD-CA mice had improved
survival, better neurological score
and behavioural tests compared to

SD/CPR. KBs reduce glucose
utilisation in the brain, suppress

ROS production and activate
pentose phosphate pathway.

Tan Y [98] 2022

Ketone body
improves

neurological
outcomes after

cardiac arrest by
inhibiting

mitochondrial fission
in rats

Rat, asphyxia,
(8′)

ßOHB
(200 mg/Kg)

intraperitoneal
injection or

saline

1—Sham (n = 6)
2—Control (n = 6)
3—ßOHB (n = 6)

ßOHB-treated animals showed
higher survival (72 h), lower
lactate levels (6 h), improved
neurological function (72 h),
reduced disarrangements of

neurons in the CA-1 hippocampal
area, and increased neuron

numbers compared to the Control
and Sham groups. Moreover,
ßOHB decreased apoptosis,
pyroptosis in neurons, and

reduced mitochondrial fission,
while improving

mitochondrial function.

KD = ketogenic diet; SD = standard diet; CA = cardiac arrest; CPR = cardiopulmonary resuscitation; KATP = ATP-
sensitive potassium channels; ßOHB = beta-hydroxybutyrate.

The outcome measures varied across studies, encompassing the development of post-
resuscitation seizures, the susceptibility to myoclonic jerks [94], the number of Fluoro-Jade-
stained neurons as an expression of neuronal necrosis in different cerebral regions [95,96],
survival rate, behavioural tests, and neurological scores [97,98], as well as the degree
of apoptosis and mitochondrial fission [98]. Notably, only one study administered KBs
following the return of spontaneous circulation, which could limit the clinical applicability
of these findings [98].
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In summary, irrespective of the administration method or dietary regimen, all studies
indicated a beneficial effect of mild ketosis on neurological outcomes, suggesting a potential
neuroprotective role of ketone bodies against brain injury and dysfunction following CA.
However, the limited number of studies, small sample sizes, and inherent limitations of
animal models underscore the need for further research before translating these findings
into clinical practice.

6. Conclusions

Supplementing with KBs has shown promise in providing robust neuroprotective
benefits, ideally tailored for the body’s requirements during the acute and the recovery
phase post-resuscitation following CA. However, the existing literature is sparse, primarily
consisting of small-scale preclinical studies conducted on small animals. Despite the limited
scope, these findings collectively inspire further exploration into clinically relevant and
translational research.
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“cardiopulmonary arrest”[All Fields] OR (“asystole”[All Fields] OR (“heart attack”[All Fields]
OR (“induced heart arrest”[All Fields] OR “post cardiac arrest syndrome”[All Fields])))) AND
(“ketone bodies”[All Fields] OR “ketones”[All Fields] OR “acetoacetates”[All Fields] OR “hy-
droxybutyrate”[All Fields] OR (“ketogenic diet”[All Fields] OR “empagliflozin”[All Fields])).
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