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Abstract: Embryonic neurogenesis can be defined as a period of prenatal development during which
divisions of neural stem and progenitor cells give rise to neurons. In the central nervous system of
most mammals, including humans, the majority of neocortical neurogenesis occurs before birth. It is
a highly spatiotemporally organized process whose perturbations lead to cortical malformations and
dysfunctions underlying neurological and psychiatric pathologies, and in which oxygen availability
plays a critical role. In case of deprived oxygen conditions, known as hypoxia, the hypoxia-inducible
factor (HIF) signaling pathway is activated, resulting in the selective expression of a group of genes
that regulate homeostatic adaptations, including cell differentiation and survival, metabolism and
angiogenesis. While a physiological degree of hypoxia is essential for proper brain development,
imbalanced oxygen levels can adversely affect this process, as observed in common obstetrical
pathologies such as prematurity. This review comprehensively explores and discusses the current
body of knowledge regarding the role of hypoxia and the HIF pathway in embryonic neurogenesis
of the mammalian cortex. Additionally, it highlights existing gaps in our understanding, presents
unanswered questions, and provides avenues for future research.

Keywords: embryonic neurogenesis; hypoxia; HIF; vascularization; neocortex; neural progenitor
cells; NSC

1. Introduction

The neocortex is a folded brain structure that covers most of the human brain surface
and plays a major role in our cognitive abilities. With its many gyri and sulci, it constitutes
the majority of the cerebral cortex and histologically corresponds to an isocortex with its
characteristic six neuronal layers [1–3]. It has a recent evolutionary origin, having first
appeared in the evolution of mammals [2,4–7], although homologous structures such as the
dorsal cortex and Wulst also exist in reptiles and birds, respectively [8]. In particular, it has
undergone a striking degree of radiation since its appearance, resulting in a large diversity
of neocortical size and folding complexity between different mammalian species [9–15].
This suggests an exceptional plasticity of the neocortex, which makes it an important
evolutionary novelty that allows for rapid adaptation to versatile functions and diverse
ecological niches [4,16].

In humans the neocortex is particularly expanded in comparison to other mammals,
including closely-related apes [12,17], and as such has long been an object of particular
focus for neurobiologists. Functionally, it has been credited with facilitating much of the
human cognitive achievements in both intellectual and social domains, including learning,
memory, speech and emotional regulation [18–20]. Therefore, it is not surprising that
any perturbations in its development, which occurs primarily pre- and perinatally [12,21],
have profound clinical consequences [22–26]. Particularly, common gestational and ob-
stetric complications such as intrauterine growth restriction or prematurity often result
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in inappropriate tissue oxygenation during critical developmental phases [27–29]. Such
changes in oxygen pressure, both during neurogenesis and during subsequent events,
which include neuron migration, synaptogenesis or myelination may cause long-lasting
neurodevelopmental and neuropsychiatric repercussions [23,27,28]. A prerequisite for
addressing pathologies related to these processes in a clinical setting is understanding the
physiological role of oxygen pressure and its downstream effects, typically mediated by the
HIF signaling pathway, on various cell types in the developing neocortex. In this review,
we present the current state of knowledge on the role of oxygenation and HIF signaling in
embryonic and perinatal cortical development.

2. Neurogenesis in the Prenatal Neocortex

At the histological level, the mature neocortex is a highly ordered structure in which six
distinct neuronal layers can be distinguished [1–3]. It arises from the dorsal telencephalon
during embryonic development [30]. First, a single cell layer neuroepithelium composed
of symmetrically dividing neural stem cells (NSCs) folds up and closes to form a neural
tube (NT) [31,32] (Figure 1A,B). This morphogenetic process leads to a change in tissue
arrangement so that the apical surface of the neuroepithelium lines a fluid-filled ventricle
inside of the NT and its basal side faces the outside. This structure will give rise to the entire
central nervous system (CNS) in the form of the brain and spinal cord. Embryonic NSCs
produce almost all CNS neurons and glial cells, with an exception of microglia [33–36]. At
the onset of neurogenesis proliferating neuroepithelial cells (NECs) transform into radial
glia (RG) and begin to divide asymmetrically in order to both self-renew and give rise
to more differentiated neural progenitor cells (NPCs) and eventually neurons [33,36–40]
(Figure 1C).

In the embryonic neocortex NPCs reside and divide in two adjacent germinal zones.
The primary zone, called the ventricular zone (VZ) due to its direct contact with the
cerebrospinal fluid (CSF)-filled ventricles on the apical side, contains apical radial glia
(aRG). Characteristic features of aRG include (1) cell morphology with an apical and a basal
process providing direct contact to both ventricular and pial surfaces, (2) intrakinetic nuclear
migration, during which the nucleus-containing soma of the RG cell migrates between the
apical and basal most borders of the VZ according to its cell cycle with mitosis occurring
at the ventricular surface, and (3) high expression of marker genes such as nuclear Pax6
(Paired box 6) and Sox2 (sex determining region Y-box 2) [36–39,41,42]. The asymmetric
divisions of these cells typically give rise to more differentiated progenitor types, which
delaminate from the apical surface, migrate basally and settle within the second germinal
zone, referred to as subventricular zone (SVZ) [37,42–51]. These progenitors, collectively
described as basal progenitors (BPs), can be subdivided into various classes depending
on their cell morphology, marker expression and proliferative potential. The two most
prominent types are basal intermediate progenitors (bIPs) and basal radial glia (bRG).
bIPs have no direct contact with either ventricular or pial surface and show a limited
proliferative potential, typically dividing only once to produce two neurons [37,38,42,52].
They are characterized by the expression of the nuclear marker Tbr2/Eomes (T-box brain
protein 2/Eomesodermin) [41]. In contrast, bRG retain the basal process, show a marker
gene expression more similar to the parental aRG, and are capable of self-renewal through
asymmetric cell divisions [45–49,53]. Neurons born from NPC divisions undergo radial
migration toward the pial surface along the radial fibers of the aRG cells [38,54,55]. The
formation of the six-layer cortex depends on a precise timing of birth and an inside-
out migration pattern of newly-born neurons, in which later-born neurons migrate past
earlier-born neurons to settle in the upper layers of the forming cortical plate (CP) [56–62]
(Figure 1D). This process is orchestrated by an early born transient population of Cajal-
Retzius neurons residing in the basal-most marginal zone (MZ). They produce and secrete
reelin, whose gradient acts as a guidance cue for neuronal migration [23,63]. This neuronal
population, along with another transient population of early-born subplate (SP) neurons at
the apical side of the CP, undergoes apoptosis at the end of development [23,63,64].
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Figure 1. Neurogenesis in the developing neocortex follows a precisely regulated spatiotemporal
order of events. During this process progenitor proliferation, neuronal generation and migration
coincide with the ingrowth of new blood vessels from two independent sources. (A) Neurogenesis is
preceded by the formation of a neural tube by the closure of neural folds. This leads to the reversal of
the apicobasal polarity with the apical side of the neuroepithelium now facing the ventricular lumen
filled with cerebrospinal fluid. The neocortex forms from the dorsal region of the telencephalic vesicle.
(B) At this stage the neural stem cells are organized in a single layer avascular neuroepithelium.
NECs divide symmetrically to expand its surface. Blood vessels are restricted to a pial perineural
vascular plexus (PNVP) and do not yet penetrate the brain parenchyma. (C) At the onset of cortical
neurogenesis NECs transform into aRG, which start dividing asymmetrically to produce more
committed basal progenitors and neurons. These migrate basally to form a secondary germinal zone
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(SVZ) followed by the formation of a cortical plate (CP) by neurons migrating through the intermedi-
ate zone (IZ). While the aRG-containing VZ remains largely avascular, angiogenesis occurs in the
more basal zones. The PNVP starts sprouting radial vessels through the CP towards the ventricular
surface. In the same time a second vascular plexus, the periventricular vascular plexus (PVP) is
formed at the border between VZ and SVZ due to the ingrowth of vessels from the ventral part of the
brain. This plexus is organized in a honeycomb pattern, with bIPs located preferentially at vessel
branch points. (D) Both plexuses form connecting branches leading to a singular vascular network as
neurogenesis progresses and CP thickens. (E) In the germinal zones of an adult neocortex the NSCs
reside close to the ventricle and maintain contact with nearby blood vessels. They remain largely
quiescent, but can be activated to produce more committed NPCs and neuroblasts. Physiologically, in
mice the newly generated neurons in the SVZ migrate along the rostral migratory stream to replenish
the neurons of the olfactory bulbs.

While small mammals, represented by the majority of rodents including the labo-
ratory model species mouse and rat, have relatively simple and smooth (lissencephalic)
cortices, most other mammals have larger cortices with variable degrees of folding (gyren-
cephaly) [12,13,17]. This feature is thought to arise from the evolutionary expansion of
the SVZ in large-brained species and the abundance of more proliferative NPCs in this
zone, particularly the bRG [16]. As an example, humans have a complex SVZ that can be
subdivided into an inner and outer part (iSVZ and oSVZ respectively) [65]. It contains
a larger proportion of self-renewing progenitors such as bRG than the narrower mouse
SVZ, in which the neurogenic bIPs are the dominant BP population [37,42,50]. The length
of the neurogenic period, during which cortical pyramidal neurons are produced, varies
in different mammalian species and is directly correlated to the size of the adult neocor-
tex [12,66,67]. Depending on the species, neurogenesis is either followed by, as in the house
mouse, or may partially overlap, as in humans, with gliogenesis, which provides cortical
astrocytes and oligodendrocytes [68–77]. It is also noteworthy, that the local germinal zones
are primarily responsible for the generation of glutamatergic excitatory neurons, while the
majority of inhibitory interneurons are generated in the ventral regions of the developing
brain, mainly in the lateral and medial ganglionic eminences (LGE and MGE) [2,78–80].
These neurons enter the neocortex via tangential migration [2,78–80]. The embryonic NPCs
also contain a subpopulation of dividing cells that persists beyond the perinatal period and
give rise to the adult progenitor cells of the subependymal SVZ [81,82] (Figure 1E).

Any defect in the establishment of the stereotypical cortex microarchitecture has
profound functional consequences and can lead to clinical symptoms, such as those present
in intellectual disability or seizure disorders [24,83,84]. These perturbations may arise
from intrinsic developmental impairments such as mutations in neurogenesis-related
genes [24,83,85,86] but more commonly stem from the external environment, particularly
nutrient deprivation or infections [87–91]. An efficient delivery of nutrients, including the
metabolically necessary oxygen and glucose, requires a tightly spatiotemporally-regulated
ingrowth of blood vessels. The pattern of neocortical vascularization and its interplay with
embryonic neurogenesis as well as the role of oxygen-sensing HIF signaling pathway, will
be discussed in the next chapters.

3. Physiological Hypoxia in the Developing Brain

While the atmospheric oxygen concentration, often referred to as normoxia, fluctuates
around 21%, corresponding to an oxygen partial pressure (PO2) of approximately 21 kPa (or
159 mmHg), virtually all tissues in the human body experience oxygen levels significantly
lower than this. Brain tissue oxygenation under homeostatic conditions reaches around
4.67–5.33 kPa (35–40 mmHg), which is almost three times lower than the oxygen tension
in arterial blood [92]. In the adult rat brain, O2 pressure in the cortex varies from 2.53
to 5.33 kPa (19–40 mmHg) in cortical grey matter and from 0.8 to 2.13 kPa (6–16 mmHg)
in white matter, similar to that measured in other mammalian species [92,93]. It can
reach even lower levels in deeper brain regions e.g., 0.55–1.07 kPa (11–16 mmHg) in
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the midbrain. The highest oxygen levels in the adult brain have been measured in the
ventricles and the hippocampal dentate gyrus (DG) [94]. Even the pial surface experiences
only around 8% O2 level. Under systemically induced hypoxia, e.g., at high altitudes, or
under pathological conditions, oxygen pressure in the brain can be further lowered despite
physiological compensation in breath and heart rate, enhanced erythropoiesis and cerebral
blood flow [94,95].

Importantly, most of the early embryonic development also occurs under relatively
hypoxic conditions, including in the forming CNS [96–98]. The degree of physiological
hypoxia varies between different brain regions and at different developmental stages or
even in subregional zones within embryonic brain structures [99,100]. For example, in the
developing midbrain the oxygen tension in the dopaminergic neurogenic niche restricted
to the VZ area around the aqueduct is below 1.1% [99], whereas in other fetal brain regions,
oxygen levels are typically in the range of 2–5% O2 [101]. Embryonic and adult brain
germinal zones are thought to be physiologically hypoxic with estimated 18–24 mmHg
oxygen pressure (2.5–3% O2) in the fetal SVZ and 8–48 mmHg (1–6% O2) in the adult SVZ
respectively [100,102].

Deviations from physiological hypoxia in either direction are associated with abnormal
development [96]. Pathological hypoxia can be defined by oxygenation levels below what is
physiological for a given tissue and developmental stage. The exact ranges for physiological
and pathological hypoxia vary by developmental stage, cell type and tissue architecture
in relation to local blood vessel density. In addition, increased O2 levels beyond the
physiological set point may also have adverse effects. Rat embryos cultured in high
oxygen (45%) showed reduced amounts of apoptosis accompanied by morphogenetic
defects in otic vesicle invagination, NT closure, somite formation and embryo turning [96].
Reducing the oxygen below physiological levels had a less dramatic effect, causing mostly
growth retardation and increased apoptosis. During embryonic and fetal development,
non-physiological hypoxia can result from placental defects, obstruction of blood flow
within the fetoplacental unit, cardiovascular malformations of the embryo, and a variety
of other causes [27,103]. Preterm birth, a common obstetric complication, can cause both
pathological hypoxia of the newborn due to lung underdevelopment, and hyperoxia [27–29].
The latter is caused by higher than physiological levels of oxygenation in a tissue and is
typically achieved by life-saving oxygen treatments [28,29]. Overall while O2 is a vital
metabolic growth factor, increasing or limiting its levels has effects on development beyond
energy production. Understanding the role of physiological hypoxia at different stages of
development is critical for designing strategies to mitigate the negative consequences of
non-physiological changes in oxygen pressure.

4. Oxygen-Sensing and the HIF Signaling Pathway

Given the critical role of oxygen in cellular metabolism, it is not surprising that
organisms have evolved robust oxygen sensing mechanisms that allow them to adapt to
changes in oxygen concentration at both systemic and local tissue levels. In vertebrates,
cellular oxygen sensing is mediated primarily by the HIF signaling pathway [104–108].
The molecular components of this pathway are expressed in virtually all cells of the
body and are remarkably conserved in evolution [107]. The key players encompass the
heterodimeric hypoxia-inducible factors (HIFs), which are transcription factors belonging
to basic helix-loop-helix PAS (Per/Arnt/Sim) protein family [107,109,110] (Figure 2A).
These heterodimers consist of a constitutively expressed nuclear subunit HIF-1β also
known as ARNT (aryl hydrocarbon receptor nuclear translocator) and either the HIF-
1α or HIF-2α subunit [104,105,107]. Both HIF-1α and HIF-2α proteins share a similar
domain structure but differ in their expression pattern [107,111–114]. They consist of a
N-terminal bHLH (basic helix-loop-helix) domain responsible for DNA binding followed
by two PAS dimerization regions, an ODD (oxygen-dependent degradation) domain and C-
terminal transactivation domain (TAD) [107,111,112,115]. HIF-1α is ubiquitously expressed,
whereas HIF-2α is more restricted [113,116–120]. Moreover, despite their similar structure,
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they are not functionally equivalent. Expression of HIF-2α from a HIF-1α locus leads to
embryonic and extraembryonic tissue patterning defects, defective hematopoietic stem
cell differentiation, and promotes overproliferation at the expense of differentiation due to
increased expression of pluripotency genes such as Oct-4 (Octamer-binding transcription
factor 4) [121].
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Figure 2. Schematic representation of the HIF protein family members and the molecular mechanism
of oxygen sensing via the HIF signaling pathway. (A) All HIF family proteins contain an N-terminal
DNA-binding basic helix-loop-helix (bHLH) domain and two PAS dimerization regions. The α-
subunits additionally contain an oxygen-dependent degradation (ODD) domain. While HIF-1α and
HIF-2α have a C-terminal transactivation domain (TAD), HIF-3α has a leucine zipper. Alternative
truncated versions of these proteins can also be expressed. (B) α subunits of the HIF complex are
subject to oxygen-dependent ubiquitination and proteasomal degradation. In the presence of oxygen
PHD family enzymes hydroxylate conserved Pro residues in the ODD, which directs HIF proteins to
polyubiquitination by VHL. HIF-1α can also be additionally inhibited by asparagine hydroxylation
by FIH-1 under normoxia. In contrast, under hypoxic conditions PHD and FIH-1 are inactive, leading
to the stabilization and nuclear translocation of HIF-1α and HIF-2α proteins. In the nucleus they can
bind the constitutively expressed HIF-1β subunit at the promoters of regulated genes via conserved
hypoxia-responsive element (HRE) sequences. The complex can then recruit other transcriptional
activators to drive the transcription of target genes.

HIF-1/2α subunits are continuously translated from mRNA and in the presence of
sufficient oxygen pressure undergo immediate degradation in the cytoplasm [122,123]. This
degradation is facilitated by a group of enzymes in the 2-oxoglutarate-dependent oxygenase
superfamily known as the prolyl 4-hydroxylases (PHD), which catalyze the hydroxylation
of the prolyl side chain of HIF-1/2α proteins [107,124,125]. Three members of this group
(PHD1, PHD2 and PHD3) have been described in vertebrates [105,107,125]. PHD2 is the
only one of the three that is required for survival as its deletion causes embryonic lethality
between E12.5–E14.5 [105,126]. The activity of the PHD enzymes requires molecular oxygen
as well as several cofactors, namely 2-oxoglutarate, ascorbate and Fe2+ ions [107,127]. Pro-
line hydroxylation of HIF-1/2α targets them for ubiquitination by the Von Hippel-Lindau
tumor suppressor (VHL) E3 ubiquitin ligase protein resulting in their proteasomal degra-
dation [128,129]. HIF-1α can additionally be regulated by another enzyme, asparaginyl
hydroxylase HIF1AN (FIH-1), which hydroxylates an asparagine residue in its C-terminal
transactivation domain (TAD) resulting in decreased transcriptional activity [130–133].
Upon reduction of tissue oxygen levels PHD enzymes gradually lose their activity and
non-hydroxylated HIF-1/2α proteins translocate to the nucleus where they dimerize with
HIF-1β subunits to form functional transcription factors [104–106]. They bind to conserved
DNA sequence motifs described as hypoxia response elements (HREs) in promoter re-
gions of a great number of target genes, involved in many different processes including
glycolysis, iron metabolism, erythropoiesis and angiogenesis [105,134–136]. Canonical
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targets include angiogenesis-promoting Vegf (vascular endothelial growth factor), erythro-
poiesis stimulating Epo (erythropoietin) and Pgk1, a glycolysis enzyme (phosphoglycerate
kinase 1) [105,123,137]. Consistent with their functional non-equivalence, HIF-1α and HIF-
2α-containing complexes regulate overlapping but not identical sets of targets [114,138].
The regulation of HIF complex assembly is depicted schematically in Figure 2B.

In addition to HIF-1/2α, vertebrate genomes encode for the third member of the
HIF transcription factor family, HIF-3α [111,112] (Figure 2A). The HIF-3α protein levels
can also be regulated by hypoxia and the PHD/VHL-mediated degradation [111,112].
Prenatally, it is expressed during late embryogenesis in mice, predominantly in the lung
and heart, but also in the developing brain. HIF-3α differs from HIF-1/2α in its protein
structure in that it lacks the C-terminal TAD. Instead, the gene encodes a leucine zipper
(LZIP) domain in its C-terminal portion [111,112]. However, HIF-3α can be expressed as
multiple isoforms with different domain inclusions, corresponding to different expression
patterns and functions [112]. It is widely regarded as a dominant negative regulator of
HIF-1/2α-driven transcription at least partly due to the ability of some of its isoforms to
act as competitive inhibitors. Selected forms of HIF-3α are able to bind DNA and dimerize
with either HIF-1β or other α subunits to form complexes that lack transcriptional activity.
Interestingly, HIF-3α gene is also a target of HIF-1/2α-mediated transcriptional activation
thus providing a negative feedback loop. In addition to its inhibitory function, HIF-3α can
also induce transcription of a number of genes distinct from other HIF-α proteins by an
incompletely understood mechanism [111,112].

The precise pattern of activation and downstream effects of the HIF pathway depends
on the cellular and tissue context. In both adult and prenatal settings, certain tissues
and areas experience physiological hypoxia resulting in constitutive HIF pathway activa-
tion [101,123]. Adult mice reared in normoxia (21% atmospheric O2) produce detectable
HIF-1α protein levels in the brain, kidney, liver, skeletal muscle and heart but not in the
lung [123]. HIF pathway activity is also required for proper development as global consti-
tutive knockout of HIF-1α in mice causes growth retardation by E8 and embryonic lethality
by E10.5 [139–141]. These phenotypes are primarily caused by defective angiogenesis and
cardiovascular malformations, leading to widespread hypoxia and cell death. HIF-1α KO
embryos also display a failure of neural-fold closure accompanied by decreased embry-
onic PGK expression, which is particularly pronounced at the neural fold margins [140].
Perhaps not surprisingly, these phenotypes largely overlap with the effects of embryonic
hyperoxia highlighting the critical role of oxygen-driven regulation of the HIF pathway
for developmental processes [96]. This points to a specific role of HIF signaling in CNS
development that is at least partially independent of its role in vascularization.

5. Cortical Angiogenesis and Its Interaction with NPCs in the Embryonic Neocortex

Considering that the oxygen delivery to embryonic organs depends on the devel-
opment of the nascent vasculature, the pattern of local tissue hypoxia and HIF pathway
activation changes according to the spatial and temporal progression of angiogenesis. In
the early stages of development, the cerebral cortex is avascular and progenitor cells divide
under physiological hypoxia [96,98,142]. The dorsal telencephalon of a mouse is initially
completely free of blood vessels (Figure 1B). Pial vessels, representing the venous side of the
circulatory system, are the first to arrive and cover the basal surface of the future neocortex
by E9 in mouse [143] or six weeks of gestation in humans [144]. Initially, these vessels
form a perineural vascular plexus (PNVP) [145]. This phase of surface vascularization is
followed by internal vascularization when the PNVP generates sprouts, which penetrate
the pia, invade the embryonic murine cortex and grow radially in the direction of the
ventricular surface [145,146] (Figure 1C). Later the radial vessels also produce horizon-
tal branches [145,147]. Meanwhile, periventricular vessels, which form a second plexus
near to the apical (ventricular) side, are initially present only in the ventral telencephalon
from where they gradually sprout into the dorsal telencephalon between E10-11 [143].
Around E12.5 a honeycomb-like vascular plexus (periventricular vascular plexus; PVP)
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forms near the ventricular side in the SVZ, just above the VZ [145,146,148,149], which
also connects both periventricular and pial vessels [148] (Figure 1D). Gradually, the pial
and periventricular plexi form connections that are thought to approximately reflect the
arterial (periventricular)-to-venous (pial) flow. The lower region of the SVZ contains a
particularly extensive plexus, while most of the VZ except for its uppermost zone remains
avascular. This avascular region decreases in size during development and eventually
disappears postnatally, which correlates with the decrease in VZ thickness [148]. At E14.5,
a secondary internal plexus forms just under the CP and both plexi connect via penetrating
branches [146]. The forming CP contains primarily vertical vessels with SP forming a
boundary to the honeycomb plexus of the VZ/SVZ/IZ. This ventral-to-dorsal gradient
of angiogenesis is similar along the entire rostrocaudal span of the forebrain [143]. This
pattern is also remarkably conserved in evolution with species such as the softshell turtle,
mouse and ferret exhibiting similar vascular architecture [148]. In the perinatal period,
starting around E18.5 a more homogeneous vascularization pattern forms with dense
parenchymal capillaries [146].

The gradient of angiogenesis in the dorsal telencephalon precedes that of neurogen-
esis [60,143,149–151]. Angiogenic sprouting into the cortical parenchyma relies predomi-
nantly on VEGF signaling associated with local hypoxia [139,142]. Vegf is a target of HIF,
which serves as a guidance molecule for endothelial cell (EC) migration and prolifera-
tion [152]. Both VEGF and HIF-1α protein expression is high in the early VZ and decreases
during development [148]. Exposure of pregnant mouse dams to systemic hypoxia by
placing them in a 10% O2 atmosphere increased both HIF-1α expression in the embryonic
VZ as well as vascular branching, while NPC-specific HIF-1α deletion severely impaired
angiogenesis [148]. Interestingly, PVP-specific angiogenesis was also shown to be driven,
at least in part, by a cell-autonomous function of homeobox transcription factors expressed
by invading ECs [143]. Notably, the same transcription factors are also expressed by the
surrounding NPCs: the ventral ECs express the ventral progenitor markers Nkx2.1 and
Dlx1/2, while dorsal periventricular ECs express the dorsal telencephalon aRG marker
Pax6. None of these transcription factors are produced by the pial vessels and their deletion
causes regional vascularization defects by affecting the expression of BDNF (brain-derived
neurotrophic factor), VEGF-A and its receptors (Kdr/Flk1 and Flt1) in ECs. Surprisingly,
this mechanism appears to be independent of the classical hypoxia-sensing HIF path-
way [143]. In the same time, perturbation of neuronal layering e.g., in the reeler mouse has
little effect on the vascularization pattern [146]. In contrast, early postnatal vascularization
in the mouse forebrain requires non-EC autonomous VEGF and HIF-1/2α signaling [153].
Deletion of PHD2 specifically in postmitotic neurons during the perinatal period increased
both HIF-1/2α protein levels and vessel density, branching and EC proliferation, while
neuronal HIF-1/2α KO had an opposite effect. Manipulation of HIF-1/2α levels in neurons
affected not only cell-autonomous VEGF expression but also its production by astrocytes
by a yet unknown mechanism. Moreover, VEGF is not the only HIF-dependent angiogenic
factor. Another HIF target, adrenomedullin (Adm), additively increased VEGF-A-induced
endothelial sprouting in a MAP2K1/1, Src and PI3K signaling-dependent manner. Expo-
sure to systemic hypoxia (8% O2 atmosphere) increased both Adm and Vegfa transcription
in the adult brain.

Studies of temporal changes in the developing vessel architecture of the murine neo-
cortex revealed specific spatial relationships with resident progenitor cells, their progeny as
well as cells migrating from other brain regions [146,148,149]. The spatiotemporal pattern
of angiogenesis in the developing neocortex establishes hypoxic and perivascular zones
that serve as niches for NPC subtypes [146,148,149]. Notably, aRG cells occupy the most hy-
poxic region of the VZ and their somata are located away from blood vessels [142,148,154].
Increasing vessel density in this region by genetic manipulation, for instance by heterozy-
gous KO of Flt1 (Fms related receptor tyrosine kinase 1), a VEGF receptor, or by systemic
hypoxia reduces the number of aRG. At the same time, the number of BPs increases, likely
due to the progenitor division mode being pushed towards differentiation [148]. Con-
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versely, homozygous HIF-1α deletion in NPCs resulted in profoundly impaired neocortical
angiogenesis. Nevertheless, the number of mitotic BPs was increased at the expense of aRG
cells suggesting that HIF-1α is required to prevent premature neurogenesis independently
of its effect on vessel ingrowth.

The correlation between the progression of neurogenesis and the progressive vascular-
ization of the developing neocortex has prompted studies on the potential role of direct
cell-cell interactions between the vasculature and neuronal progenitors. In-growing vertical
blood vessels in the CP follow the direction of RG fibers and ECs are in direct physical
contact with these fibers through gaps in pericyte coverage [147]. These interactions affect
vessel stabilization after mid-neurogenesis by inhibiting Wnt pathway activity in ECs [147].
Direct contacts between NPCs and ECs were also observed in the VZ. The Flk1+ tip cells
of sprouting new vessels contact mitotic aRG cells via long filopodia and the frequency of
these contacts changes as the neurogenesis progresses both in the dorsal and ventral telen-
cephalon [148,155]. These interactions regulate the proliferation/differentiation balance of
the apical but not basal progenitors in both mouse and human and aRG marker expression
is increased by these contacts [148,155]. A high density of EC filopodia extends the mitotic
phase of progenitors and thus the total cell cycle length, resulting in more differentiative
divisions that produce BPs and neurons [155]. In turn, the growth of filopodia is induced
by VEGF-A secreted by mitotic apical NSCs. An endothelial deletion of the VEGF receptor
and negative angiogenesis regulator KDR/Flk1 (kinase insert domain receptor) enhances
angiogenesis and reduces HIF-1α protein expression as well as aRG maintenance while
increasing differentiation into BPs [148]. Interestingly, mouse ventral but not dorsal telen-
cephalic apical progenitors associate their basal process with periventricular vessels [156].
aRG cells in both regions initially extend their basal processes to the pial surface, but ventral
progenitors progressively lose these contacts between E11.5 and E16.5. Instead, they es-
tablish interactions with periventricular vessels mediated by laminin-containing basement
membrane. This contact is maintained throughout the cell cycle, including mitosis. Its
loss by ITGβ1 deletion in RG cells led to fewer mitotic divisions, resulting in defects in
cortical interneuron production and functional consequences in circuit formation. PV+

(parvalbumin) and SST+ (somatostatin) interneurons were underproduced which led to
diminished synaptic inhibition in the neocortex [156]. Interestingly, human but not mouse
aRG cells in dorsal telencephalon also lose their pial contact in later developmental stages
and their basal processes were shown to frequently contact blood vessels [157]. Whether
these contacts mediate similar effects on aRG cell division to those in ventral telencephalon
remains unclear. Given the greater tissue thickness of mouse ventral telencephalon in
comparison to dorsal telencephalon during late neurogenesis, as well as the expansion of
dorsal telencephalon thickness in human evolution, the transfer of basal process contact
from pia to blood vessels may reflect an adaptation to a general limit on the process length.
Another possibility is that this morphological difference is linked with the ability of human
dorsal progenitors to generate inhibitory interneurons, a function normally restricted to
ventral progenitors in rodents [158].

The ingrowth of blood vessels into the developing cortex relieves hypoxia and coin-
cides with NSC differentiation, the appearance of Tbr2+ BPs, and the generation of neurons
in both mice and ferrets [142]. During cortical neurogenesis mitotic intermediate progen-
itor cells (IPCs) in the SVZ and IZ, particularly Tbr2+ BPs, were shown to preferentially
reside in the vicinity of blood vessels and divide adjacent to vascular branch points in
areas covered by pericytes [146,148,149]. This pericyte contact was associated with sup-
pression of neuronal differentiation [148]. Some VZ Tbr2+ cells in the VZ, representing
delaminating BPs, also had direct contact with endothelial tip cells and Tbr2+ cell density
between E12-14 increased in a lateral-to-medial gradient correlating with the gradient of
angiogenesis [149]. Manipulation of NPC identity by overexpression of Tbr2 to induce
BP formation reduced vascular branching, while overexpression of Notch intracellular
domain (NICD) to promote aRG maintenance increased it. Because overexpression of
these proteins regulated HRE-mediated transcription in opposite ways it is likely that they
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directly or indirectly modulate HIF-1α activity [148]. These studies highlight the crucial
role of the activation of hypoxia-mediated HIF pathway in coordinating vessel in-growth
and progenitor self-renewal/differentiation balance. This interdependence between hy-
poxia, HIF pathway activation and angiogenesis-mediated hypoxia relief also makes it
challenging to experimentally disentangle and pin-point cause-and-effect relationships
between these factors.

Gliogenic progenitors are also affected by local vascular architecture. Oligodendrocyte
progenitor cells (OPCs), similar to neurogenic BPs, reside in the proximity of honeycomb
vessels in upper IZ and SP albeit in lower vessel density regions than BPs [148]. They
also prefer vessel branching points but are adjacent to ECs and avoid direct contact with
pericytes. OPCs cultured on ECs in vitro displayed a less differentiated mRNA expres-
sion pattern with lower levels of mature markers Mbp and S100β and higher level of
PDGFRα [148]. Progenitor cells are not the only cell types affected by cortical vascular-
ization. Neurites of newly born migrating neurons also preferentially align with blood
vessels [146], which have been shown to guide the migratory pattern of ventrally born
interneurons destined for the neocortex [159–162]. Collectively, changes to cortical an-
giogenesis patterns during neurogenesis influence neuron and glia production as well
as neuronal survival eventually resulting in altered cortical thickness [148,155,163]. The
effects of vasculature are not limited to direct cell-cell contacts or oxygenation, as they also
encompass the delivery of other signaling molecules and nutrients. As an example, low
glucose, which in vivo results from low vessel density, decreases proliferation and increases
differentiation of fetal-derived (E15.5) mouse NSCs in vitro [164].

6. The Role of Hypoxia and HIF Pathway in Cultured NPCs

In addition to the direct effects of cell-to-cell contact, cortical vascularization indirectly
affects resident progenitors and their progeny by providing diffusible components to the
stem cell niche. One of the most important indirect effects of increased vascular density
is an elevation of local tissue oxygenation and the relief of physiological hypoxia. These
affect the cells residing in the niche primarily through the modulation of the HIF signaling
pathway, as described in detail below.

The influence of oxygen directly as a metabolic substrate or via its effect on HIF
pathway activation on the survival, proliferation and differentiation of NPCs has been
extensively studied using in vitro cultures. These have the advantage in terms of being
able to tightly control the O2 concentration, however, suffer from the lack of native tissue
context. Multiple observations show that hypoxic conditions in a physiological range
for a developing fetal brain and HIF-1/2α stabilization promote stemness and suppress
precocious differentiation of NSCs and NPCs in culture [102,137,165]. This seems to be
an overarching principle for many other stem cell types, including human ESCs [166,167],
which maintain higher levels of pluripotency under 3–5% compared to 21% O2 [168,169].
However, low oxygen levels (2% O2) have also been shown to alter germ layer specification
of hESCs by promoting a more neural fate in a HIF-1α and -1β dependent manner [170].
Spontaneously differentiating ESCs in normoxic culture with no detectable HIF-1α protein
maintained higher expression of pluripotency markers and sustained low Sox1 levels [171].
As these ESCs aggregates expanded, they spontaneously generated hypoxic zones leading
to HIF-1α stabilization and neural lineage commitment. These changes were dependent on
HIF-1α, as its knock-down led to reduced expression of neuroectodermal and neural genes,
such as Sox1, Nestin or Pax6 while increasing pluripotency markers Nanog and Oct3/4
and an epiblast marker Fgf5 [171]. Conversely, HIF-1α overexpression induced pro-neural
Sox1 both directly by binding to HREs in its promoter and indirectly by BMP signaling
inhibition [171]. This effect of varying oxygen concentration was specific to differentiating
ESCs with no effect on expanding pluripotent cells [171]. Mildly hypoxic culture conditions
(4% O2) also promoted the survival of NSCs differentiating from ESCs, an effect mediated
by apoptosis-inducing factor (AIF) in a HIF-1α-independent manner [172]. However, in
contrast to these findings, decreasing HIF-1α during NECs differentiation under hypoxia
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or in mouse ESC-derived neurospheres decreased self-renewal, promoted neuronal dif-
ferentiation, and accelerated neurogenesis [173]. In another study normoxia also induced
more robust neuroectoderm production [169]. These seemingly contradictory findings may
be due to varying effects of oxygen and HIF pathway at various stages of differentiation.
When the effects of mild hypoxia (5% O2) in vitro were analyzed, opposing outcomes were
found during two phases of neural lineage differentiation [174]. First, the differentiation
of mouse ESCs into NSCs was inhibited by lower oxygen concentration underscoring the
role of hypoxia in maintaining pluripotency. In contrast, secondary differentiation from
NSCs to more committed NPCs in neurospheres was enhanced by low oxygen, which also
promoted neural over mesodermal or epithelial cell fates [174]. Disparate outcomes of
varying oxygen concentration in vitro suggest that the exact timing of hypoxia in relation to
the progenitor subtypes during lineage progression, their internal state or subtle changes in
medium composition may determine the effect on the proliferation/differentiation balance.

Among NPCs derived from different brain regions mesencephalic progenitors seem
to be particularly sensitive to effects of oxygen in vitro [93,175–179]. Culturing rodent or
human embryonic mesencephalic NPCs under 2–3% O2 instead of normoxia led to more
proliferation, promoted pluripotency, reduced cell death and senescence, and enabled
higher downstream yield of TH+ dopaminergic neurons [93,127,175,176,178,179]. Hypoxic
conditions also lead to HIF-1α stabilization [175] and transcriptional activation of its target
genes such as vegf and epo [93]. Increasing HIF-1α levels under normoxia was sufficient
to mimic these cellular phenotypes suggesting that it is the main pathway mediating
effects of oxygenation on NPCs [127,178]. Consistent with this, the neural progenitor-
specific KO of HIF-1α under hypoxic conditions in culture decreased proliferation and
increased apoptosis [177]. Moreover, the dopaminergic differentiation and maturation
of midbrain NPCs was impaired. This phenotype could be partially rescued by adding
VEGF into the medium. The stability of HIF-1α protein in rat mesencephalic NPCs was
shown to be dependent on Hsp90 activity. Its inhibition also led to diminished HIF-1α
target vegf and epo mRNA levels, decreased progenitor cell survival and proliferation
in vitro [180]. Interestingly, in contrast to mesencephalic progenitors in vitro cortical NPCs
did not show significant oxygen level dependent changes in proliferation and pluripotency
in these studies [93,177]. However, this lack of oxygen sensitivity may be related to
the particular culture conditions or the age and type of isolated progenitors, as other
studies reported significant effects of hypoxia on cortical NPCs. For example, hypoxia
(2–5% O2) in vitro permitted long-term expansion of mouse fetal cortical NPCs [181]. In
contrast, normoxia reduced HIF-1α and its anti-apoptotic target nucleophosmin (NPM),
while triggering p53 phosphorylation. This led to increased apoptosis, particularly in
multipotent progenitors and glial precursors compared to more neuronally committed
cells [181]. O4+ oligodendrocyte progenitors were especially affected. Rat embryonic
cortical NSCs grown under hypoxic conditions (1% O2) also increased their proliferation.
Under these conditions, HIF-1α expression was increased and mRNA levels of multiple
cell adhesion and ECM-related genes were modulated leading to reduced cell adherence
and enhanced migration. Among others the MMP-9 levels were increased in a Wnt-
dependent way, which was necessary for the observed phenotype [182]. Similarly, both
human fetal telencephalon and diencephalon-derived NSCs increased proliferation and
reduced apoptosis under mild hypoxia (2.5–5% O2) [100,102]. These conditions also enabled
efficient neuronal and oligodendrocyte differentiation. However, lower oxygen pressure
(1% O2 and below) caused deleterious effects on survival with increase in quiescence
and altered mitochondrial morphology [100,102]. Mouse embryonic ganglionic eminence
derived NSCs in neurosphere culture also proliferated more under mild hypoxia (1–4%
O2) [183] suggesting that physiological hypoxia generally promotes progenitor expansion
and survival in multiple brain regions.

O2 tension also affects cell fate decisions during NPC differentiation toward neuronal
or glial lineages. Several studies have shown varying effects of hypoxia on neuronal/glial
differentiation balance in vitro. Milosevic and colleagues showed that higher oxygen
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concentrations in culture favored glial over neuronal differentiation in mouse progeni-
tors [127,176]. Similarly, while low oxygen concentration (5% O2) promoted proliferation of
human NPCs, normoxia increased differentiation into astrocytes [165]. In contrast, another
study reported that HIF pathway activation by physiological hypoxia or PHD inhibitors
during neuronal differentiation pushed the cells towards GFAP+ (glial fibrillary acidic
protein-positive) glial fate in a HIF-1/2α and HIF-1β-dependent way, without affecting cell
cycle or apoptosis [170]. In addition, increased apoptosis was shown to specifically affect
progenitors committed to glial but not neuronal lineages grown under normoxic conditions
indicating increased sensitivity of glial lineage cells to high oxygen levels in vitro [181]. In
a study by Horie and colleagues, hypoxia (1–4% O2) promoted neuronal differentiation
into Tuj1+ neurons with no apparent effect on the differentiation of GFAP+ astrocytes [183].
These seemingly contradictory findings could be explained by subtle variations in the iden-
tity of the in vitro propagated progenitor cells or different culture conditions. For example,
length of progenitor culture was shown to affect fate choices of mouse ESC-derived NSCs
independently of oxygen concentration [184]. Undifferentiated Sox1+ NSCs were passaged
for short or long period of time and then subjected to normoxic or hypoxic conditions
during differentiation. In both cases hypoxia or HIF-1α upregulation reduced stemness and
promoted differentiation, however, short passaged cultures preferentially differentiated
into neurons, whereas long passaging promoted glial fate [184], indicative of the previously
described intrinsic developmental timer [69]. Similarly, cultured NPCs isolated from E15.5
murine embryos could be induced to become astrocytes by LIF, while those from younger
E11.5 embryos could not unless pre-cultured for 4 days in vitro [185]. The efficiency of
astrocytic differentiation from the younger progenitors was additionally modulated by
hypoxia and HIF-1α, which were required for the demethylation of the astrocyte marker
genes gfap and S100β, thereby increasing glia production [185].

The often-discordant results coming from in vitro studies underline the many chal-
lenges of investigating the effects of oxygenation and HIF pathway during brain devel-
opment. While poor specification of progenitor subtypes and lack of control over local
variations in neurosphere and organoid cultures can explain some of the discrepancies,
their relation to in vivo states are often unclear. In an intact developing fetus, spatiotempo-
ral changes in oxygen concentration brought about by dynamic regional vascularization
patterns create a complex local tissue environment. This environment can in turn differently
affect various cell types or even their subpopulations i.e., depending on cell cycle phase or
at the point of cell fate decisions. Moreover, hypoxia-dependent HIF signaling in these cells
can lead to the production of angiogenic and other signaling cues that modify the niche and
provide feedback to ingrowing vasculature. Therefore, studies in vivo, which preserve an
intact tissue context or its aspects are necessary to better explain the interactions between
oxygen tension and HIF signaling in relation to cell type, position in the tissue, internal
state and sensing of other external cues.

7. The Impact of Hypoxia and HIF Pathway on Neurogenesis In Vivo

The expression of HIF pathway components at the organ level was characterized more
than 20 years ago [113,186]. In the brain, the presence of the core transcriptional machinery
of the HIF pathway can be detected early-on during CNS development. Mouse embryos
express high levels of HIF-1α and HIF-1β mRNA in the E9.5 neuroepithelium, while HIF-
2α shows only sparse expression, mainly associated with ingrowing vasculature [113]. This
mRNA expression pattern of HIF-1α and HIF-2α continues through later neurogenic stages
up until birth, around E19.5 [113,186]. Since the presence of abundant mRNA does not
necessarily correspond to high protein levels due to the tight post-translational regulation
of HIF-1/2α, it is important to also assess protein expression in the developing brain. HIF-
1α protein was shown to be constitutively present in NSCs and NPCs isolated from both
the mouse embryonic mid-gestational telencephalon as well as the adult neurogenic zone
(P28 SVZ) [187]. In vivo in mouse embryos HIF-1α protein expression could be detected in
neuroepithelium as early as E7.5 [173]. It was also detected around mid-gestation in E13.5
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embryonic germinal zones [142] and adult SVZ and SGZ (subgranular zone) specifically in
nestin+ and Sox2+ progenitors and GFAP+ astrocytes but not in neuroblasts [187]. Human
cortical radial glia in the VZ of the dorsal telencephalon also express HIF-1α protein as do
young neurons in the CP of a 2nd trimester (14–19 week of gestation) human fetus during
upper layer neuron formation [100]. HIF-1α protein in the germinal zone was present in
both cytoplasm and nuclei, with the nuclear localization being enhanced by increase in
hypoxia [142,187]. Interestingly, in isolated progenitor cells, HIF-1α was protected from
hydroxylation and ubiquitination in the cytoplasm even under normoxic conditions despite
the presence of PHD and VHL enzymes due to its retention in vesicular structures [187].
Meanwhile, consistent with the mRNA expression pattern, no HIF-2α protein was detected
in the embryonic cortex at mid-gestation using Western blotting [142].

The first insights into the in vivo role of the HIF pathway during brain development
came from the characterization of the nestin-Cre-mediated HIF-1α KO mice [188]. In con-
trast to global HIF-1α KO animals [139,141], brain-specific HIF-1α null mice are viable.
However, they present with severe neurodevelopmental impairments resulting in a reduc-
tion in the number of neurons and cortical thickness (without changes in layering), low
telencephalic vascular density and hydrocephalus. The observed reduction in neurons was
caused at least in part by widespread apoptosis thought to stem from angiogenesis defects
and resulting hypoxia [154,188]. As a consequence, HIF-1α mutant mice presented with
impaired spatial memory. Cellular and vascular density phenotypes could be rescued by
in utero electroporation of the wild-type HIF-1α suggesting its cell autonomous role in
progenitor cells and/or their progeny. In this study the first defects were seen perinatally
while mid-gestation (E15.5) embryos appeared normal [188]. However, the early effects
of HIF-1α deletion on NPCs could have been missed due to low efficiency of nestin-Cre
mediated recombination before E17.5 [147,189]. To overcome this limitation, Sakai and
others [163] deleted HIF-1α in NECs using Sox1-cre mouse line, in which Cre recombi-
nase is expressed in the neuroepithelium as early as E8.5. This resulted in early postnatal
lethality, abnormal head shape and brain defects, particularly reduced telencephalon size
visible from E14.5. Increased neuronal apoptosis was seen especially in deep-layer neurons
concomitant with layer disorganization. Vegf mRNA expression was reduced in KO brains
and VEGF signaling inhibition correlated with apoptosis in a non-cell autonomous way
pointing to disrupted angiogenesis as the cause of this phenotype. In contrast, the posi-
tioning of neurons was regulated cell autonomously as HIF-1α KO neurons localized more
apically suggesting impaired migration. However, the authors did not observe any major
effect on proliferation or NPC numbers, possibly due to the length of time between onset
of HIF deletion and analysis [163].

The functional consequences of the local hypoxic environment and HIF pathway activa-
tion on NPCs in vivo were demonstrated in an elegant study by Lange and colleagues [142].
The authors genetically manipulated cortical vascular development specifically in the em-
bryonic brain by using Gpr124 KO mice, which exhibit impaired angiogenesis in restricted
CSN regions, including dorsal telencephalon. Vascularization defects resulted in prolonged
hypoxia, increased HIF-1α stabilization and transcriptional activation of its target genes in-
cluding Glut1 upregulation. At the cellular level prolonged hypoxia in vivo promoted NCS
expansion at the expense of differentiation. Particularly, the proportion of aRG increased,
while the number of more differentiated BPs (bRGs and IPs), which are normally generated
from aRG by neurogenic divisions [37,38,42,50], diminished in KO embryos [142]. This
phenotype was shown to be caused by changes in tissue oxygenation as it could be rescued
by transferring pregnant dams to hyperoxic environment (80% O2 atmosphere), which
relieved hypoxia. The HIF signaling pathway was involved in mediating the effects of
hypoxia. HIF-1α deletion specific to NPCs using Emx1:Cre increased early neurogenesis
at the expense of progenitor expansion resulting in postnatal reduction in cortex size and
thickness. No effect on cortical layer organization was observed. However, HIF-1α KO had
a pleiotropic effect on the cortical tissue by causing a reduction in cortical angiogenesis and
induction of apoptosis, making it difficult to distinguish direct effects of HIF signaling from
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its effects mediated by vascularization. Nevertheless, in utero electroporation of HIF-1α at
E13.5 resulted in an increase in cycling RG and a reduction in cortical neuron number in
CP suggesting a direct influence on the proliferation/differentiation balance. This effect
was also shown to require the transcriptional activity of HIF-1α [142].

Tissue oxygenation was also shown to regulate the expansion of basal RG progenitors
in the embryonic mouse brain [154]. This progenitor type is particularly abundant in the
oSVZ of gyrencephalic species, whereas small lissencephalic rodents only have a limited
number of bRG in their lateral cortex [190,191]. Systemic exposure of pregnant dams to
10, 21 or 75% oxygen for 48 h during mid-neurogenesis (E14.5 to E16.5) correlated with
fetal brain oxygenation and brain growth. Hypoxic embryos had increased apoptosis and
decreased tissue volume with thinner CP and fewer upper layer neurons. Conversely,
under hyperoxic conditions, brain size and cortex thickness increased while apoptosis was
decreased. Histologically hyperoxia led to an expansion of proliferative Sox2+ bRG and
Tbr2+ and Sox2+ double positive progenitors, which accumulated basally of normal SVZ
range. This in turn led to an increase in the proportion of Ctip2+ neurons produced. The
effect on bRG cells was also shown to be dependent on intact HIF-1α signaling. Importantly,
the effects of tissue oxygenation and HIF pathway activation were not limited to the devel-
oping telencephalon but also regulated NPC proliferation and dopaminergic neurogenesis
in the embryonic midbrain [99]. Systemic hypoxia or hyperoxia in pregnant females led to
changes in embryonic midbrain size. These oxygenation changes correlated with midbrain
VZ hypoxia, which was exacerbated in fetuses, in which HIF-1α was conditionally deleted
using nestin-Cre, as an effect of decreased vessel density. The numbers of dividing cells in
the VZ and newly produced neurons in both the SVZ and the mantle zone increased with
oxygen concentration. Oxygenation also exerted some HIF-1α-independent effects, as the
total neurogenesis of TH+ neurons was positively correlated with O2 levels regardless of
the HIF-1α KO [99].

In addition to the effect on neurogenesis, changes in oxygen tension and HIF pathway
activation were also shown to regulate the expansion, survival and maturation of OPCs both
in vitro [100,165,181,192] and in vivo [193,194]. The relationship between culture oxygena-
tion and oligodendrocyte generation is complex. Hypoxia has been shown to differentially
affect astrocytic and oligodendrocyte progenitors, with OPCs being particularly sensitive
to hypoxia-induced cell death [100,181]. Even temporally limited variations in oxygen
pressure affect OPC fate. Low in vitro O2 concentration during OPC proliferation stage
permits robust differentiation after switching to normoxic conditions in vitro. In contrast,
exposure of dividing oligodendrocyte precursors to high O2 causes p53 phosphorylation
and p21cip1-mediated mitotic arrest [165]. Consistent with the effects of oxygenation in cul-
ture [192], mild postnatal hypoxia or constitutive HIF-1/2α stabilization by VHL inhibition
in vivo caused hypomyelination and delayed OPC maturation in rodent neonates [194,195].
In turn HIF-1/2α KO inhibited angiogenesis, which normally occurs in the corpus cal-
losum between P0–P4, resulting in cell loss and axonal disruption. In vitro, the hypoxic
OPC maturation arrest was shown to rely on an autocrine Wnt7a/7b activation via HIF-
mediated transcription, with HIF binding directly to HREs in the promoter region [194].
Secondarily, paracrine Wnt activity from OPCs also affected early postnatal white matter
angiogenesis in vivo by stimulating EC proliferation [194]. While the stimulatory effect
of oligodendroglia on EC proliferation and angiogenesis in various CNS regions in vivo
has recently been confirmed, the role of Wnt signaling in this process is disputed [192,193].
Instead, the canonical VHL-HIF-1/2α-VEGFA-pathway has been shown to mediate this ef-
fect. Meanwhile, blocking the activation of the Wnt/β-catenin pathway in ECs, which was
mediated by HIF-1α activation and downstream Wnt secretion from astrocytes, reduced
angiogenesis [193]. Oxygen sensing also interacts with other signaling pathways during
glial differentiation. The BMP antagonist noggin has a limited effect on the behavior of
glial progenitors in 20% O2 culture but it promotes progenitor cell expansion and decreases
glial differentiation under hypoxia by inhibiting the BMP/Smad pathway. Conversely,
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BMP2 increases the number of produced GFAP+ glial cells and decreases the number of
progenitors only in normoxia [165].

HIF-1α in NPCs as well as in postmitotic neurons can also be induced in a hypoxia-
independent manner. Constitutive activation of the metabolic master regulator mTOR
kinase in neural progenitors during early neurogenesis triggered both HIF-1α upregulation
as well as massive apoptotic cell death in layers basal to VZ [196]. While this activation
had no effect on aRG proliferation, the number of Tbr2+ cells was significantly reduced
suggesting a specific effect on basal progenitors. Whether the loss of bIP cells could be at-
tributed to apoptosis or diminished production from HIF-1α overexpressing aRG [142] was
not assessed. Nonetheless, as an effect of this cell loss mTOR hyperactive pups presented
with microcephaly and failure to thrive resulting in early death. In contrast, induction of
mTOR hyperactivity in postmitotic neurons, either perinatally or in young adults had no
effect on apoptosis. Instead, defects in neuronal migration were observed as well as cortical
hypertrophy associated with increased neuron body size. In addition, signs of neurode-
generation and massive microglia activation can be observed. One of the possible cues
attracting the microglia could be an HIF-1α-dependent increase in extracellular adenosine
caused by local tissue hypoxia [197]. These postnatal phenotypes led to severe epilepsy
and death in affected mice. It is currently unclear if the postnatal phenotypes were also
associated with HIF pathway activation nor is it known to which extent it was responsible
for the disease presentation. The possible effects of mTOR-mediated HIF-1α activation of
angiogenesis were also not assessed in this study [196].

Most in vivo studies have analyzed the role of HIF signaling during neurogenesis
either by targeting HIF-1α specifically or by general upstream modulation of HIF-1/2α
via components of the hydroxylation and ubiquitination pathway. Although HIF-2α has
received less attention due to the lack of an overt KO phenotype in the brain [198] or
expression in neurogenic progenitors [113,142,186], a recent study has shown that it is
required for neuronal survival [195]. In contrast to HIF-1α, which is only stabilized under
systemic hypoxia, HIF-2α protein is present in the brain of adult wild type mice under
normoxia. Mice with a conditional HIF-2α KO using nestin-Cre had a normal lifespan
and fertility but reduced cortex size and the number of pyramidal neurons specifically
in retrosplenial but not PFC or hippocampal areas. This cellular phenotype resulted in
functional impairments in learning and memory. Cultured neurospheres from new-born
HIF-2α KO NPCs did not reveal differences in proliferation. Instead, the cells showed
lower migration under normoxia, suppression of cell death and reduced Neurogranin,
Syn1 (Synapsin 1) and Dlgap4 (DLG Associated Protein 4) mRNA expression, suggesting
impaired synaptic function. mRNA profiling from KO and WT neurospheres cultured
under hypoxia also revealed altered neurogenic pathway gene expression. In addition,
HIF-2α KO caused a reduction in MBP (myelin basic protein) mRNA, a marker of mature
oligodendrocytes, in vivo [195]. Because the authors only analyzed adult mice it is unclear
if the observed phenotypes could be attributed to developmental as opposed to postnatal
functions of HIF-2α.

Interestingly, adult neurogenesis in rodents has also been shown to require appro-
priate physiological oxygen levels and the HIF pathway modulation [199,200]. Resident
NCSs/NPCs in both main neurogenic zones of an adult brain, SVZ and DG SGZ, express
HIF-1α [201]. Reduced O2 pressure in the DG and SVZ due to systemic hypoxia increased
HIF-1α and VEGF expression and led to increased NSC proliferation in both regions [94].
HIF-1α KO in NPCs of the adult SGZ, which are responsible for the hippocampal neuro-
genesis, resulted in a 50% reduction in new-born neurons in DG. This negatively affected
hippocampus-dependent cognitive tasks, namely context-dependent fear and operant learn-
ing [199]. Similarly, in the adult murine SVZ, which produces neurons for the olfactory
bulb [33], HIF-1α deletion using a tamoxifen-inducible nestin-Cre model led to reduction in
NSC maintenance [200].

In summary, variations in oxygen tension in vivo caused by regional differences in
vascularization during embryonic development affect progenitor cell behavior mainly via
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HIF-1α pathway. Consistent with the bulk of in vitro evidence, the primary role of hypoxia
in NPCs seems to be the preservation of stemness and suppression of neurogenesis. In
contrast, low oxygen tension has a negative effect on the survival of more differentiated
cell types such as OPCs or neurons and the HIF pathway plays a role in the prevention of
cell death. The reciprocal regulation of the oxygenation and HIF signaling and their effect
on progenitor behavior are summarized graphically in Figure 3A.
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Figure 3. Mechanism of oxygen sensing and HIF pathway activation in embryonic neurogenesis.
(A) During early development, oxygen delivery to the embryonic neocortex is limited by the lack
of vasculature. As a result, HIF-1α signaling is high in aRG cells, which promotes self-renewal. As
neurogenesis progresses the ingrowth of blood vessels basally from VZ creates more oxygenated zones
where more committed progenitor cells reside. These progenitors divide to produce postmitotic
progeny, although its ultimate fate (neuronal or glial) appears to be regulated primarily by the
developmental timing. The oxygen levels are also not uniform along the apicobasal axis, which adds
another layer to the niche complexity. Although aRG cells reside in physiologically hypoxic regions,
very low oxygen levels or anoxia can have adverse effects on progenitor proliferation and survival.
(B) The effects of HIF-1α activity on different cell types in the developing neocortex. Activation of
the HIF pathway generally maintains stemness and promotes survival and proliferation of aRG cells.
This occurs at the expense of differentiative divisions and the production of more committed basal
progenitors. This phenotype is caused at least in part, by increased glycolysis and HIF-dependent
expression of trophic proteins such as EPO. Additionally, HIF promotes the expression of transcription
factors such as Pax6 while being associated with the repression of differentiation markers such as
Tbr2. However, the degree to which these genes are directly regulated by HIF is largely unknown.
Moreover, the role of HIF in regulating basal progenitor subtypes is so far not understood. In newly
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generated neurons HIF-1α is critical for survival and may affect migration. HIF-1α also induces
VEGF production by NPCs which is necessary for cortical vascularization. In glial progenitors HIF
activity is particularly important for survival and proliferation of OPCs, while putting the brakes on
oligodendrocyte maturation via Dlx3 and Ascl2 regulation. While HIF-2α is unlikely to be required
for embryonic NPCs it plays a role in perinatal neuron survival, myelination and likely in ECs.
(C) HIF signaling cross talks with other signaling pathways during neurogenesis. HIF-1α co-activates
the transcription of Notch target genes such as hes-1 by binding to HRE elements directly as well as
interacting with the Notch ICD. In addition, Notch can potentiate HIF-1α activity by sequestering
FIH-1. HIF-1α also enhances Wnt signaling by inducing the expression of Tcf-1 and Lef-1 transcription
factors, which bind β-catenin to activated Wnt-dependent transcription.

8. Molecular Mechanisms of HIF Pathway Regulation in Neurogenesis

Studies on the role of hypoxia in NSC and NPC behavior have shown a dominant
role of the HIF signaling pathway in mediating its effects on cellular phenotypes. The
molecular mechanism of HIF action can be largely explained by its role as a transcriptional
activator [105,106,138]. The downstream targets of HIF transcriptional regulation as well
as the crosstalk with other signaling pathways are discussed in this chapter.

One of the main functions of the HIF pathway-activated transcription is the promotion
of angiogenesis through increased expression of its canonical HIF target Vegf [118,152].
Human NSCs in culture treated with HIF-1α stabilizing compounds such as PHD in-
hibitors increased their VEGF production while decreasing proliferation and increasing
dopaminergic differentiation [202]. In vitro embryonic mouse NCSs/NPCs isolated from
E14 telencephalon supported morphogenesis of capillaries and had a protective role on
ECs preventing cell death after glucose and O2 depravation (<0.2%). VEGF signaling was
required for this protective function [202]. A trophic effect on co-cultured neurons was
also observed [203]. NCSs/NPCs but not ECs in culture constitutively expressed HIF-1α
and VEGF under normoxia, which were further upregulated by glucose and O2 depriva-
tion [202,203]. A similar pro-survival effect was seen after intracerebral transplantation of
these progenitors into the dorsal striatum. Transplanted NCSs/NPCs expressed HIF-1α
and secreted VEGF, thereby supporting local capillary growth and offering neuroprotection
against O2 and glucose deprivation following ischemia [201,203]. Furthermore, NPCs in
the adult SVZ were also ischemia resistant, neuroprotective in vitro and expressed HIF
and VEGF [203]. In vivo, local hypoxic conditions and HIF-1α stabilization in the pre-
neurogenic dorsal telencephalon were shown to be required for correct vascularization
largely in a VEGF-dependent manner [142]. Similarly, HIF-induced VEGF expression
regulates angiogenesis in the corpus callosum [193] and retina [204]. In the adult SVZ,
HIF-1α deletion in NSCs led to reduced VEGF production and impaired vascular stability
in the niche [200]. The reduced local vascular density was followed by defects in NSC
maintenance and their depletion in a non-cell autonomous manner.

The proangiogenic effect of HIF activation creates a negative feedback loop in which lo-
cal hypoxia initially induces HIF stabilization, VEGF production and the ingrowth of blood
vessels leading to a subsequent increase in oxygenation and HIF degradation (Figure 3B).
This makes it difficult to experimentally separate the direct effects of HIF-mediated tran-
scription on cellular phenotypes from secondary effects of vascularization. The combined
effect of a vascularization defect and the resulting downstream HIF pathway activation on
gene transcription in VZ progenitors was assessed by [142]. Prom1+ (CD133) VZ cells from
normal and vasculature-defective cortices at E14.5 were sorted and their RNA sequenced.
Approximately the same number of genes, about 250, was up- and down-regulated upon
vascular defect. Among the upregulated genes angiogenesis and cell proliferation func-
tions were overrepresented, while neurogenic genes were downregulated. The data set
included predicted HIF-1/2α targets such as Vegfa. In addition, Tbr2 and Bmi1 (BMI1 proto-
Oncogene, Polycomb Ring Finger) transcripts were decreased in vasculature-defective
cortices, indicative of altered neurogenic progenitor differentiation [142]. While a number
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of these gene are likely direct HIF targets this experimental setup did not allow to distin-
guish direct from indirect regulation. Timed activation of HIF-1α expression followed by
immediate RNA sequencing before angiogenesis is induced as well as ChIP analysis would
help to isolate HIF targets from their downstream effects and crosstalk with other path-
ways. Alternatively, combining HIF-1α deletion with a VEGF rescue could help disentangle
vasculature-dependent and independent phenotypes.

HIF-mediated transcriptional regulation also controls cell autonomous metabolic
functions. One of the most well-established cellular functions targeted by the HIF path-
way is glycolysis [104,138,142,205], which in addition to producing ATP provides inter-
mediates for other metabolic pathways [206]. Rapidly dividing cells such as stem or
cancer cells have been described to rely on glycolysis and HIF activation to support their
growth [134,206–208]. ESCs are known to preferentially use glycolysis [209] and HIF-1α KO
in these cells in vitro reduces the transcription of glycolytic enzymes (Alda, Pgk1, and Eno1),
lactate dehydrogenase (Ldha) as well as glucose transporters (Glut1 and Glut3) [139,140].
Mutant cells are able to survive normally but reduce their proliferation rate [139]. Physiolog-
ically HIF-1α appears as a main regulator of glycolysis, but its deletion causes compensatory
upregulation of HIF-2α transcription [140].

When the metabolic status of cultured NPCs was studied in terms of oxidative and
glycolytic pathway utilization similar effects were observed as in other proliferating cell
types [210]. Murine NPCs derived from either E14.5 embryonic or adult neurogenic
zones cultured under normoxia had high lactate production, LDH activity and glucose
consumption. Consistent with an adaptation to an oxygen-independent metabolic mode
NPCs were also able to survive under anoxic conditions (<0.2% O2) but in contrast to
neurons, were sensitive to selective glycolytic inhibition even when TCA activity was
preserved. They were also less able to use galactose, which does not lead to the production
of ATP from glycolysis, instead of glucose as an energy source. Meanwhile, neurons
were less resistant to mitochondrial electron transport chain inhibition. Moreover, the
NPC dependence on glycolysis was not only due to aerobic glycolytic ATP production.
Glycolysis has been shown to play a role in feeding the pentose phosphate pathway
(PPP) [207,208] and NPCs were also sensitive to PPP inhibition [210]. Surprisingly however,
HIF-1α inactivation had only a minor effect on these metabolic characteristics. Although
the authors did not observe an increase in HIF-2α protein levels upon HIF-1α deletion a
compensatory effect could not be completely ruled out [210]. In contrast, HIF-1α activation
was shown to increase the expression of glycolytic enzymes and lactate levels in cultured
OPCs [192].

HIF-1α-mediated promotion of glycolytic activity was also described to play a role
during embryonic cortex development in vivo [142]. Proliferative aRG (Prom+/Tis21−)
showed upregulation of a number of HIF-1α targets related to glucose metabolism includ-
ing Mct4, Glut1 and Pdk1 in comparison to more differentiated neurogenic progenitors
(Prom+/Tis21+). As angiogenesis and oxygenation progressed during development there
was a reduction in HIF-1α levels and downregulation of glycolytic genes in both mouse
and ferret embryos. In turn, prolonged hypoxia during neurogenesis in the vasculature-
defective Gpr124 KO upregulated the transcription of glycolytic enzymes (Pfkfb3, Hk2,
Gapdh, Eno1, and Ldha) and other glucose metabolism-related genes (Glut1, Pdk1), which cor-
related with the expansion of proliferative progenitors. Moreover, embryonic NPCs in cul-
ture also produced more lactate during the proliferation phase, which decreased upon differ-
entiation. This phenotype was dependent on Pfkfb3 (6-Phosphofructo-2-Kinase/Fructose-
2,6-Biphosphatase 3), a rate-limiting enzyme of the glycolytic pathway, which was also
highly expressed in VZ cells and regulated by HIF-1α. In vivo silencing of Pfkfb3 increased
neurogenesis at the expense of progenitor maintenance downstream of HIF-1α contribut-
ing to partial attenuation of HIF-1α overexpression phenotype. Notably, high glycolytic
activity in proliferative progenitors did not affect the oxidative phosphorylation, which was
also highly active in these cells, at levels comparable with neurons [142]. This phenotype
resembles the behavior of other stem and malignant cells which upregulate glycolysis
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under aerobic conditions [104,134,206–208]. Taken together, high glycolytic activity in
NSCs promoted by hypoxia and HIF-1α transcriptional regulation is required to prevent
premature differentiation in vivo [142].

Another canonical target of the HIF pathway, erythropoietin (EPO) [211], also plays
a role in both neural tube closure [212] and NPC proliferation [213], as well as neuronal
migration [214] and survival [215,216]. EPO has also been shown to affect the metabolic
activity of human NPCs independently of HIF-1α [215], suggesting that some metabolic
effects of the HIF pathway can be mediated indirectly through its targets.

In addition to angiogenesis and metabolic regulation by canonical targets known from
multiple other cell types HIF pathway activation could specifically affect pluripotency and
cell fate specification of NPCs by controlling the expression of key transcription factors.
Hypoxic HIF-1α stabilization in fetal rats and neonatal pups coincides with an increase in
Pax6 expression in the germinal zones in both the cortex and hippocampus [217,218]. Con-
versely, Tbr2 transcription is negatively affected by hypoxia induced by cortical vascular
defects [142]. Whether the expression of these transcription factors in NPCs is directly or
indirectly affected by HIF activity is so far unclear. In contrast, direct HIF pathway targets
were studied in cultured mouse OPCs [192]. HIF-1α accumulation was induced by VHL
KO in these cells leading to delayed oligodendrocyte maturation. A genome-wide DNA
binding profile of these HIF-1α overexpressing OPCs using ChIP revealed two distinct
sets of targets. In addition to canonical HIF target genes such as Vegfa, Pdk1 and Bnip3,
OPC-specific non-canonical targets such as maturation inhibiting Ascl2 (achaete-scute fam-
ily bHLH transcription factor 2) and Dlx3 (distal-less homeobox 3) genes were activated
by HIF signaling. This study also revealed that an OPC marker and transcription factor
Olig2 can directly interact with HIF-1α protein on OPC-specific target promoters due to
a combinatorial code of HIF and Olig2 binding sites at the DNA level. This study also
uncovered a secondary, indirect HIF-1α effect on OPC development. OPC-specific HIF-1α
targets Ascl2 and Dlx3 bound to the Sox10 promoter and acted to reduce its expression
thereby inhibiting oligodendrocyte maturation. A similar effect was mediated by another
HIF-1α target in OPCs—a histone deacetylase Sirt1 [219]. Sirt1 expression was upregulated
in white matter OPCs upon neonatal hypoxia and HIF-1α stabilization leading to increased
proliferation and impaired maturation of these precursors. This effect was partly mediated
by deacetylation of Cdk2 (cyclin-dependent kinase 2) and Rb (retinoblastoma) in these cells,
which allowed for Rb/E2F1 complex dissociation and cell cycle progression.

The HIF pathway has also been described to interact with other signaling pathways
relevant to neurogenesis, particularly Notch and Wnt (Wingless-type) [138] (Figure 3C).
The role of hypoxia in maintaining cells in an undifferentiated state depends on both HIF
and Notch signaling. When cultured primary embryonic rat NSCs were differentiated
into neurons under hypoxia (1% O2) compared to 21% O2 their differentiation was re-
duced [137]. However, inhibition of the Notch pathway blocked this effect. The authors
showed that hypoxia, acting through the upregulation of the HIF-1α protein, triggered
the stabilization of Notch ICD and the transcription of Notch target genes, including hes-1.
Notch ICD was also able to physically interact with HIF-1α thereby recruiting it to Notch-
responsive promoters during hypoxia to co-activate Notch signaling [137]. Conversely,
HIF-1α KO in neurosphere culture downregulated Hes-1 independently of Notch signaling.
HIF-1α was shown to directly bind to distal HRE in hes-1 promoter to trigger its expression
in mouse neuroepithelium between E7.5–E9.5 [173]. Both Notch and HIF could also be
regulated by asparaginyl hydroxylation via FIH-1/HIF1AN in hypoxia [220] and Notch
ICD was shown to directly bind to FIH-1 [137]. Notch1-3 ICD could be hydroxylated on
conserved asparagine residues, which are necessary for its function in preserving stemness
of NPCs [220]. Since Notch ICD was shown to have a higher binding affinity to FIH-1 than
HIF-1α, it may sequester it away and thus indirectly increase HIF-mediated recruitment
to HREs and transcription under normoxia (Figure 3C). The interplay between HIF and
Notch signaling also plays a role in epigenetic regulation of astrocytic differentiation by
affecting gfap promoter methylation [185]. While NPCs isolated from mouse embryonic
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telencephalon after mid-neurogenesis (E15.5) could efficiently differentiate into astrocytes,
younger progenitors from E11.5 cortices showed gfap gene methylation and low differ-
entiation potency. Under hypoxic growth conditions a Notch target Nfia (nuclear factor
IA) could induce gfap demethylation. Similar to the observations in NPCs [137], HIF-1α
upregulation by hypoxia promoted Notch activation in order to induce astrocytic fate both
in vitro and in vivo [185].

Wnt pathway has also been shown to interact with HIF signaling in the context of
neurogenesis. Under hypoxic conditions in vitro Wnt/β-catenin signaling is enhanced in
both mouse ESCs and NSCs, but not in differentiated cells [221,222]. This coincides with
HIF-1α stabilization and nuclear translocation, HIF-1α/ARNT complex formation and its
target transcription (e.g., Pgk1) as well as increased cyclin D1 (a canonical Wnt target) level
and NSC proliferation. Inhibition of either Wnt or HIF-1α pathway abolished the hypoxia-
dependent increase in cell survival and proliferation. HIF-1α was shown to directly bind to
promoter regions of Wnt pathway-related transcription factors Lef-1 and Tcf-1 via HREs.
This led to increased levels of the LEF/TCF complex, which enhances β-catenin nuclear
translocation downstream of Wnt pathway stimulation and induces Wnt/β-catenin target
transcription [221] (Figure 3C). Conversely, HIF-1α KD decreased nuclear translocation
of β-catenin and cyclin D1 expression, which suppressed NPC proliferation [222]. In vivo
Wnt pathway activity was shown to colocalize with hypoxic regions in both embryonic
and adult brains, particularly in adult SGZ in the hippocampus. SGZ also had fewer blood
vessels compared to surrounding regions and expressed HIF-1α regulated genes such as
Vegf and CAIX (carbonic anhydrase IX) [221]. Postnatal neuron-specific HIF-1α deletion
in vivo caused reduction in Wnt pathway activity in the adult brain as well as decreased
progenitor proliferation, adult neurogenesis and neuronal projections. These phenotypes
could be rescued by Wnt pathway activation. Taken together the effect of HIF-1α pathway
on neurogenesis seem to be partially mediated by its ability to enhance Wnt signaling,
particularly in adult NPCs [221]. However, the relevance of this mechanism for embryonic
cortical neurogenesis is controversial [142].

Other signaling pathways may also interact with hypoxia and the HIF pathway by
modulating their downstream effectors. For example, MEK/ERK inhibition increases
Sox10 expression, which rescues hypoxic OPC maturation arrest downstream of HIF [192].
Maternal undernutrition, which has been associated with the induction of the HIF-1α
pathway via the mTOR (mammalian target of rapamycin) signaling pathway [169,223,224].
mTOR was shown to be able to induce HIF-1α expression independently of hypoxia [223].
This mechanism could provide a coordinated metabolic response to both oxygen and
nutrient deprivation which coincide in pathological conditions such as tissue ischemia.
Figure 3B illustrates the current understanding of the downstream targets of hypoxia and
HIF signaling, which regulate NPC behavior. The crosstalk with other signaling pathways
is shown in Figure 3C.

9. Open Questions and Directions for Future Research

The HIF signaling pathway, as a master regulator of oxygen responsiveness, is not only
an essential regulator of angiogenesis and glucose metabolism, but also a key player in the
self-renewal of stem cells in various physiological contexts. Activation of the HIF pathway
has also been shown to promote the growth and proliferation of cancer cells, at least in
part through the hijacking of stem-cell like metabolic profile [134,207,208]. This includes
the reliance on glycolysis as the primary source of energy even under aerobic conditions,
first described as the Warburg effect [134,206–208]. NSCs appear to be no exception to
this general principle. Early embryonic NSCs tend to reside in hypoxic cell niches, which
promotes the HIF-mediated metabolic regulation of glycolytic enzymes [96,98,142,148,206].
This metabolic shift is thought to be responsible for their sustained pluripotency and
ability to self-renew. Early on in development hypoxic conditions prevent premature
differentiation but the effects of HIF activation are self-limiting as the secretion of its target
VEGF causes the blood vessel ingrowth, relief of hypoxia, and degradation of HIF-1α [142].
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Adult neural stem cells also reside in a predominantly hypoxic environment and their
reactivation can be promoted by pathological conditions associated with the depletion of
oxygen [187,199,200,221]. Despite a plethora of evidence supporting this general mecha-
nism, many questions remain open. The manner in which glycolysis dependence under-
lies stemness and high proliferative capabilities is not fully understood. Although this
metabolic aspect has been extensively studied in the context of cancer cells [134,207,208],
the understanding how metabolism controls stemness in normal cells could elucidate po-
tential differences and lead to more targeted and less toxic therapies. Metabolomic studies
of NSCs in vivo in the presence and absence of HIF activation could help to shed light on
this issue.

Both embryonic and adult NSCs show basal HIF-1α stabilization [142,187] and this
molecular feature is also present in the notoriously difficult to treat high-grade gliomas [225].
Given that adult NSCs constitute a likely source of tumor-initiating cells, understanding the
regulation of HIF in this population and the source of its oncogenic potential is crucial for
development of effective treatment strategies. Similarly, the function of HIF family members
in neighboring cells, such as ECs or immune cells, may influence how brain tumors respond
to such therapies. Current treatments targeting the HIF pathway in other tumor types
deal with issues of specificity and toxicity [104,105,135,225]. Selecting downstream, neural-
specific targets of HIF regulation may provide a more precise approach resulting in fewer
systemic side effects. A number of genes have been shown to be regulated by the HIF
pathway during neurogenesis [142], but a comprehensive transcriptomic study is still
lacking. Furthermore, the coupling of HIF activation and angiogenesis makes it difficult
to distinguish between direct regulation and secondary effects. An analysis of genomic
binding sites in specific neural stem and progenitor cell populations could help to answer
these questions. Furthermore, the specificity of the HIF pathway effectors in different
progenitor subtypes as well as their neuronal and glial progeny is not fully understood.
While in NSCs the HIF pathway activation mediates the proliferative phenotype, in neurons
it seems to be primarily necessary for cell survival. The role of molecular players upstream
and downstream of HIF in this differential response as well as the interplay with changing
epigenetic landscape need to be understood to provide a full picture of this pathway during
neurogenesis. Finally, the HIF pathway contributes to the pathologies of fetal and early
postnatal development caused by abnormal oxygen levels or vascular defects. Studying the
long-term consequences of early insults should provide an opportunity to develop clinical
intervention strategies. Here particularly, the importance of in vivo studies using animal
models cannot be overstated.
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