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Abstract: Gynecological and obstetric infectious diseases are crucial to women’s health. There is
growing evidence that links the presence of Fusobacterium nucleatum (F. nucleatum), an anaerobic
oral commensal and potential periodontal pathogen, to the development and progression of various
human diseases, including cancers. While the role of this opportunistic oral pathogen has been
extensively studied in colorectal cancer in recent years, research on its epidemiological evidence and
mechanistic link to gynecological diseases (GDs) is still ongoing. Thus, the present review, which
is the first of its kind, aims to undertake a comprehensive and critical reappraisal of F. nucleatum,
including the genetics and mechanistic role in promoting adverse pregnancy outcomes (APOs) and
various GDs, including cancers. Additionally, this review discusses new conceptual advances that
link the immunomodulatory role of F. nucleatum to the development and progression of breast,
ovarian, endometrial, and cervical carcinomas through the activation of various direct and indirect
signaling pathways. However, further studies are needed to explore and elucidate the highly dynamic
process of host–F. nucleatum interactions and discover new pathways, which will pave the way for
the development of better preventive and therapeutic strategies against this pathobiont.

Keywords: adverse pregnancy outcomes; dysbiosis; Fusobacterium nucleatum; gynecological cancers;
gynecological diseases; opportunistic pathogen; immunomodulation

1. Introduction

The human microbiome is a diverse collection of microorganisms, such as bacteria,
archaea, viruses, and eukaryotes, that exist both inside and outside of the human body.
These microorganisms inhabit and interact with the human body by commensalism, mutu-
alistic, or pathogenic behavior, impacting human health either beneficially or detrimentally
by contributing to sound health or disease through the enhancement or impairment of
metabolic and immune functions [1,2].

Among the trillions of microorganisms present in the human body, bacteria are by
far the most predominant [3,4]. Studies in recent decades have delineated the structure
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and the functional capacity of the bacterial microbiome in both the healthy state and a
variety of disease states [2,5]. In healthy individuals, pathogenic and symbiotic bacteria
coexist without causing harm to the host. However, when there is a disturbance in this
balance or a change in the host’s bacterial community due to factors such as infectious
illnesses, specific diets, or the prolonged use of antibiotics or other bactericidal medications,
dysbiosis can occur. This can cease the normal beneficial interactions, thereby increasing
the host’s susceptibility to various infections, and the nature of those depends on the
anatomical sites involved [2,6]. An article published in ‘The Lancet’ in 2022 [7] reported on
a systematic analysis of the Global Burden of Disease Study 2019 and found that bacterial
infections are the second-leading cause of death worldwide, responsible for one in eight
of all global deaths. Pathogenic bacteria play a role in different inflammatory diseases,
including cancers [8–10]. Additionally, emerging evidence [11–16] has demonstrated a clear
role of intestinal and genital bacteria in the development of various pregnancy complica-
tions, gynecological diseases (GDs), and gynecological cancers (GCs). Among these bacte-
ria, Listeria monocytogens, Chlamydia trachomatis, Neisseria gonorrhoeae, Treponema pallidum,
Trichomonas vaginalis, Escherichia coli, Shigella sps, Staphylococcus epidermidis, Porphyromonas
somerae and Fusobacterium nucleatum have been most prevalent in various gynecological
complications over the last few years [16–24].

However, one bacterium that has received considerable attention in cancer microbiota
studies is Fusobacterium nucleatum (F. nucleatum). This is due to its high abundance and
relationship to poor prognosis in various types of cancers (colorectal, head and neck can-
cer, esophageal cancer, pancreatic cancer, and prostatic cancer), including GCs (cervical
carcinoma, and breast cancer) [24–26]. Recent worldwide studies have also reported the
association of F. nucleatum with pregnancy complications (chorioamnionitis, spontaneous
abortion, preterm birth, stillbirth, neonatal sepsis, preeclampsia, etc.) [27–29]. Further, stud-
ies have also stated the association of F. nucleatum with various GDs, including polycystic
ovarian syndrome (PCOS), endometriosis, and bacterial vaginosis (BV) [30–32], in addition
to cancers.

An obligate anaerobic Gram-negative bacillus F. nucleatum belongs to the genus
Fusobacterium, so-named based on its slender shape and spindle-like tips at both ends.
It often exists as a commensal in various sites of the body, especially in the human
oral cavity [33]. F. nucleatum is a heterogeneous species, with five known subspecies
(i.e., animalis, fusiforme, nucleatum, polymorphum, and vincentii) [34]. Originally, an oral
pathobiont, F. nucleatum, is known to coaggregate with various microbial species in the oral
cavity, playing a pivotal role in dental plaque formation [16,24,35,36]. However, it has often
been implicated in various extra-oral diseases, including cancers, due to its transmission
via the hematogenous route [16,37] and by its virulence mechanisms, including the ability
to induce aberrant inflammation and tumorigenesis [16]. F. nucleatum, an adhesive bac-
terium, acts as an opportunistic pathogen in patients with compromised health conditions,
particularly when it invades sterile locations such as the root canal [25,35].

Various studies have provided epidemiological and/or experimental evidence that
a significant association between F. nucleatum and colorectal cancers (CRCs) exists, also
delineating its crucial role in the pathogenicity, development, and prognosis of CRC [38–42].
Additionally, both molecular mechanism studies and epidemiological evidence have shown
a positive correlation between pre-existing inflammatory lesions, such as periodontitis, and
an increased risk of cancer [43]. Extensive research studies with epidemiological evidence
and mechanistic linkage involving F. nucleatum and various GDs are underway. The role of
F. nucleatum in GDs, including GCs, is emerging and discloses the versatile ways in which
this bacterium contributes to the development, growth, spread, and treatment response to
these diseases.

This review aims to delve into recent evidence and future directions of F. nucleatum,
particularly in gynecology, including their genetics and mechanistic role in promoting
adverse pregnancy outcomes (APOs), various GDs, including cancers, and the challenges
of developing diagnostics and therapeutics for F. nucleatum. This review focuses on the
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current evidence for F. nucleatum in disease pathogenesis and/or tumor development,
highlighting the similarities and differences between F. nucleatum-associated GDs. We
also explore the diverse facets of this bacterium’s interaction with the host with potential
gynecological implications. Thus, this review provides a comprehensive understanding
of the role of F. nucleatum in APOs and GDs, including cancers (Figure 1), and a potential
rationale for future research studies based on F. nucleatum as a predictive biomarker and/or
a target for anti-tumor therapy.
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(APOs), gynecological diseases (GDs), and gynecological cancers (GCs).

2. Evidence Acquisition and Synthesis

An extensive literature search was conducted using the electronic databases PubMed
and Google Scholar from 2019 until 2023. The keywords used were F. nucleatum in associa-
tion with various APOs (chorioamnionitis, neonatal deaths, preterm births, stillbirths, and
spontaneous abortion), different GDs (polycystic ovary syndrome, salpingitis, endometrio-
sis, and BV), and cancers (breast cancer, ovarian cancer, endometrial cancer, and cervical
cancer). The retrieved papers were carefully chosen based on title and abstracts. Then, the
full text of the selected papers was evaluated. The references of the reviews were manu-
ally searched to ensure no relevant references were missed. Full article texts, including
literature reviews and chapters were incorporated for analysis relating to the review’s
objectives. However, regarding the clinical terminology, the most relevant information
was incorporated from online sources, irrespective of the article length and type. Only
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articles written in English were considered for this review, and preprints were excluded.
The figures and graphical abstract were created with BioRender.com.

3. F. nucleatum in Adverse Pregnancy Outcomes

APO is a broad term comprising health complications that affect the mother, newborn
baby, or both during pregnancy, labor, delivery, and the postpartum period [44]. These health
complications vary from pregnancy to pregnancyand include chorioamnionitis, preterm birth,
spontaneous abortions, stillbirth, neonatal sepsis, low birth weight, preeclampsia, and gesta-
tional diabetes mellitus (GDM) (please refer to Box 1) [16,23,34,45–50]. APOs are responsible
for an enormous burden of maternal and infant mortality and morbidity worldwide [51,52].

Box 1. Adverse pregnancy outcomes
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Stillbirth 

definition, etiologies, and symptoms.

Chorioamnionitis
Acute inflammation can occur in the chorion, amnion, or both of the extraplacental membranes or
chorionic plate. This is known as the maternal inflammatory response (MIR). In some cases, there
may also be acute inflammatory cell extravasation from the umbilical cord vasculature or chorionic
plate vessels, known as the fetal inflammatory response (FIR). These responses can occur prior to,
during, or after labor [53]. The inflammation is often caused by chronic, subacute, or acute infection,
typically due to ascending polymicrobial bacterial infection after membrane rupture [54]. Symptoms
may include fever, maternal and/or fetal tachycardia, uterine tenderness and inflammation, foul-
smelling amniotic fluid, or an elevated white blood cell (WBC) count, which may lead to pregnancy
complications [55].

Preterm birth
Any birth that occurs before 37 completed weeks of gestation. It is a major cause of neonatal mortality
worldwide [56]. Various factors contribute to preterm birth, including stress, infection, placental
abruption, placenta previa, substance use, history of abortion, inadequate prenatal care, smoking,
maternal age (<18 or >40), poor nutrition, fetal anomaly, fetal growth restriction, oligohydramnios,
polyhydramnios, vaginal bleeding, premature preterm rupture of membranes (PPROM), and
environmental factors. Some common signs of preterm labor include regular contractions before the
expected gestational age, cervical changes, pelvic pressure, menstrual-like cramps, watery vaginal
discharge, and lower back pain [57].

Spontaneous abortions
Natural loss of pregnancy prior to twenty weeks of gestation [58], or with a fetus born
weighing < 500 g [27]. It is estimated that about 50% of miscarriages are caused by fetal chromoso-
mal abnormalities. Other contributing factors include advanced maternal age, alcohol consumption,
smoking, cocaine use, and chronic diseases such as diabetes, celiac disease, and autoimmune
conditions like anti-phospholipid antibody syndrome [58]. Rapid conception after delivery and
infections such as cervicitis, vaginitis, HIV, syphilis, and malaria are also common risk factors.
Symptoms often include abdominal and pelvic cramping, vaginal bleeding, and tachycardia. In
cases of significant bleeding, patients may experience symptoms of hypovolemia, even without
sepsis [58].

Stillbirth
The death of a fetus with a birth weight of 500 g, or if birth weight is unobtainable, gestational
age of 22 weeks or a crown-to-heel length of 25 cm. According to the World Health Organiza-
tion (WHO), all fetuses and infants weighing at least 500 g at birth should be included in statis-
tics. However, for international reporting and comparisons, WHO also recognizes a higher limit
(1000 g/28 weeks/35 cm) for third-trimester stillbirths [59]. This can be caused by various factors,
such as intrapartum complications, hypertension, diabetes, infection, congenital and genetic ab-
normalities, and placental dysfunction. Certain risk factors, including advanced maternal age,
teenage pregnancies, maternal nutritional status, infections, prior pregnancy losses, complicated
pregnancies, and multiple pregnancies, can increase the likelihood of stillbirth. Symptoms may
include a cessation of fetal movement and kicks, vaginal spotting or bleeding, and back pain for the
mother [60].
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Neonatal sepsis
An infection in the bloodstream in newborn infants less than 28 days old. This remains a leading
cause of morbidity and mortality among neonates. It is divided into two groups, based on the time
of presentation after birth: early-onset sepsis (EOS) and late-onset sepsis (LOS). EOS refers to sepsis
in neonates at or before 72 h of life, while LOS occurs at or after 72 h of life. EOS is typically caused
by the transmission of pathogens from the female genitourinary system to the newborn or fetus,
while LOS is usually transmitted from the surrounding environment after delivery, such as through
contact with healthcare workers or caregivers. Risk factors for this condition include advanced
maternal age, chorioamnionitis, a weakened immune system, and the use of invasive devices.
Symptoms and signs may include irritability, lethargy, and poor feeding, as well as respiratory
distress, fever, hypothermia, hypotension, and shock. In some cases, hyperglycemia, hypoglycemia,
acidosis, or hyperbilirubinemia may be the only indicators of the condition when other factors are
absent [61].

Preeclampsia
A multisystem condition arising during pregnancy including hypertension and proteinuria. Ac-
cording to Karrar and Hong (2023) [62], the initial parameters for identifying preeclampsia are
a systolic blood pressure of 140 mm Hg or higher, or a diastolic blood pressure of 90 mm Hg or
higher on two separate occasions at least 4 h apart. Alternatively, a shorter interval timing of a
systolic blood pressure of 160 mm Hg or higher or a diastolic blood pressure of 110 mm Hg or
higher, can also indicate preeclampsia. These criteria must be met after 20 weeks of gestation. There
are various potential causes of preeclampsia, including uteroplacental ischemia, maternal infection
and inflammation, maternal intestinal dysbiosis, maternal obesity, sleep disorders, hydatidiform
mole, fetal diseases, autoimmune disorders, placental aging, breakdown of maternal-fetal immune
tolerance, and endocrine disorders [63]. Common signs and symptoms of preeclampsia include
new onset headache, right upper quadrant or epigastric pain with associated nausea or vomiting,
shortness of breath, and increased swelling [62].

Gestational diabetes
Any degree of glucose intolerance that occurs or is first recognized during pregnancy and typically
resolves after the baby is born. It is recommended to screen for gestational diabetes between 24
and 28 weeks of pregnancy using a 50 g, 1 h oral glucose tolerance test. If the results are abnormal,
with a value of 130 mg/dL (7.22 mmol/L) or higher, a confirmatory test is necessary using a
100 g, 3 h oral glucose tolerance test. The following values are considered abnormal: a value
over 180 mg/dL in the first hour, over 155 mg/dL in the second hour, and over 140 mg/dL in the
third hour. A diagnosis of gestational diabetes is established if two or more of these values are
abnormal [64]. However, according to the Australian Diabetes in Pregnancy Society (ADIPS), a
single abnormal result of either fasting > or = to 5.1 mmol/L or 1 h > or = to 10.0 mmol/L or 2 h >
or = to 8.5 mmol/L is considered diagnostic for gestational diabetes. The etiology is thought to
be related to dysfunction of the pancreatic beta cells and/or delayed response of the beta cells to
changes in blood sugar levels, as well as increased insulin resistance due to hormones released
by the placenta. Contributing factors may include a body mass index (BMI) over 25, decreased
physical activity, a first-degree relative with diabetes mellitus, a history of gestational diabetes or
a previous newborn with macrosomia, and metabolic comorbidities such as hypertension, low
HDL, triglycerides over 250, polycystic ovarian syndrome, an abnormal oral glucose tolerance test,
acanthosis nigricans, or a medical history of cardiovascular diseases. Clinical signs may include
disproportionate weight gain, obesity, an elevated BMI, and fatigue during pregnancy [64].

F. nucleatum, although often found in healthy human placentas [65], has by far been
the most prevalent bacterium implicated in various APOs in the last 5 years [16,29,66,67].
Chorioamnionitis and preterm birth, the common complications of pregnancy causingsig-
nificant maternal, perinatal, and long-term adverse outcomes, have often been associated
with a high abundance of F. nucleatum in the placenta, amniotic fluid and fetal mem-
branes [15,16,25,28,48,50,65,68–74]. A recent case report from Italy by Bonasoni et al. [75]
has shown that F. nucleatum was present in the placental membrane of a 26-year-old woman
who presented at the hospital with painful uterine contractions at 23 weeks gestation. She
delivered a preterm infant with premature rupture of membranes, but unfortunately, the
baby girl died soon after birth. The placental histopathology revealed severe necrotizing
chorioamnionitis and funisitis, with Fusiform bacteria consistent with F. nucleatum. The
neonatal autopsy showed organ congestion and mild pericardial, pleural, and abdominal
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serous effusions, but no congenital anomalies were found. Histological analysis showed an
abundance of neutrophils in the lungs and scattered granulocytes in the gastric lumen and
large bowel. The fetal inflammatory response was evident with acute funisitis, chorionic
vasculitis, and acute deciduitis. Microbiologically, F. nucleatum was only isolated from the
infant’s lung. It is worth noting that despite -severe inflammation, the mother did not
experience any symptoms (usually, F. nucleatum chorioamnionitis presents with a raised
temperature). However, the mother presented with mild and diffuse gingivitis and had
undergone a dental procedure one day prior to delivery, indicating a probable association
between periodontal disease and hematological dissemination from the oral cavity, leading
to chorioamnionitis and its consequent effects on the fetus. A similar, but symptomatic
case of a 31-year-old female at 21 weeks gestation, was reported from Canada [76]. This
was the first reported case to reveal the practicability of performing 16S rRNA sequencing
on formalin-fixed, paraffin-embedded placental tissues (FFPE) in microbiological identifi-
cation of F. nucleatum and the first to establish the use of this molecular technique in the
neonatal death investigation [76]. A study from Germany by Heusler et al. [65] proposed
that low concentrations of F. nucleatum might promote the invasion of trophoblast cells
and induce the secretion of mediators for pregnancy establishment. However, in contrast,
unrestrained infections caused by F. nucleatum in early pregnancy might impact placental
development. In a longitudinal study on pregnant Japanese women [77] real-time PCR
with TaqMan probes and ELISA revealed that F. nucleatum levels in placenta samples were
significantly higher in the threatened preterm labor (TPL) group compared to the healthy
group before delivery. Additionally, the presence of F. nucleatum in placental tissues was
found to be significantly higher in the TPL-Healthy delivery (HD) group compared to the
healthy-HD group. The authors also affirmed the significant association of F. nucleatum
in placental tissues with TPL, indicating it may be a potential risk factor. A review article
from Qatar by Saadaoui et al. [49] threw the spotlight on the role of F. nucleatum in preterm
birth, specifically in cases of clinical chorioamnionitis. The article also noted a temporal
relationship between orogenital interaction with a male partner with periodontitis and
the onset of clinical infection. Another review article from Italy [72] reported that meco-
nium from preterm infants born to mothers with chorioamnionitis contained high levels
of pathogenic bacteria, including F. nucleatum. Further, Payne et al. [66] from Australia
demonstrated a significant enhancement of the microbial risk algorithm by the inclusion of
F. nucleatum in the novel vaginal bacterial DNA test that was efficacious at the prediction of
spontaneous preterm birth in a cohort of mostly white, low- to medium-risk Australian
women during midgestational period. A study from China [78] -corroborated a significant
positive correlation between the Apgar score (appearance, pulse, grimace, activity, and
respiration) and the presence of F. nucleatum in the vagina. The Apgar score is a rapid
method for assessing neonates immediately after birth or in response to resuscitation. A
report by Walsh et al. [79] from the United States of America (USA) specified the role of F.
nucleatum in triggering a more robust inflammatory response, leading to a higher incidence
of preterm birth in African American women with a prevalence of F. nucleatum in their
vaginal microbiome, compared to L. crispatus, which is prevalent in the vaginal micro-
biome of women of European ancestry. A case-control study from Brazil [67] conducted on
120 postpartum women, comprising 40 cases (gestational age < 37 weeks; preterm delivery)
and 80 controls (gestational age ≥ 37 weeks; full-term delivery), revealed significantly
higher proportions of F. nucleatum in the subgingival biofilm of cases compared to controls.
Additionally, a 2022 cross-sectional case-control study in the USA [74] used umbilical cord
blood specimens to evaluate the presence, abundance, and composition of bacteria through
endpoint PCR of full-length 16S rRNA and the V4 amplicon sequence variants (ASVs).
The study revealed F. nucleatum subsp. animalis as the most prevalent F. nucleatum strain
detected in the umbilical cord blood microbiome in early preterm live birth cases.

The last five years have seen an increase in research on the link between F. nucleatum
and spontaneous abortion/miscarriage, a pregnancy complication that may have physical
and psychological effects on women [15,27]. In a matched case-control study conducted in
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Thailand [27], 85 women who experienced spontaneous abortion (<20 weeks of gestation)
were compared to 85 controls of similar age, gestational age. The study found no significant
differences in the levels of F. nucleatum in subgingival plaque between case and control
groups. However, when subgroup analysis was conducted to compare levels of F. nucleatum
between individuals with and without periodontitis in both case and control groups, with
periodontitis had higher levels of F. nucleatum in both the spontaneous abortion and normal
pregnancy groups.

F. nucleatum has been widely reported in various sources such as amniotic fluid, cord
blood, fetal membranes, placental and fetal tissues of patients with stillbirth, fetal death,
neonatal sepsis, and low birth weight [16,71,73,80]. It has also been found in vaginal
samples of pregnant women at 28 weeks of pregnancy, and has been associated with early-
onset neonatal sepsis [50]. In mice, F. nucleatum has been shown to induce stillbirths when
given intravenously [25,47]. This is primarily caused by placental inflammation mediated
by Toll-like receptor 4 (TLR4). In mice lacking TLR4 or treated with a TLR4 antagonist,
F. nucleatum was found to colonize the placenta without eliciting an inflammatory response,
resulting in a reduced fetal death rate [47]. In humans, F. nucleatum was isolated as a
pure culture from the lung and stomach of a stillborn infant. An identical clone was also
observed in the mother’s subgingival plaque, while no fusobacteria were detected in her
vaginal and rectal flora [47].

Recent reports have also linked F. nucleatum to hypertension and preeclampsia [28,48,81–85].
Preeclampsia affects 5% to 7% of all pregnant women and is responsible for over 70,000
maternal deaths and 500,000 fetal deaths worldwide every year. It is the leading cause of
maternal death, severe maternal morbidity, maternal intensive care admissions, caesarean
section, and prematurity in the USA [86]. While higher levels of F. nucleatum have been
associated with uncontrolled type 2 diabetes mellitus (T2DM), recent reports have not
directly linked this bacterium to GDM. However, one recent review article has linked the
genus Fusobacterium to GDM [48]. The above studies point towards the need for accurate
species and strain-level identification of Fusobacterium in oral as well as vaginal microbiomes
for predicting the risk of various APOs, which, in turn, might help to delineate appropriate
therapeutic strategies. Moreover, clinical studies to reconnoiter the microbial profiles and
the composition of multiple biofilms during the different trimesters of pregnancy should
also be proposed.

F. nucleatum, detected in the neonatal microbiome, was found to be absent in the
mother’s urogenital tract but present in their oral cavity. This suggests that the bacteria
may have been transferred through the bloodstream due to its ability to adhere to vascular
epithelium [87]. A review article from China [16] also highlighted that injecting saliva or
subgingival plaque samples into mice can lead to placental infection with oral commensal
species, including F. nucleatum, suggestingthat oral bacteria have the ability to travel
to the feto–placental unit. Additionally, there is evidence of F. nucleatum detectionin
amniotic fluid, placenta, and neonatal aspirates, matching those found in maternal oral
samples [33,47]. These studies emphasize the importance of understanding the need to
protect pregnant women from periodontal diseases. This further sheds light on the need
to detect the environmental uniqueness of the placenta that permits it to harbor these
potentially pathogenic oral commensals. These reports further corroborated the incidence
of oral–uterine translocation via the bloostream [29,47,88].

Interestingly, recent reports have linked the abundance of F. nucleatum to various
external factors like smoking, oral hygiene and diet [71,89–92]. Studies have shown that
smokers have a higher abundance of F. nucleatum in their subgingival plaque samples
compared to non-smokers [71,89]. Additionally, adherence to a Western diet, characterized
by high fat and processed carbohydrate intake and low fiber consumption, has been linked
to increased levels of F. nucleatum [90]. The consumption of inflammatory foods, such as
refined grains, red and processed meats, and carbonated beverages, has also been associated
with F. nucleatum infections [93]. In a review article from France, Martinon et al. [94]
reported the significant bactericidal effects of a gel containing 1% curcumin (a bioactive
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substance of turmeric) on F. nucleatum in patients with periodontal diseases. A Polish
study [37] stated that the use of zinc ions, commonly found in commercial anti-malodor
mouthwashes, can inhibit F. nucleatum. A Columbian systematic review and meta-analysis
conducted by Merchant et al. [95] indicated that treating maternal periodontitis patients
infected with F. nucleatum using chlorhexidine mouthwash, scaling and root planing (SRP)
reduces the risk of preterm birth and low birth weight babies. These reports highlight
the importance of considering multiple external factors that impact a pregnant woman’s
oral microbiota and potentially lead to APOs. This further emphasizes the need for a
thorough understanding of the origin of the offending bacteria and their potential routes
of invasion to the placenta and amniotic cavity, as well as the importance of maintaining
good oral hygiene.

Several virulence factors and enzymes possessed by F. nucleatum are known to aid
the bacterium in colonizing the fetal and placental membranes. However, Fusobacterium
adhesion A (FadA), a unique adhesin of F. nucleatum, is best characterized and known
to play a critical role in bacterial dissemination and colonization in the placenta. This is
followed by spread to the fetal membranes, leading to acute inflammation of the placental
and fetal membranes, causing chorioamnionitis and ultimately preterm birth [16,47,71]
(Figure 2A). The active form of Fusobacterium adhesion A is an amyloid-like complex,
termed FadAc, which comprises the intact pre-Fusobacterium adhesin A (129 amino acids)
and the cleaved Fusobacterium adhesin A without the signal peptide. Under stress and
disease conditions, F. nucleatum secretes amyloid-like Fusobacterium adhesin A, acting
as a molecular switch to change the bacterium from a commensal to a pathogen [34,96].
The fadA-deletion mutant is significantly impaired in mediating placental colonization.
The binding of FadA to vascular endothelial cadherin causes the loosening of the tight
junction, allowing F. nucleatum and other oral bacteria to penetrate the endothelium. This
may explain why F. nucleatum is often found in intrauterine infections, not only as a sole
infectious agent but also concomitantly with other oral species [47].

Apart from FadA adhesin, Fusobacterium apoptosis-inducing protein 2 (Fap2) and
the two Coaggregation regulator Response regulator and Sensor kinase– Arginine (R)-
inhibitable adhesin D (CarRS- RadD) systems have been reported to be involved in F. nu-
cleatum colonization of placenta [34]. Fap2, involved in interspecies coaggregation and cell
adhesion, is a huge type V autotransporter with more than 3000 amino acids [34]. A recent
study [29] involving human samples and a mouse pregnancy model has demonstrated that
the fusobacterial outer membrane protein, Fap2, and host placenta displaying D-galactose-β
(1–3)-N-acetyl-D-galactosamine (Gal-GalNAc) are involved in fusobacterial placenta local-
ization and enrichment. Fascinatingly, Fap2-dependent fusobacterial attachment has been
perceived not only in the placenta but also in the blood vessels leading to the placenta,
signifying that enhanced Gal-GalNAc display is coordinated both in fetal and maternal tis-
sues (Figure 2B). Interestingly, Fap2, mediating placental colonization by fusobacteria, is also
found to activate the human (but not mouse) TIGIT killing-suppressing receptor expressed
on T cells and natural killer (NK) cells (Figure 2B). Thus, galactose-sensitive adhesin, Fap2
of F. nucleatum contributes to its virulence for successful colonization in the placenta by eva-
sion of host immune surveillance. However, a two-component signal transduction system,
CarRS, consisting of the response regulator CarR and the sensor kinase CarS, regulates the
expression of the outer membrane transporter adhesin RadD. Disruption or Interruption of
CarR is reported to increase the fetal survival rate in mice, while the disruption of either
CarS or RadD decreases their survival, unveiling a hypervirulence phenotype. It is still
uncertain if the involvement of CarRS in placental infection is facilitated directly by RadDor
through the regulation of other virulence factors, such as Fusobacterium adhesin A and/or
Fap2 [34,68]. However, a recent study from USA [97] has reported the essential role of the
multigene locus encoding a single, fused methionine sulfoxide reductase (MsrAB) and
thioredoxin (Trx)- and cytochrome c (CcdA)-like proteins in attachment and colonization of
F. nucleatum to the placental tissues, thereby expediting the initiation of infection and its
spread to the amniotic fluid. This study explicitly adduces that the MsrAB system governed
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by the two-component system ModRS epitomizes a major oxidative stress defense pathway
that keeps the bacteria away from oxidative damage in immune cells, thereby conferring
virulence by enabling adhesion and invasion of target tissues.
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Figure 2. Role of Fusobacterium nucleatum (F. nucleatum) in adverse pregnancy outcomes (APO).
(A) Interaction between Fusobacterium adhesion A (FadA), with vascular endothelial cadherin (VE-
Cadherin) to internalize F. nucleatum in endothelial cells for bacterial dissemination, leading to
increased inflammatory cytokines causing chorioamnionitis and preterm birth. (B) Fusobacterium
apoptosis-inducing protein 2 (Fap2) binds with D-galactose-β (1–3)-N-acetyl-D-galactosamine (Gal-
GalNAc) on endothelial cells to localize into placenta by suppressing TIGIT mediated activation
of T cells and natural killer (NK) cells. (C) Lipopolysaccharide (LPS) interacts with TLR 4 on
endothelial cells to activate the NF-κB pathway, leading to an inflammatory cytokine storm causing
placental inflammation.

Additionally, a study conducted by Garcia-So and colleagues from the USA [98]
demonstrated that F. nucleatum triggers placental inflammation through maternal, TLR4-
mediated signaling. The study revealed a spatiotemporal pattern of placental inflammatory
response, with NF-κB activation (Figure 2C) first observed in maternal endothelial cells,
followed by decidual cells surrounding the endothelium, and constant induction of inflam-
matory cytokines and chemokines. Moreover, the study highlighted the beneficial role of
purified omega-3 fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA), in suppressing inflammatory responses in endothelial cells mediated by both
TLR2 and TLR4, thereby protecting against placental inflammation. Furthermore, the
study showed that omega-3 fatty acids inhibit F. nucleatum proliferation in the placenta and
increase fetal and neonatal survival. Therefore, Garcia-So et al. [98] not only elucidated
the mechanism by which F. nucleatum causes intrauterine infection and triggers placental
inflammation, leading to various APOs such as preterm birth, stillbirth, and neonatal sepsis
but also provided a prophylactic measure to protect against such infections.

Furthermore, Park and colleagues [28] stated that receptor-interacting protein kinase
2 (Ripk2) might aid in the F. nucleatum-induced production of IL-6 by initiating NF-κB
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signaling in murine macrophages and human decidual stromal cells (hDSCs). Ripk2 was
also reported to upregulate inducible nitric oxide synthase (iNOS) gene expression and NO
production in macrophages. This promoted the production of CXCL8 and CCL2, which
was reduced by Ripk2 inhibitors, SB203580 and PP2. These findings advocate the fact that
APOs result from F. nucleatum infection due to the induction of aberrant production of
cytokines and chemokines through nucleotide-binding oligomerization domain (NOD)
1/2-Ripk2-mediated signaling. This study also revealed that Ripk2 deficiency led to the
reduced production of tumor necrosis factor α (TNF-α) in the absence of TLR4, thereby
betokening the redundancy of Ripk2 in some immune responses in macrophages against
F. nucleatum. This study [28] displayed for the first time the contribution of Ripk2 to
cytokine or chemokine production in response to F. nucleatum in murine macrophages and
hDSCs. It would be highly advantageous to regulate Ripk2 signaling to prevent APOs,
especially in chorioamnionitis caused by bacterial infections and use it as a molecular
drug target. However, further studies using animal models are required to expound the
immunomodulatory role of Ripk2 in F. nucleatum-induced APOs and the beneficial role of
Ripk2 inhibitors in the prevention of APOs. Moreover, the use of cutting-edge technologies
is also warranted to fully unravel the complex regulatory networks of molecular and
cellular events underlying the role of F. nucleatum in APOs. Table 1 summarizes the main
findings from research articles and case reports linking the association between F. nucleatum
and its potential adverse effects during pregnancy.
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Table 1. Summary of research articles and case reports linking F. nucleatum to APO.

SL. No. Article Type Country of Report Year of Publication Specific Findings/Main Highlights References

1 Research article Thailand 2019 Association between F. nucleatum and spontaneous abortions in individuals
with periodontitis. Chanomethaporn et al. [27]

2 Case report Canada 2019
Association between F. nucleatum and a symptomatic case of acute
chorioamnionitis and PROM; first report to use a specific molecular
technique in neonatal death investigation.

Chan et al. [76]

3 Research article USA 2019

Omega-3 fatty acid is a promising prophylactic therapy to protect against
intrauterine infections, as it has been shown to suppress F. nucleatum-induced
placental inflammation, both in pregnant mice and in vitro, using human
umbilical cord endothelial cells.

Garcia-So et al. [98]

4 Research article Japan 2020 A significant association between F. nucleatum and TPL in placental tissues. Ye et al. [77]

5 Research article USA 2020
A greater prevalence of F. nucleatum in the vaginal microbiome of African
American women is capable of initiating the inflammatory response that
might result in preterm birth.

Walsh et al. [79]

6 Research article Korea 2021

F. nucleatum infection induces innate inflammatory responses in macrophages
hDSCs and results in APOs by induction of aberrant production of cytokines
and chemokines through NOD1/NOD2-Ripk2-mediated signaling,
suggesting Ripk2 signaling as a potential preventive and therapeutic target
against APOs.

Park et al. [28]

7 Research article Australia 2021 Significant improvement in risk prediction for spontaneous preterm birth by
inclusion of F. nucleatum in test algorithm. Payne et al. [66]

8 Research article USA 2021
The adhesin RadD, a major virulence factor of F. nucleatum, not only mediates
polymicrobial interaction (or coaggregation) but is also critical in a mouse
model of preterm birth.

Wu et al. [68]

9 Research article Israel 2022

Galactose-sensitive adhesin, Fap2 of F. nucleatum contributes to its virulence
for successful colonization in the placenta by selectively binding to
Gal-GalNAc, also called T antigen as this antigen is over-displayed during
fetal development.

Parhi et al. [29]

10 Research article USA 2022 F. nucleatum has been detected as the most prevalent species in cord blood in
early preterm live birth cases. Vander Haar et al. [74]

11 Research article China 2022 F. nucleatum in the vagina can serve as a potential biomarker for APO. Sun et al. [78]

12 Research article USA 2022
F. nucleatum possesses a multigene locus encoding a fused MsrAB and the
associated factors Trx/CcdA that help the bacteria colonize the placenta and
spread to the amniotic fluid to induce preterm birth in a murine model.

Scheible et al. [97]

13 Research article Brazil 2023
A significantly higher proportion of F. nucleatum in the subgingival biofilm of
the women with gestational age < 37 weeks compared to those with
gestational age ≥ 37 weeks.

Lima et al. [67]

14 Case report Italy 2023
A minor dental procedure may contribute to the development of F.
nucleatum-associated chorioamnionitis and PPROMwithout any prior
symptoms in the mother.

Bonasoni et al. [75]

Abbreviations: APO—adverse pregnancy outcome; PPROM—premature preterm rupture of membranes; hDSC—human decidual stromal cell; TPL—threatened preterm labor;
Ripk2—receptor-interacting protein kinase 2; NOD—nucleotide-binding oligomerization domain; T-antigen—Thomsen Friedenreich antigen; MsrAB—methionine sulfoxide reductase;
Trx/CcdA—Thioredoxin/Cytochrome c.
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4. F. nucleatum in Gynecological Diseases

In the last 5 years, there have been several reports from various parts of the world
indicating the involvement of F. nucleatum in various GDs like polycystic ovary syndrome
(PCOS), endometriosis, and pelvic inflammatory disease (PID) like salpingitis and (BV)
(please refer to Box 2) [15,30–32,75,99–103].

Box 2. Gynecological diseases
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definition, histopathologies, etiologies, and symptoms.

Polycystic ovary syndrome
A complex endocrine and metabolic disorder classically characterized by anovulation, infertility,
obesity, insulin resistance, and polycystic ovaries. It is also known as hyperandrogenic anovulation
(HA) or Stein–Leventhal syndrome. It defines a typical condition where at least one ovary has an
ovarian volume greater than 10 mL and at least one ovary has an estimated 12 small cysts, with
diameters ranging from 2 to 9 mm [104]. However, due to advances in ultrasound technology, the
initial Rotterdam criteria have been changed to >20 follicles in either ovary [105]. The most common
contributing factors include obesity and insulin resistance. Fetal androgen exposure may also
contribute to this condition [106]. According to the recently updated (2023) guidelines of the WHO,
possible symptoms include heavy, long, intermittent, unpredictable, or absent periods, infertility,
acne or oily skin, excessive hair on the face or body, male-pattern baldness or hair thinning, and
weight gain, especially around the belly.

Pelvic inflammatory disease
Classically defined as an infection that originates in the cervical–vaginal region and spreads to the
upper genital tract, resulting in a combination of symptoms such as acute salpingitis, perihepatitis,
endometritis, oophoritis, pelvic peritonitis, and/or tubo-ovarian abscess [107]. The majority of PID
cases are caused by sexually transmitted infections.

• Salpingitis is particularly defined as an infection and inflammation in the oviducts (fallopian
tubes). These tubes are responsible for transporting oocytes and sperm, as well as facilitating
fertilization and early embryonic development. The inflammation can be acute or chronic and
can range in severity from mild to severe. It is typically caused by an infection that spreads
from the lower tract to the upper genital tract [108]. It is also referred to as salpingitis isthmica
nodosa (SIN) and is believed to be a part of the chronic pelvic inflammatory disease (PID)
spectrum in some patients. Histopathologically, SIN is characterized by nodular thickening of
the muscularis layer of the fallopian tube and the formation of inclusion cysts or diverticula
due to overgrown epithelium. It is strongly associated with both infertility and ectopic
pregnancies [109]. The current known causes of salpingitis include infection, cellular invasion,
and congenital malformations [110]. Clinically, it is often manifested by edema, congestion of
the fallopian tubes, and inflammation of the peritoneal structures [109].

• Perihepatitis, or Fitz–Hugh–Curtis syndrome, is a rare and chronic complication of PID that
primarily affects premenopausal women. It is characterized by inflammation of the liver
capsule and adhesion of the peritoneum, resulting in right upper quadrant pain [111]. The
condition can be caused by various factors, including spontaneous ascending infection where
microbes from the cervix or vagina travel to the endometrium, through the fallopian tubes,
and into the peritoneal cavity; lymphatic spread, such as infection of the parametrium from an
intrauterine device; and hematogenous spread, such as with tuberculosis. Common symptoms
include acute pain and/or chronic tenderness in the right upper abdomen [112].

• Endometritis is an infectious inflammation of the endometrium, which is the innermost uter-
ine layer. When the inflammation spreads into the muscular layer, the process is termed
endomyometritis, and when it extends through to the parametrium, it is called endoparametri-
tis. Histopathologically, acute endometritis is usually characterized by microabscesses and
neutrophil invasion of the superficial endometrial epithelium, glandular lumens, and endome-
trial cavity. However, chronic endometritis is characterized by the infiltration of endometrial
stromal plasmacytes (ESPCs), micropolyposis, edematous changes in the proliferative phase,
and dissociated maturation between the stroma and epithelium. Additionally, B cells can
accumulate in the endometrial stroma and glands. This condition is caused by the migration
of normal bacterial flora from the cervix and vagina into the uterine cavity but can also be
caused by bacteria from outside the genital tract. Symptoms of endometritis typically include
irregular bleeding, pelvic discomfort, and leukorrhea [113].
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• Oophoritis is a condition in which the ovaries become inflamed due to certain infections,
potentially leading to impaired ovarian function. This inflammation can result in atrophic and
fibrotic ovaries and, in rare cases, the replacement of ovarian stroma by foamy macrophages
and histiocytes [114,115]. Various factors can contribute to the development of oophoritis,
including sexual transmission, infection during pregnancy, and peripubertal infection, de-
pending on the specific virus or pathogenic agent. Common clinical symptoms of oophoritis
include anorexia, fever, suprapubic pain, menorrhagia, vaginal bleeding, adnexal tenderness,
and/or a pelvic mass [114].

• Peritonitis is a medical condition characterized by inflammation of the peritoneum, which
is the membrane that lines the abdominal cavity [116]. This inflammation can be caused by
various factors, such as underlying health conditions or the presence of infectious agents.
In some cases, it may also present as granulomas with central caseous necrosis, although
this is rare. Some of the known causes of peritonitis include gastroduodenal perforations,
intestinal volvulus, ruptured abscesses, traumatic bowel perforation, perforated peptic ulcers,
tubo-ovarian abscesses, and amoebic colonic perforations [117]. The classic symptoms of
peritonitis include severe abdominal pain, tenderness and rigidity, fever, chills, and altered
mental status [118].

• Tubo-ovarian abscess (TOA) is a complex infectious mass that forms in the adnexa as a result
of PID. It is often caused by bacteria from the lower genital tract that travel up to the fallopian
tube, ovary, and potentially other nearby pelvic organs. Common risk factors include being
of reproductive age, having an intrauterine device (IUD) inserted, having multiple sexual
partners, and having a previous episode of PID. TOAs are typically polymicrobial and often
contain a high proportion of anaerobic bacteria. Symptoms may include an adnexal mass,
fever, elevated white blood cell count (WBC), lower abdominal or pelvic pain, and/or vaginal
discharge [119].

Endometriosis
Defined as a chronic inflammatory hormone-dependent condition associated with pelvic pain and
infertility. It occurs when uterine tissue grows outside of the uterus, leading to inflammation [120,121].
This can result in the formation of scar tissue, known as adhesions or fibrosis, in the pelvis and
other parts of the body. The WHO has identified several types of endometriosis lesions, including
superficial endometriosis on the pelvic peritoneum, cystic ovarian endometriosis (endometrioma)
in the ovaries, and deep endometriosis in the recto-vaginal septum, bladder, and bowel. In rare
cases, endometriosis may also be found outside of the pelvis. According to the WHO, the causes
of endometriosis include retrograde menstruation, cellular metaplasia, and the spread of stem
cells through the body via blood and lymphatic vessels. Symptoms, as described by the WHO,
include severe pain during periods, sexual intercourse, bowel movements, and/or urination, as
well as chronic pelvic pain, abdominal bloating, nausea, fatigue, and sometimes depression, anxiety,
and infertility.

Bacterial vaginosis
Defined as a condition in which the vaginal microbiome presents an overgrowth of obligate and
facultative anaerobes that disrupts the vaginal microbiome balance. It is a common and recurring
infection among women of reproductive age and has been linked to adverse health outcomes and a
decreased quality of life [122]. This condition is associated with significant negative healthcare out-
comes, including an increased susceptibility to sexually transmitted infections, urogenital infections,
pelvic inflammatory disease, and an increased risk of abnormal pregnancy [123]. Histopathologi-
cally, it is characterized by the presence of clue cells, which are epithelial cells of the cervix that are
embedded with bacteria. It is typically caused by a decrease in the number of normal hydrogen
peroxide-producing Lactobacilli, leading to an overgrowth of anaerobic bacteria [124]. Common
clinical symptoms include a foul fishy odor and itching in the perineal region [125].

F. nucleatum has been frequently linked directly or indirectly to PCOS in several
studies [15,31,99]. A systematic literature review from Macedonia [15] also found a high in-
cidence of F. nucleatum in the saliva of PCOS patients. Similar facts have also been reported
in a recently published chapter [126]. A nationwide cohort study conducted in Taiwan [92]
did not directly link F. nucleatum to PCOS, however, it suggested the plausible association
between chronic periodontitis in patients, often caused by periodontal pathogens such as F.
nucleatum, and the development of the systemic antibody responses that might influence
the pathogenesis of PCOS. Additionally, a case-control study from India [31] reported
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significantly elevated levels of F. nucleatum in PCOS patients with periodontitis and/or gin-
givitis. The authors of this study [31] concluded that hormonal imbalances in women with
PCOS may impact their salivary levels of potential periodontal pathogens and systemic
antibody responses, making them more susceptible to periodontal diseases such as gingival
inflammation. These findings from different parts of the world support the idea that fluctu-
ating sex hormones, combined with high levels of male hormones (androgens) in women
with PCOS, may have a quantitative impact on the oral microflora, potentially leading to
oral dysbiosis and contribute to gingival inflammation and periodontal health issues.

In the last five years, several studies have been published that have linked F. nucleatum
to various PIDs [127–131]. One specific type of PID, salpingitis, has been found to be associ-
ated with F. nucleatum in sexually inactive patients [100]. A review article from India [132]
also stated that F. nucleatum can cause different degrees of endometritis. In a case report
from Canada, a 69-year-old woman with a 2-month history of postmenopausal bleeding
and pelvic cramping was found to have F. nucleatum in her endometrial culture [101]. F.
nucleatum has also been linked to endometritis in cows [133,134]. Reports from various
parts of the world have stated the association of F. nucleatum with endometritis in either
humans or animals, or both [135–137]. A 2019 case report [138] from the United Kingdom
(UK), of a Pakistani woman with a 1-month history of lethargy, weight loss of 3 kg, and
ascites, was reported to develop spontaneous bacterial peritonitis after 4 weeks of the
initial ascitic sampling, with a positive culture of F. nucleatum. After a liver biopsy, she was
diagnosed with “small hepatic vein” Budd–Chiari syndrome (BCS), which was found to be
complicated by F. nucleatum-induced peritonitis. This case report further highlighted the
possibility the patient might have developed peritonitis due to F. nucleatum-induced liver
complications, owing to bowel content leakage traveling through the portal vein. Although
no reports in the last 5 years have directly linked F. nucleatum with perihepatitis, oophoritis
or TOA, other species of fusobacterium were reported to have associations with TOA [139].

A recent translational [30] study in Japan has demonstrated the pathogenic role of
F. nucleatum in the development of endometriosis. The study found that 64% of women
with endometriosis had F. nucleatum infiltration in the endometrium, compared to less than
10% of women without the disease. This is a benchmark publication that revealed that F.
nucleatum infection of endometrial cells activates transforming growth factor–β (TGF-β)
signaling, leading to the transition from quiescent fibroblasts to transgelin (TAGLN)-
positive myofibroblasts, thereby conferring the bacterium with the ability to proliferate,
adhere, and migrate in vitro. Additionally, Muraoka and colleagues [30] showed that F.
nucleatum inoculation in a syngeneic mouse model of endometriosis caused a noticeable rise
in TAGLN-positive myofibroblasts and increased the number and weight of endometriotic
lesions (Figure 3A). This study also highlighted the potential of targeting F. nucleatum
in the endometrium with antibiotic treatment as a therapeutic option for patients with
endometriosis. This milestone work, which established a direct link between bacterial
infection and endometriosis was featured in the news of ‘The Lancet Microbe’ [140] and
the ‘Daily Briefing of Nature’ [141].

Several reports from various regions of the world have linked F. nucleatum to BV in
the last five years [102,103,142]. Agarwal et al. [103] displayed that F. nucleatum foraging
and growth on mammalian sialoglycans is facilitated by sialidase activity, which is a
diagnostic feature of BV. This sialidase activity serves as a source of nutrients that would
otherwise be inaccessible due to the lack of endogenous F. nucleatum sialidase. Additionally,
their experiments on a mouse model revealed that F. nucleatum may also contribute to
the community by enhancing sialidase activity, a biochemical feature of human dysbiosis
(Figure 3B). This study also indicated that mutually beneficial relationships between vaginal
bacteria can actually support the colonization of pathogens and may aid in maintaining
features of dysbiosis. Thus, this study on BV is crucial, as its findings are discordant
with the simplistic dogma that the absence of “healthy” lactobacilli is the sole mechanism
that produces an accommodative environment for pathogens during vaginal dysbiosis.
Furthermore, this study shed light on why women with BV are at a higher risk of vaginal
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colonization by pathogens such as F. nucleatum. Table 2 provides a summary of the key
findings from research articles and case reports on the association between F. nucleatum and
various GDs.
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dometriosis lesion-forming myofibroblast cells. (B) Schematic representation displaying the inter-
dependent beneficial relationship between F. nucleatum and vaginal bacteria, ultimately leading to
bacterial vaginosis.
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Table 2. Summary of research articles and case reports linking F. nucleatum to various GDs.

SL. No. Article Type Country of Report Year of Publication Specific Findings/Main Highlights References

1 Case report UK 2019 F. nucleatum-induced peritonitis can complicate a clinical case of small hepatic
vein” BCS in a symptomatic Pakistani woman. Bannaga et al. [138]

2 Research article USA 2020

F. nucleatum has a mutualistic relationship with the BV-associated bacteria such
as Gardnerella vaginalis as they are major sialidase producers, enabling F.
nucleatum to consume sialic acids from the host-produced mucus, thereby
supporting colonization and vaginal dysbiosis.

Agarwal et al. [103]

3 Case report Canada 2021 Association between F. nucleatum and a symptomatic case of
chronic endometritis. Mercer et al. [101]

4 Research article USA 2022
The use of a multi-omics approach with 3-D cervical epithelial cell culture
model reveals pro-inflammatory and metabolic changes (hallmarks of cancer)
elicited by BV-associated F. nucleatum.

Maarsingh et al. [142]

5 Research article India 2023

Significantly higher levels of F. nucleatum in the subgingival plaque samples in
patients with PCOS and periodontitis and patients with PCOS and gingivitis,
compared to the healthy individuals are indicative of the association between
PCOS and oral microflora.

Achu Joseph et al. [31]

6 Research article Japan 2023

Identification of a novel pathogenic mechanism of endometriosis involving F.
nucleatum infection in the endometrium and its eradication by specific
antibiotics against this bacterium that can serve as an attractive option for the
treatment of endometriosis.

Muraoka et al. [30]

Abbreviations: GD—gynecological disease; BCS—Budd–Chiari syndrome; BV—bacterial vaginosis; PCOS—polycystic ovary syndrome.
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5. F. nucleatum in Gynecological Cancers

Recently, worldwide reports have stated the incidence of a high abundance of
F. nucleatum in various types of GCs [breast cancer (BC), ovarian cancer (OC), endometrial
cancer (EC), and cervical cancer (CC) (please refer to Box 3)]. Moreover, F. nucleatum-
associated cancers are found to have poor prognostic value. A few of these reports also
delineated the potential pathogenic role of this bacterium in the formation and progression
of these cancers [14,24,142–149].

Box 3. Gynecological cancers
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definition, types, histopathologies, etiologies, symptoms,
and staging.

Breast cancer
Defined as the uncontrolled growth of epithelial cells originating in the ducts or breast lobules.
Depending on its relationship to the basement membrane, it can be classified as either invasive
or non-invasive. Non-invasive neoplasms are typically divided into two main types: lobular
carcinoma in situ (LCIS) and ductal carcinoma in situ (DCIS). LCIS is identified by its adherence
to the structure of a normal lobule, with enlarged and filled acini. On the other hand, DCIS is
more varied in appearance and can be further categorized into four types: papillary, cribriform,
solid, and comedo. Invasive ductal cancer typically presents as a cohesive mass and can appear
as discrete abnormalities on mammograms. It is often palpable as a lump in the breast, typically
smaller than lobular cancers. In contrast, invasive lobular cancer tends to spread through the breast
in a single-file pattern, making it difficult to detect on mammography or physical examination until
it has advanced. Tubular and mucinous tumors are typically low-grade (grade I) lesions, while
medullary cancer is characterized by abnormal invasive cells with high-grade nuclear features,
numerous mitoses, and a lack of an in situ component. BC develops due to DNA damage and
genetic mutations, often as a result of exposure to estrogen. Inherited DNA defects or pro-cancerous
genes, such as BRCA1 and BRCA2, can also increase the risk of developing BC. Therefore, a family
history of OC or BC can increase an individual’s risk of developing BC. Other contributing factors
may include advanced age, histologic abnormalities, early menarche, late childbirth, nulliparity,
and late menopause [150]. According to WHO recommendations, the symptoms of BC can include
a breast lump or thickening, often without pain, changes in the size, shape, or appearance of the
breast, dimpling, redness, pitting, or other changes in the skin, changes in nipple appearance or the
skin surrounding the nipple (areola), and abnormal or bloody fluid from the nipple. BC is classified
using the TNM classification system, which groups patients into four stage groupings based on the
size of the primary tumor (T), the status of regional lymph nodes (N), and the presence of distant
metastasis (M) [150].

Ovarian cancer
Defined as a malignant neoplasm originating from the ovaries or fallopian tubes. It can be classified
into different types, including epithelial, germ cell, stromal, and other types, such as mesothelial-
mesenchymal, mixed cell, and secondary tumors [151]. The most common histological types of
epithelial OC are serous, endometrioid, clear cell, and mucinous tumors. Less common subtypes
include Brenner and seromucinous. Low-grade serous carcinoma (LGSOC) is a subtype of serous
OC that is characterized by minimal nuclear atypia, rare mitosis, and fewer molecular abnormalities.
On the other hand, high-grade serous carcinoma (HGSOC) is characterized by significant nuclear
atypia, high mitotic activity (>12 per 10 high-power fields), and more molecular abnormalities as
observed through cytogenetic analysis. LGSOCs are typically diagnosed at a younger age and have
a better prognosis compared to HGSOCs, which tend to present at an older age. LGSOCs also
have a higher frequency of KRAS and BRAF mutations, while HGSOCs have a higher frequency of
p53 and BRCA 1 and 2 gene mutations and an absence of KRAS/BRAF mutations [152]. HGSOCs
have a more aggressive clinical course and are genetically less stable [151]. Ovarian endometrioid
carcinomas (OECs) are derived from endometriosis and are characterized by cystic areas that appear
as soft masses with bloody fluid, as well as less common solid areas with extensive hemorrhage
and necrosis. They also have microsatellite instability. OECs are typically diagnosed at an early
stage, leading to a better prognosis [152]. Mucinous ovarian cancers (MOCs) are a unique subtype
of OC with an unclear etiology, including whether they originate from the ovary or are the result
of metastatic disease from other organs [153]. KRAS mutations are common in these tumors.
Histopathological analysis may reveal the presence of glands with architectural and cytological
features of adenocarcinoma, but they may lack stromal invasion [152]. Ovarian clear cell carcinoma
(OCCC) is a rare subtype of epithelial OC with distinct molecular characteristics, specific biological
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and clinical behavior, poor prognosis, and high resistance to chemotherapy [154]. Histopathologi-
cally, OCCC shows cystic growth patterns, cellular clearing, and a characteristic hobnail growth pat-
tern. Immunohistochemically, stage I and II tumors show overexpression of BAX, while metastatic
lesions show higher expression of the anti-apoptotic protein BCL-2 compared to primary tumors.
The most significant risk factor for OC is a positive family history of breast or ovarian cancer, and
a personal history of BC also increases the risk. OC mainly affects postmenopausal women of
advanced age. The symptoms of OC typically become apparent in the late stages (stage III or stage
IV). This disease is often clinically manifested by a combination of symptoms, including abdominal
fullness, bloating, nausea, abdominal distention, early satiety, fatigue, changes in bowel movements,
urinary symptoms, back pain, dyspareunia, and weight loss. The staging of OC is determined by
the 8th edition of the American Joint Committee of Cancer (AJCC) and the International Federation
of Gynecology and Obstetrics (FIGO) staging system, which uses the TNM classification. This
system has four stages, with each stage indicating increasing severity and decreasing chances of
survival [152].

Endometrial cancer
Defined as a malignancy of the inner epithelial lining of the uterus [155]. EC is broadly classified
into two types: Type I (association with unopposed estrogen stimulation, comprising low-grade
cells that are more common and have a favorable prognosis) and Type II (not estrogen-driven,
comprising high-grade cells that are less common and have an unfavorable prognosis). Type I
ECs are mainly composed of grade I or grade II endometrioid adenocarcinomas, while Type II
ECs comprise grade III endometrioid adenocarcinomas, serous, clear cell, undifferentiated, and
carcinosarcomas [155]. Type I, low-grade endometrioid carcinomas (LGECs) are usually confined to
the uterus during diagnosis and have a comparatively favorable prognosis compared to high-grade
serous endometrial carcinomas (HGSECs) and other type II endometrial carcinomas, which have
significantly poorer prognoses and are often disseminated at the time of diagnosis. The majority of
endometrial LGECs show microsatellite instability (MSI) and carry PTEN mutations, while HGSECs
commonly exhibit nuclear pleomorphism and nearly ubiquitous TP53 mutations. ECs with high-
grade solid, endometrioid, and/or transitional cell-like (SET) morphologies resemble pure HGSC.
Many HGSC-SET carcinomas also display evidence of TP53 mutations [156]. Endometrial clear cell
carcinoma (ECCC) is a rare and aggressive type II endometrial carcinoma that is more common in
older women and patients with advanced-stage disease [157]. It is typically characterized by a com-
bination of papillary, tubulocystic, and/or solid architectural patterns, with cuboidal or polygonal
cells containing nuclei with varying degrees of pleomorphism (although overt pleomorphism is
usually absent). Hobnail tumor cells and cytoplasmic clearing are often present but are not necessary
for diagnosis [158]. Endometrial undifferentiated carcinomas (EUCs) are composed of sheets of
monotonous, typically dyscohesive cells that may have a rhabdoid appearance. They often have a
limited expression of cytokeratins and are generally negative for epithelial membrane antigen, PAX8,
and hormone receptors. They also lack membranous E-cadherin and typically demonstrate loss of
expression of DNA mismatch repair proteins and SWI-SNF chromatin remodeling proteins [158].
Endometrial carcinosarcoma is a rare and immensely aggressive disease characterized by a biphasic
growth of malignant epithelial (carcinomatous) and mesenchymal (sarcomatous) components [159].
Carcinosarcomas are classified into homologous and heterologous types, depending on whether the
mesenchymal component displays differentiation that is intrinsic (endometrial stromal sarcoma or
leiomyosarcoma) or extrinsic (chondrosarcoma, rhabdomyosarcoma, etc.) to the uterus [158]. Possi-
ble etiologic factors for EC may include exposure to endogenous or exogenous estrogen unopposed
by progesterone or progestins, insulin resistance, and hyperandrogenemia [156]. Abnormal vaginal
and postmenopausal bleeding are the most commonly reported symptoms, often accompanied
by abdominal complaints, vaginal discharge, uterine prolapse, and urinary incontinence [160].
The extent of EC is surgically pathologically “staged” according to the International Federation
of Gynecology and Obstetrics (FIGO) criteria published in 2009 [156]. It has four stages, with
increasing severity.

Cervical cancer
Defined as a malignant tumor of the cervix that can be divided into two histological types, ade-
nocarcinoma (AC) and squamous cell carcinoma (SCC). Human papillomavirus (HPV) is the
primary cause of CCs, accounting for more than 75 percent of cases, with high-risk HPV 16 and
18 being the most common types [161]. The majority of squamous cell carcinomas (SCCs) are
also HPV-positive. Histopathologically, invasive SCCs of the cervix present as a network of
anastomosing bands or single cells with intervening inflammatory or desmoplastic stroma. The
cervical stroma in the tumor is typically infiltrated by plasma cells and lymphocytes, with rare
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instances of an eosinophilic response or foreign body type giant cell reaction [162]. According to
the World Health Organization (WHO), HPV-independent SCCs are defined as squamous tumors
with stromal or exophytic invasion and negative P16 immunohistochemistry (IHC). These types
of SCCs have a higher rate of node metastases and a poorer prognosis [161]. HPV-associated
adenocarcinomas can be identified by the presence of conspicuous apical mitoses and karyorrhexis
at low power magnification. These adenocarcinomas are classified into two histological types:
usual and mucinous. The usual type is the most common and includes glands with smooth
luminal surfaces and pseudostratified columnar epithelial cells with enlarged stretched-out, and
hyperchromatic nuclei. The mucinous type is further subtyped into mucinous, not otherwise
specified (NOS) adenocarcinoma, intestinal adenocarcinoma, signet-ring cell adenocarcinoma, and
invasive stratified mucin-producing carcinoma [163]. HPV-independent adenocarcinomas are
negative or patchy for P16. These types of adenocarcinomas are typically diagnosed at a later stage,
with extrauterine spread and a higher prevalence of destructive invasion [162]. Contributing factors
for HPV-associated CC include early age at first intercourse, multiple sexual partners, smoking,
herpes simplex virus (HSV), human immunodeficiency virus (HIV), co-infection with other genital
infections, and oral contraceptive use [161]. According to the WHO guidelines (2022), symptoms of
early-stage CC include irregular bleeding or spotting between periods in women of reproductive
age, postmenopausal bleeding or spotting, bleeding after sexual intercourse, and increased vaginal
discharge, sometimes with a foul odor. As the cancer progresses, more severe symptoms may
appear, such as persistent back, leg, or pelvic pain, weight loss, fatigue, loss of appetite, foul-
smelling discharge, and vaginal discomfort, and swelling of one or both lower extremities. The
degree of CC is pathologically divided into four stages using the FIGO staging system.

In recent years, a plethora of articles have been published, which have given multi-
farious views regarding the direct and indirect role of F. nucleatum in BC development,
progression and its prognostic outcomes [16,24,33,42,80,134,143,148,157,164–176]. A few
of the current reports [14,24,26,167,177–181] have stated that BC tissues are found to be
enriched with F. nucleatum and the bacterial load progressively increases with the tumor
size and the advanced stages of cancer. These reports have suggested that F. nucleatum
may contribute to poorer clinical outcomes and shorter survival. In a study conducted
by Bernhard et al. [143] in Brazil, 44 women with BCs were evaluated for the microbial
abundances of over 40 bacterial species within the subgingival plaque samples (n = 144).
F. nucleatum was found to have one of the highest mean counts of infectious pathogens in
the samples. This study indicated a strong association between oral F. nucleatum-induced
chronic inflammation and BC, suggesting it as one of the contributing factors for female BCs.
A cohort study by Nejman et al. [182] in Israel reported that F. nucleatum, earlier found to be
enriched in colorectal tumors, is also predominant in the breast tumor samples. This study
highlighted that the organs such as the breast, which was previously considered sterile,
has the potential to harbor microbes. Further, a recent review and meta-analysis based on
women between the ages of 18 and 96 years from the Netherlands, has directly pointed
out the significant relationship between oral F. nucleatum species and their critical role in
female-specific BC pathogenesis, thereby accentuating their biomarker potentiality [171].
Furthermore, an earlier review article from the USA [183] used a random forest classifier
and identified F. nucleatum as one of the 14 potential microbial markers for postmenopausal
women with BC. Contradictorily, a review article by Chadha et al. [164] from India specified
that urine and fecal microbiome analyses of postmenopausal BC patients exhibited reduced
counts of F. nucleatum. Another study from India [184] did not find an enrichment of F.
nucleatum in BC transcriptome samples. Nonetheless, it is worth noting that F. nucleatum
strain ATCC 23726 has been shown to specifically colonize mouse BC tissues and pro-
mote tumor growth and metastasis [14,185]. In a groundbreaking publication by Parhi
and colleagues [14], it was documented that oral F. nucleatum species can translocate and
colonize the lactiferous ducts in breast tissues through a hematogenous route. This coloniza-
tion relies on neoplastic tissues expressing D-galactose–β (1–3)-N-acetyl-D-galactosamine
(Gal-GalNAc), which are extensively displayed on BC cells. Their scholarly work using
experimentations executed on murine models exhibited that the high Gal-GalNAc level
in BC tissues, acting as an oncoantigen, plays a critical role by serving as a ligand to Fap2
(a surface lectin from F. nucleatum) in the specificity of tumor colonization by F. nucleatum.
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This, in turn, promotes mammary tumor growth and its metastatic progression (Figure 4A).
They further advocated that this effect may be mediated by the prevention of the accumula-
tion of tumor-infiltrating T cells in the tumor microenvironment (TME) and/or increased
expression of matrix metalloproteinase-9 (MMP-9). Additionally, their work also revealed
that antibiotic therapy using metronidazole can counteract the metastatic progression of
mammary tumors, thereby suppressing BC aggravation. This work further highlighted the
fact that targeting F. nucleatum, specifically Fap 2, might be advantageous in the treatment
of BCs. In this study, the researchers utilized a method to visualize bacteria in tissue slices
from an in vivo model of BC. This method has been recently published [186], and provides
direct visualization of fusobacterial colonization in BC tissue using multiphoton microscopy.
The establishment and validation of this protocol by Parhi and colleagues has gained
significant histopathological importance in recent times, as it enables direct visualization
without causing any damage to the tissues, allowing for the identification of all structures.
Furthermore, a review by Van der Merwe and colleagues [187] from South Africa that
elucidated the possible mechanisms by which F. nucleatum might promote BC progression,
also speculated that this particular bacterium may promote BC progression by activating
the TLR4/MyD88 pathway through its immunomodulatory effects, as indicated in the
literature for colorectal cancer. However, this hypothesis proposed by Van der Merwe and
colleagues requires further investigation and validation. If the onco-immunological implica-
tions of F. nucleatum are confirmed through experimental research, it could provide valuable
insights into the microbial and immune-therapeutic aspects of this disease, potentially
leading to advanced treatment options. This review further professed thatnovel methods
of impeding the binding of F. nucleatum to tumors such as Gal/GalNAc antagonists or Fap2
antibodies should be considered. Withal, a recent study from China [179] using in vivo
experimentation techniques, has validated that the F. nucleatum-derived small extracellu-
lar vesicles (F. nucleatum-EVs) can significantly augment the cell viability, proliferation,
migration, and invasion of BC cells, thus inducing a promotive function on mammary
tumor growth and metastasis. They also found that knocking down TLR4 in BC cells
efficaciously counteracted the effects of F. nucleatum-derived EVs. This indicated the TLR4
activation-dependent contributive role of F. nucleatum-derived EVs in BC tumor growth
and metastasis. Furthermore, exosomes, which are small extracellular vesicles (EVs), play a
crucial role in mediating cellular communication by delivering various bioactive molecules,
such as oncogenes, oncomiRs, proteins, and even pharmacological compounds. These
molecules can be transferred to target cells, altering their transcriptome and influencing
tumor-related signaling pathways. While numerous studies have investigated the involve-
ment of exosomes in BC biology, including therapeutic resistance and the surrounding
microenvironment [188], the role of exosomes derived from F. nucleatum in BC progression
remains largely unexplored. However, a study by Guo et al. [189] from China demon-
strated that exosomal miR-1246/92b-3p/27a-3p derived from F. nucleatum-infected CRC
cells promotes metastasis in uninfected cells, contributing to CRC progression. Addition-
ally, a recent study from China [190] has identified that F. nucleatum-infected gastric cancer
(GC) cells produce exosomes that increase the expression of the long non-coding RNA
(lncRNA) HOXA transcript at the distal tip (HOTTIP), promoting GC invasion through the
miR-885-3p/EphB2/PI3K/AKT axis. Therefore, further research is needed to fully under-
stand the role of F. nucleatum-derived EVs in BC and their associated pro-inflammatory
and inflammatory responses, which could potentially lead to the development of novel
therapeutic agents. A 2023 review article [178] examined the molecular consequences of the
F. nucleatum within the TME, likely indicating the probable actionable pathways modulated
by this anaerobic bacterium that may have significance in BC patients. Little and her
colleagues have put forward a question to the new age oncologists and cancer researchers
concerning whether F. nucleatum is capable of modulating the local TME, promoting an
inflammatory state and further interacting with and influencing infiltrating immune cells
in the case of BC as suggestive of CRC in the literature. They also recommended the use
of advanced in vitro models such as organoids to replicate the hypoxic environment of
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the tumors and study the impact on the survival and growth of the anaerobic bacterium
F. nucleatum. A three-dimensional (3D) tumor spheroid model was successfully used to
examine the effects of co-culturing viable F. nucleatum with human epithelial colon cancer
cells, including gene expression, metabolomics, and morphology [191]. Little et al. [178]
also highlighted the need for the development of cost-effective assays to detect and quantify
F. nucleatum in BC patients. Their review work emphasized that it may be of great interest
to immunobiologists and cancer researchers to unravel the immunogenetics concerning the
potential interaction between F. nucleatum and immune checkpoint inhibitors (ICI) in the
breast. Another review article [192] also highlighted that formate-producing F. nucleatum
stimulates the aryl hydrocarbon receptor (AhR) signaling pathway, thereby promoting cell
migration and eliciting cancer stem cell (CSC) traits, high metastatic activity and active
Wnt signaling. This pro-malignant effect of AhR ligands was seen in the BC cell line
MCF-7. Thus, these works provided valuable insights into the immunomodulatory role of
the F. nucleatum in BC development, progression and its effect on treatment effectiveness
in patients.
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cadherin (E Cadherin) on cancer cells to increase b-catenin expression and induce cancer cell prolif-
eration. (D) Reactive oxygen species (ROS) and extracellular vesicles secreted from F. nucleatum in-
duce DNA damage in cancer cells to acquire further mutation and genomic instability. 
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terium apoptosis-inducing protein 2 (Fap2) binds with D-galactose-β (1–3)-N-acetyl-D-galactosamine
(Gal-GalNAc) on cancer cells to induce metastasis from primary tumor sites to other organs.
(B) Lipopolysaccharide (LPS) on F. nucleatum activated TLR4/MyD88 pathway to induce chemore-
sistance in cancer cells. (C) Interaction between Fusobacterium adhesion A (FadA), with epithelial
cadherin (E Cadherin) on cancer cells to increase b-catenin expression and induce cancer cell prolifer-
ation. (D) Reactive oxygen species (ROS) and extracellular vesicles secreted from F. nucleatum induce
DNA damage in cancer cells to acquire further mutation and genomic instability.
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In recent years, several reports have been published linking F. nucleatum to
OCs [144,146,147,193]. One such case series, presented by Almohaya et al. [144] from Saudi
Arabia, highlighted the incidence of F. nucleatum-associated bacteremia in a 72-year-old fe-
male patient with metastatic OC. The patient had a high white blood cell count (28.4 × 109)
and c-reactive protein level (124 mg/L), anddespite receiving 14 days of antibiotic treat-
ment (meropenem and moxifloxacin), she passed away within 30 days. Another study in
2022 from Korea [146] reported the incidence of F. nucleatum-associated bacteremia in an
OC patient. However, the bacterial isolates were found to be susceptible to all the 10 an-
timicrobials tested that belonged to the groups: penicillin, cephalosporins, carbapenems,
beta-lactamase inhibitors, macrolides, fluoroquinolones, chloramphenicol, and metron-
idazole. Additionally, a study from China [193] summarized the clinical characteristics of
patients with F. nucleatum infection. The study reported the bacterium’s association with a
female patient aged below 70 years suffering from OC who died within 2 days. A recent
study from the USA [147] has utilized the differential abundant analysis to demonstrate
the enrichment of F. nucleatum, in patients with other OC histologies, in comparison to
the serous OC patients within the whole OC cohort. These studies not only depicted a
possible relationship between F. nucleatum infection and OC, but also provided clinically
appropriate data for the implementation of empirical therapies against F. nucleatum. CXC
motif chemokine ligand 16 (CXCL16), a chemotactic cytokine belonging to the α-chemokine
subfamily, and its receptor CXC motif chemokine receptor 6 (CXCR6) have been shown
to play significant roles in the progression of various cancers (invasion and migration),
including OCs [189,194]. Further, in a study by Guo et al. from China [189], F. nucleatum
was found to stimulate the production of CXCL16 in CRC patients. The observations from
these studies suggested that F. nucleatum can stimulate the production of CXCL16, which
can further activate CXCR6 and potentially aid in the implantation of OC cells and the
formation of peritoneal metastasis. However, this plausible chemokine-related F. nucleatum-
induced initiation and formation of OCs need experimental validation in future studies
which, in turn, is expected to open avenues to target OCs by controlling immune cell
trafficking. Moreover, CSCs have an imperative role in ovarian tumor initiation, invasion,
metastasis, local recurrence following curative resection and therapeutic resistance. The
process of epithelial–mesenchymal transition (EMT) is also considered a vital step in OC
proliferation and CSC metastases [195,196]. EMT is characterized by the repression of
E-cadherin (an important component of adherens junctions), occludins, claudins, Epcam,
α6β4 integrin, and different cytokeratins (important for stabilization of desmosomes) and
up-regulation of vimentin, fibronectin, neural cadherin (N-cadherin), β1 and β3 integrins,
and matrix MMPs [197]. The regulatory crosstalk between CSC and EMT is known to
increase cancer cell mesenchymal characteristics on the CSCs and help to promote OC cells
to gain stemness [196]. Studies have also reported F. nucleatum can induce CSC characteris-
tics by activating IL-6/STAT3 and eliciting EMT-resembling activation [196,198]. Another
report from China [199] showed that F. nucleatum significantly upregulated the expression
of lncRNA Keratin7-antisense (KRT7-AS) and Keratin7 (KRT7) in CRC cells. However, it is
currently unclear whether KRT7-AS is directly involved in the initiation and development
of OC, but earlier, it was reported that KRT7 regulated EMT in OC via the TGF-β/Smad2/3
pathway [200]. It is also known to regulate cell-matrix adhesion through integrin-β1-focal
adhesion kinase signaling, signifying numerous potential links between KRT7-AS and
OC [200,201]. In OC, silencing of the TLR4 gene expression is known to cause a reduction
in the expression of MMP2 and MMP9 and decrease levels of mesenchymal markers in
lipopolysaccharide (LPS)-treated OC cells [202]. TLR4/MyD88 signaling is also found to
be associated with chemoresistance to paclitaxel in OC (Figure 4B) [203]. On top of that,
F. nucleatum has been reported to be targeted by TLR4-mediated innate immune signaling
and alters the chemotherapeutic response in CRC patients [202,204]. While these studies
could not directly identify the pathways involved in F. nucleatum-induced OCs, they shed
light on the probable ones, thereby accentuating the need for further exploration. Addition-
ally, a study from the USA [142] highlighted an earlier observation that lanthionine (highly
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accumulated during F. nucleatum infection) biosynthesis, which generates hydrogen sulfide
(H2S), is associated with advanced-stage OC in a mouse model. These studies strongly
implied the probable mechanistic association between F. nucleatum and OCs and opened
the way for the discovery of new therapeutics by targeting biological pathways.

Although there have not been many recent studies directly linking F. nucleatum to
ECs, two recent reports published in 2022 [205] and 2023 [149] from Florida and Poland,
respectively, have strongly professed a high abundance of this bacterium in vaginal and/or
cervical samples collected from women suffering from EC. The exact mechanism by which
F. nucleatum contributes to the development and progression of ECs, either directly or indi-
rectly, is still unknown. However, this review proposes a few potential causes that should
be further investigated in future studies. In patients with CRC, the presence of F. nucleatum
is known to activate the Wnt/β-catenin signaling pathway [205]. This pathway is crucial
for normal cellular proliferation during the menstrual cycle, but when it is dysregulated
in the endometrium, it can lead to endometrial hyperplasia and potentially EC. Thus, the
observations mentioned above indicate the potential carcinogenic role of F. nucleatum in the
development of ECs through oncogenic activation or induction of aberrant Wnt/β-catenin
signaling (Figure 4C). Additionally, type 1 ECs are often known to be associated with some
unique molecular alterations, also termed microsatellite instability (MSI), which is the
result of the defects in DNA mismatch repair proteins. This is due to the accumulation of
mutation loads in cancer-related genes and the generation of neoantigens, which stimulate
the anti-tumor immune response of the host [206–209]. Moreover, F. nucleatum infection
has also been linked to MSI in CRC and head and neck cancer patients due to impaired
DNA mismatch repair (MMR) pathways [210–212]. Thus, mechanistically, the capacity of F.
nucleatum to create genotoxic oxidant species by causing epigenetic changes and inducing
inflammation-associated microsatellite instability via impairment of MMR to promote DNA
damage and cell proliferation, may possibly underlie the pathobiont’s associations with
ECs (Figure 4D). Further exploration of these target pathways concerning F. nucleatum
and EC may provide valuable therapeutic insights into ECs. Furthermore, studies have
shown that abnormal expression of lncRNAs is involved in the development of ECs by
affecting pathways related to the cell cycle, DNA replication, and mismatch repair [213,214].
Additionally, the process of EMT in ECs has been linked to the expression of transcription
factors such as Snail, Slug, Twist2, Zeb1, and Zeb2 [215,216]. While no direct link has been
established between F. nucleatum and the expression of lncRNAs in promoting EC, a recent
study from China [217] has demonstrated that F. nucleatum can promote CRC metastasis by
upregulating the expression of lncRNA endogenous retroviral-associated adenocarcinoma
RNA (EVADR). This lncRNA acts as a scaffold for Y-box binding protein 1 (YBX1) which,
in turn, enhances the translation of EMT-related factors such as Snail, Slug, and Zeb1.
Therefore, Lu and colleagues have highlighted the crucial role of F. nucleatum in regulating
lncRNAs and EMT-related factors. This not only provides new insights into the molecular
mechanisms underlying CRC metastasis but also suggests that exploring the dysregulated
expression of lncRNAs induced by F. nucleatum in EC cells may lead to new therapeutic
targets for treating patients with EC.

The association of F. nucleatum with CC has been implicated in a few studies published
in the last 5 years from various parts of the world [16,142,145,172]. This pathobiont is mostly
found in patients suffering from HPV-related CC, cervical intraepithelial neoplasia, and
invasive cervical carcinoma [142]. In a 2020 study conducted in China on 112 patients with
squamous carcinoma of the cervix, high levels of F. nucleatum were found, particularly in
cases of recurrent lesions [145]. Apart from this, Huang and colleagues made several novel
observations. They found that patients with high burdens of intratumorally infiltrated
F. nucleatum displayed poor rates of both overall survival and progression-free survival
(PFS). Thus, this anaerobic bacterium can serve as a potential CC diagnostic and prognostic
biomarker. Interestingly, the levels of F. nucleatum were positively correlated with tumor
differentiation. These observations by Huang et al. [145] might help to improve or change
therapeutic strategies and provide a better prognostic outcome for afflicted patients. Fur-
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thermore, the study showed that CC cells from patients with high levels of intratumorally
infiltrated F. nucleatum exhibited characteristics of CSCs. Their scholarly work also implied
that induction of CSC characteristics by F. nucleatum might be through the activation of
certain specific transcription factors, such as NANOG, Octamer-binding transcription fac-
tor 4 (OCT4), SRY-Box Transcription Factor 2 (SOX2) and associated signaling pathway,
such as WNT/β-catenin and insulin-like growth factor 1 (IGF-1) receptor pathway. Hence,
increased F. nucleatum burden might further activate many other sequences of metastasis,
such as C-X-C Motif Chemokine Receptor 4 (CXCR4), epithelial cellular adhesion molecule
(Ep-CAM), Slug, Snail1 and Zinc Finger E-Box Binding Homeobox (Zeb1/2). Therefore, this
study by Huang et al. [145] not only delineated a cogent role of F. nucleatum in the onset of
CC and its consequent development and progression but also betokened a plausible role of
the F. nucleatum in the dynamics underlying CCs. Thus, Huang and his colleagues provided
appropriate rationale and merit to further investigate their findings in a larger cohort and
explore novel mechanisms concerning F. nucleatum-associated CCs to aid inthe develop-
ment of better treatment options for CC patients. Table 3 outlines the specific findings from
research articles and case reports on the link between F. nucleatum and various GCs.
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Table 3. Summary of research articles and case reports linking F. nucleatum to various GCs.

SL. No. Article Type Country of Report Year of Publication Specific Findings/Main Highlights References

1 Research article Brazil 2019 F. nucleatum-induced chronic periodontitis, causing chronic inflammation may indirectly
contribute to BC through different mechanisms. Bernhard et al. [143]

2 Research article Israel 2020
An analysis of more than 1000 tumor samples of seven cancer types, and adjacent noncancerous
tissues, identifies tumor-type-specific microbiomes composed mostly of intracellular bacteria
with F. nucleatum being concomitantly associated with BC.

Nejman et al. [182]

3 Research article Israel 2020
High Gal-GalNAc level in BC tissues acts as an oncoantigen and plays a critical role by serving
as a ligand to Fap2 adhesin of F. nucleatum, supporting colonization, promoting mammary
tumor growth and progression and thereby indicating Fap2 as a potential drug target.

Parhi et al. [14]

4 Case series Saudi Arabia 2020 F. nucleatum-associated bacteremia in a 72-year-old female patient with metastatic OC, dies
within 30 days of detection, despite receiving 14 days of antibiotic treatment. Almohaya et al. [144]

5 Research article China 2020

Distinctively high levels of F. nucleatum in CC, especially in relapsed disease, CC cells with high
burdens of F. nucleatum intratumoral infiltration exhibiting CSC characteristics and patients with
high burdens of intratumorally infiltrated F. nucleatum displaying poor rates of both overall
survival and PFS, thereby suggesting that F. nucleatum might be one potential CC diagnostic and
prognostic biomarker.

Huang et al. [145]

6 Research article India 2022 The use of a computational tool named IPD to identify infectious pathogens from heterogeneous
NGS datasets does not reveal the enrichment of F. nucleatum in breast transcriptome samples. Desai et al. [184]

7 Research article Korea 2022 F. nucleatum infection in an OC patient, with isolates susceptible to all 10 antimicrobial
agents tested. Kim et al. [146]

8 Research article Florida 2022
A significantly greater abundance of F. nucleatum in the vaginal samples of high-grade EC
patients together with the non-significant increase in the low-grade EC patients, compared to
those in benign individuals, suggest the bacterium’s role in tumor growth.

Hakimjavadi et al. [205]

9 Research article USA 2022

The use of the multi-omics approach with 3-D cervical epithelial cell culture model reveals that
F. nucleatum infection can promote HPV infection and persistence and consequently cervical
neoplasia by generating pro-inflammatory responses and upregulating the metabolic hallmarks
of CC.

Maarsingh et al. [142]

10 Research article China 2023 F. nucleatum-derived small EVs can promote and enhance malignant manifestations of BC such
as proliferation, migration, and invasion via TLR4. Li et al. [179]

11 Research article USA 2023 Enrichment of F. nucleatum, in patients with other OC histologies in comparison to the serous
OC patients, within the whole OC cohort. Asangba et al. [147]

12 Research article Poland 2023
The vaginal and cervical microbiome of women with EC are enriched with F. nucleatum and this
suggests that this bacterium is a potential endometrial cause/co-factor to promote/stimulate
endometrial carcinogenesis.

Barczynski et al. [149]

Abbreviations: GC—gynecological cancer; BC—breast cancer; OC—ovarian cancer; EC—endometrial cancer; CC—cervical cancer; CSC—cancer stem cell; PFS—progression-free survival;
IPD—infectious pathogen detector; NGS— next-generation sequencing; EV—extracellular vesicles; TLR4—Toll-like receptor 4.
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6. Conclusions, Future Challenges, and Perspectives

F. nucleatum, an opportunistic pathogen, and also one of the most variegated bacterial
species, has recently been found to play a significant role in various infectious and systemic
diseases, including tumorigenesis, particularly in colorectal and breast carcinomas. This
has accrued considerable attention over the past decade; however, so far, the growing pieces
of evidence remain full of correlative observations and associations that immensely out-
number the field’s mechanistic studies. To the best of our knowledge, this literature review
is the first one to identify a knowledge gap relating to the mechanistic role of F. nucleatum
in various aspects of gynecology, particularly OCs and ECs. Addressing this gap in future
studies could provide valuable insights into the basic biology of F. nucleatum-associated
GC initiation and progression and shed light on its potential pathogenic, mechanistic and
contributory roles in these diseases. Thus, this review highlights the need for further
mechanism-driven research, which may garner the attention of clinicians and researchers.
Further, this is the first review of its kind that successfully provides a well-defined overview
of the present developments of F. nucleatum concerning its epidemiological evidence and
mechanistic linkage in almost all notable GDs, including cancers. Moreover, here, we not
only summarize the detrimental effects of F. nucleatum on women’s health but also discuss
the available treatment options and possible therapeutic strategies to combat F. nucleatum
infections causing or contributing to various APOs and GDs, including cancers. Numer-
ous recent findings discussed in this review have shed light on the interplay between
F. nucleatum; APOs, F. nucleatum; GDs and F. nucleatum; and GCs, some of which may break
the ground for promising novel therapies, especially for GCs.

Nevertheless, there is still much to be discovered in order for this field to progress.
Several epidemiological studies reviewed here only showed the correlation between
F. nucleatum and various APOs and GDs, inclusive of cancers. However, the explicit
causation and mechanisms of pathogenesis of F. nucleatum in relation to diseases impacting
women’s health, as well as its sensitivity to immunomodulation and immune escape, have
yet to be uncovered. A few conclusions obtained in various studies were contentious. There-
fore, in order to identify targeted therapies for F. nucleatum-associated APOs and other GDs,
including cancers, researchers must delve deeper into the basic biology of F. nucleatum, not
only in the field of gynecology or gynecological oncology, but also in its natural habitat
and other disease-associated conditions and locations. It is also important for scholars to
identify the pathways or mechanisms through which F. nucleatum interacts with its host.
Immune mechanisms involved in this phenomenon deserve further exploration. Preclinical
models, especially organoids and humanized gnotobiotic mouse models that mimic human
tissue-specific microenvironments have been recently used to study human cancer genetics
and the human microbiome. However, their use to study the effects of F. nucleatum in
various GDs including GCs, is yet to be executed.

Currently, advancements in detection methods for microbial entities and microbe-
derived small molecules have greatly improved our ability to accurately identify and
quantify F. nucleatum strains and levels in the mouth and gut. This is particularly crucial for
pregnant women and immunocompromised individuals. By understanding the bacterial
load and the molecular mechanisms involved in the transformation of this oral commensal
into a pathobiont, which can impact women’s health, researchers and clinicians can not
only develop effective diagnostic and therapeutic strategies but can also educate women on
preventive measures. The potential for using F. nucleatum as a disease-predictive biomarker
in various GDs, including carcinomas, is promising. However, there is still much to be
discovered and explored regarding the interactions between F. nucleatum and the host,
which ultimately determine a female patient’s response to a specific treatment regimen and,
potentially, their long-term impact on women’s health.
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