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Abstract: Cells must change their properties in order to adapt to a constantly changing environment.
Most of the cellular sensing and regulatory mechanisms described so far are based on proteins that
serve as sensors, signal transducers, and effectors of signalling pathways, resulting in altered cell
physiology. In recent years, however, remarkable examples of the critical role of non-coding RNAs in
some of these regulatory pathways have been described in various organisms. In this review, we focus
on all classes of non-coding RNAs that play regulatory roles during stress response, starvation, and
ageing in different yeast species as well as in structured yeast populations. Such regulation can occur,
for example, by modulating the amount and functional state of tRNAs, rRNAs, or snRNAs that are
directly involved in the processes of translation and splicing. In addition, long non-coding RNAs and
microRNA-like molecules are bona fide regulators of the expression of their target genes. Non-coding
RNAs thus represent an additional level of cellular regulation that is gradually being uncovered.
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1. Introduction

In recent years, a growing number of studies have uncovered new roles for non-coding
RNAs in cellular regulatory processes in diverse organisms across all kingdoms of life, from
bacteria to mammals (reviewed in [1–6]). These newly identified processes involve not only
groups of non-coding RNAs that are assumed to have mainly regulatory functions, such
as microRNA (miRNA) and miRNA-like molecules and long non-coding RNA (lncRNA),
but also RNA molecules that have been known for decades to have primary functions in
essential cellular processes, such as translation and mRNA splicing. Recent discoveries
regarding the role of known RNA classes, including, mainly, transfer RNA (tRNA) and,
to a lesser extent, ribosomal RNA (rRNA) or small nuclear RNA (snRNA), shed new light
on these molecules as players at an additional level of complexity in the mechanisms of
cellular signalling and regulation. In particular, the emerging field of epitranscriptomics,
which focuses on post-transcriptional nucleotide modifications of various RNAs, is currently
growing rapidly, thanks to advanced methods for detecting modified bases (reviewed in [7])
and the current technology of direct sequencing using nanopore [7,8]. Interestingly, the
regulatory role of RNAs has been uncovered in many cases under circumstances that require
a complex cellular response, such as cellular differentiation or response to environmental
challenges in the form of nutrient deprivation or various stress insults [1,9–12].

In this review, we focus on the role of different types of non-coding RNAs in yeast
(Table 1) in regulatory processes and signalling pathways in response to stress conditions.
Stress resistance is closely related to cellular longevity in yeast as well as in other organisms,
including mammals [13–16]. In addition, cell differentiation and various lifestyle changes,
such as the transition from yeast form to hyphae/pseudohyphae, are important determi-
nants for the formation of multicellular structures in which cells diversify into different
types and are often more resilient to stress and protected from hostile environments [17–19].
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Here, we present examples of such regulations by non-coding RNAs in different yeast
species. Because most research focuses on Saccharomyces cerevisiae, we describe here the
findings discovered in this organism, unless otherwise stated.

Table 1. Types of RNA with potential regulatory functions in yeast, how they are regulated, and what
functions they may have.

RNA Type Regulation Possible Function

tRNA
modifications translation rate

stability codon-dependent translation
aminoacylation

tRF * production by inhibition of aa-tRNA synthetases
tRNA cleavage inhibition of ribosomes

lncRNA * expression regulation of transcription

snRNA * modifications regulation of splicing

intronic RNA linearisation and
stabilisation regulation of splicing

rRNA
cleavage

modifications
5‘capping

regulation of ribosomal functions

miRNA-like * expression regulation of expression

evRNA * secretion various/unknown
* tRFs—tRNA fragments, lncRNA—long non-coding RNA, snRNA—small nuclear RNA, miRNA-like—
microRNA-like, evRNA—RNA in extracellular vesicles.

2. Transfer RNA—More Than an Adapter

Measured by the number of molecules per cell, transfer RNA is the most common
type of RNA. Each yeast cell, for example, contain several million of these molecules [20].
tRNA molecules have a typical secondary structure, often referred to as a “cloverleaf”. It
consists of a double-helical acceptor stem and three main arms, each consisting of a short
double-helical part that ends with a loop. These are the dihydrouridine arm (D arm, closer
to the 5′ end), the anticodon arm (in the middle, containing the anticodon triplet), and the
thymidine arm (T or TΨC arm, closer to the 3′end). The acceptor stem ends with the typical
3′-end sequence CCA, which provides a hydroxyl group (either 2′ OH or 3′ OH) for the
binding of aminoacyl by aminoacyl-tRNA synthetases.

Transfer RNA plays a central role in the process of translation by decoding codons in
messenger RNA (mRNA) into the amino acid sequence of synthesised proteins. Since the
discovery of its function, tRNA has been considered only a ubiquitous mechanistic adaptor,
but its cellular role may be much more complex.

New discoveries in the field of tRNA biology in recent decades have led to a model
in which the cell can modify the translation profile by altering the amount or properties
of tRNAs (reviewed in [21–25]) (Figure 1). According to this model, because the rate of
translation depends on the concentration of cognate aminoacyl-tRNAs, differences in the
amount of individual tRNAs lead to an alteration in the decoding capacity (i.e., the ability
to translate mRNA with a certain codon composition) of the cellular tRNA pool and thus
to faster translation of mRNAs whose codon composition matches the composition of
the cellular tRNA pool. Consequently, changes in tRNA composition caused by selective
transcription or selective degradation of individual tRNA species can completely alter the
population of actively translated mRNAs and thus remodel the proteome even without
changes in the mRNA transcriptome. The term tRNAome was introduced to refer to a set
of all tRNAs present in the cell at a given time [26]. The effectiveness of the use of a tRNA
molecule in the translation process is determined not only by the amount of a particular
tRNA type (its synthesis and degradation) but also by its charge status, its subcellular
localisation, and its post-transcriptional modifications. The latter is of particular importance
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as post-transcriptional modifications are important for many aspects of tRNA function,
including the stability and efficiency of codon–anticodon interaction [27,28].
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Nagai et al. found a strong correlation between the abundance of individual tRNA and 
the number of copies of the corresponding gene in the genome using the hybridisation 
method, suggesting a lack of regulation of the abundance of individual tRNAs [30]. On 
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Figure 1. The model of regulation of translation rate by the availability of cognate tRNAs. The
diagram illustrates the scenario in which a particular amino acid is encoded by two different codons
(red and blue boxes) that are decoded by two different tRNAs (red and blue, respectively). In the
situation shown on the left side of the diagram, the composition of the tRNAs favours the translation
of mRNAs that are enriched in blue codons. The translation of mRNAs enriched in red codons is
slow due to the relatively low concentration of cognate tRNA. Conversely, the concentration of the
two tRNAs is reversed in the situation shown in the right part of the image. Consequently, mRNAs
enriched in red codons are translated more effectively compared to mRNAs with blue codons.

The analysis of tRNAome composition is often based on sequencing techniques, but
these can be biased by the presence of modified nucleotides in the tRNA [29]. Hybridisation
methods, on the other hand, are less sensitive to the presence of modified nucleotides.
The estimation of tRNA abundance by these two methods correlates rather poorly, which
calls into question the accuracy of the tRNAome sequencing approach [30]. In addition,
Nagai et al. found a strong correlation between the abundance of individual tRNA and the
number of copies of the corresponding gene in the genome using the hybridisation method,
suggesting a lack of regulation of the abundance of individual tRNAs [30]. On the other
hand, the study also found differences in the tRNAome between exponentially growing
cells and cells in stationary phase. Thus, further research is needed to find out to what
extent and by what mechanisms the yeast cells can change their tRNAome and whether
the tRNAome changes lead to codon-dependent remodelling of translation in vivo.

The codon-composition-dependent translation rate can also have additional effects on
protein folding and stability. It was shown that a translational pause caused by the presence
of rare codons between individual domains of a protein provides sufficient time for proper
folding of the freshly synthesised domain before the next domain is synthesised. In this
case, replacing the rare codon with the optimal codon resulted in an increased misfolding
rate [22,31]. On the other hand, it has been shown in mammalian cells that hydrophobic
stretches in some proteins lead to protein aggregation when they are translated slowly [32].
Thus, some proteins can be stabilised and others destabilised by altering the overall rate of
translation or the effectiveness of decoding individual codons by tRNA availability and
functional state (i.e., modification and aminoacylation).

In addition, the rate of translation can be sensed by the cell and can lead to the destabil-
isation or repression of slowly translated mRNAs [33], thus further contributing to selective
codon-dependent protein production. The correlation between optimal codon content and
mRNA half-life has been observed in various organisms from yeast to mammals [33–38]
and also appears to be influenced by the UTRs (untranslated regions) and the length of
a particular mRNA. For example, this correlation was not observed for mRNAs coding
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for short peptides [39], which are preferentially translated by monosomes, whereas longer
proteins are translated by polysomes [39,40].

The existence of such regulations could explain why different genes in the same organ-
ism have markedly different codon compositions. Moreover, codon-composition-mediated
translational remodelling can be one of the factors contributing to the weak correlation
between the mRNA transcriptome and proteome observed in many cases [41–43]. Evidence
of the possible regulatory roles of tRNA in the context of stress, starvation, and ageing in
yeasts is described in the following sections.

2.1. Abundance of tRNA—Synthesis and Degradation

The genome of S. cerevisiae contains genes for 42 different tRNA species, most of which
are present in multiple copies at 275 predicted loci [44]. Transcription of tRNA genes by
RNA polymerase III (RNA Pol III) is downregulated by starvation and stress, leading to an
overall decrease in tRNA levels and a slowdown in translation. Under these conditions, the
nutrient-sensing kinases TORC1 (Target of Rapamycin Complex 1), PKA (Protein Kinase
A), and Sch9 are inactivated, leading to hypophosphorylation and subsequent nuclear
localisation of the RNA Pol III repressor Maf1 and to activation of two inhibitory kinases
for RNA Pol III—Mck1 and Kns1 [45]. Moreover, starvation blocks nuclear export of tRNA
and even induces their relocalisation into the nucleus [46].

Although transcription by RNA Pol III has long been considered non-discriminatory
and uniform for all RNA Pol III promoters, recent data show that the situation is more
complex. For example, while stress conditions reduce the expression of most tRNA loci via
Maf1, some tRNA genes seem to be more resistant or even insensitive to Maf1-mediated
repression, leading to a modification of the tRNAome [47,48]. The mechanism of this
differential regulation is unclear, as all tRNA genes use the same simple transcription
factor machinery that recognises simple promoter boxes within the transcribed region. One
possible mechanism relies on the chromatin context of individual tRNA genes. Recently,
it was discovered that the chromatin remodelling complex FACT (Facilitates Chromatin
Transcription) is dynamically associated with tRNA genes in a stress-dependent man-
ner [49]. Another study in mammalian cells suggests that transcriptional interference
by RNA Pol II activity at promoters adjacent to tRNA genes is an essential player in the
repression of tRNA genes [50]. In contrast to this model, a study in Schizosaccharomyces
pombe showed that chromatin remodelling facilitated by RNA Pol II transcription induces
transcription by RNA Pol III from neighbouring tRNA genes [51]. Thus, global changes
in RNA Pol II transcription induced by stress and starvation can lead to changes in the
tRNAome. Alternatively, specific DNA-binding proteins can also regulate the binding of
the general RNA Pol III transcription factors TFIIIB and TFIIIC to individual tRNA genes
similar to the mechanism described in mammalian cells [52]. Indeed, the regulator of yeast
RNA Pol III assembly Fpt1 binds to promoters of some tRNA genes and modulates their
transcription [53].

The role of tRNA abundance as a translational regulator under stress conditions
has been supported by several studies in yeast. First, a different abundance of different
tRNAs was observed under different stress conditions [54,55]. A comparison of the tRNA
transcriptome with the translatome (i.e., the set of all mRNAs that are translated in the
cell in a given time) under conditions of oxidative stress revealed that the amounts of
individual tRNA species are positively correlated with the cognate codon content of the
actively translated mRNAs. Moreover, a reporter protein that was codon-optimised for
tRNA composition under stress conditions was translated more effectively upon hydrogen
peroxide treatment than reporters with different codon composition [55]. Thus, the stress-
induced changes in tRNA abundances are sufficient to alter the translational efficiency of
the respective codons and may consequently be reflected in the global proteome.
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Another example comes from a study on the regulation of the major B-type cyclin
Cdc13, which drives the cell cycle and mitotic entry in fission yeast [24,56]. The gene cdc13
contains the non-optimal glycine codons GGA and GGG, both of which are decoded by
tRNAGly

UCC. Overexpression of tRNAGly
UCC or replacement of the non-optimal codons

with a preferred glycine codon resulted in a cell cycle defect and slow growth due to
Cdc13 aggregation. Interestingly, the abundance of tRNAGly

UCC increases under oxidative
stress [24]. A possible model suggests that stress-induced tRNA production leads to cyclin
inactivation due to an altered translation rate and thus to delayed cell cycle progression.

The amount of individual tRNAs at any given time is determined by the rate of their
transcription and processing on one side and the rate of degradation on the other side,
and it can change dynamically in response to cellular needs. Bulk tRNA degradation
occurs under stress and starvation conditions by RNAse Rny1 [57,58]. However, there
are indications that tRNA degradation can be selective towards a subset of cellular tRNA.
Genome-wide mapping of ribosomal occupancy revealed translational pauses at specific
codons under conditions of oxidative stress. These pauses did not occur in the strain
lacking Rny1, suggesting that Rny1-mediated tRNA cleavage, which may be specific for
some tRNA species, is able to achieve the translational changes in vivo [59].

Cleavage of tRNAs by endonucleases to form tRNA fragments (tRFs) occurs under oxida-
tive stress and starvation and is conserved from yeast to plants and mammals [12,60–62]. The
cleavage can occur in one of the loop regions of the tRNA, resulting in different tRFs. Cleav-
age in the TΨC-loop and the D-loop produces 3′ tRFs and 5′ tRFs, respectively, whereas
cleavage in the anticodon loop produces tRNA halves [63]. The cleavage not only reduces
tRNA abundance, which affects the translation rate, but the resulting tRFs also have addi-
tional functions. In mammals, tRFs are now well-established signalling molecules involved
primarily in the regulation of gene expression through a mechanism of RNA interference
(reviewed in [63]), but the function of tRFs in yeast is much more elusive. Genome-wide
sequencing of stable, non-coding transcripts has identified many tRFs that are produced
in the cell under stress conditions. The repertoire of these fragments differed significantly
under different stress conditions, suggesting regulated selective tRNA fragmentation under
different environmental conditions [64]. Because components of the RNA interference
pathway are not present in S. cerevisiae, the function of tRFs there must be based on a
different mechanism. It has been reported that many tRFs bind to the small ribosomal
subunit and to the ribosome-associated aminoacyl-tRNA synthetases, thereby inhibiting
translation and aminoacylation, respectively [65–67]. A similar composition of tRFs was
found in S. pombe and two Cryptococcus species, C. neoformans and C. gattii, indicating evo-
lutionary conservation between distant yeasts [68,69]. Furthermore, mitochondrial tRNA
fragmentation is induced by heat stress and the stationary phase in S. pombe, establishing a
link between environmental stress and respiratory capacity controlled by mitochondrial
proteosynthetic capabilities [70].

2.2. Charge Status of tRNAs

One aspect of the involvement of tRNAs in cellular signalling has long been known
and is related to the general amino acid control pathway (GAAC), which is mediated by
the protein kinase Gcn2 and the transcription factor Gcn4. Uncharged tRNAs that accu-
mulate under nitrogen starvation activate the GAAC pathway, leading to the production
of the transcriptional master activator Gcn4, whose induction leads to the activation of
amino acid biosynthetic genes, resulting in increased tRNA charging [71]. The presence of
uncharged tRNAs is recognised by the histydyl-tRNA-synthetase-like domain of Gcn2, an
evolutionarily conserved eIF2α kinase, leading to its activation. Gcn2 in turn phosphory-
lates the translation initiation factor eIF2, resulting in a reduced translation initiation rate.
This decreases global protein synthesis, but, on the other hand, increases the synthesis of
specific proteins, such as Gcn4, through a mechanism involving upstream ORFs (uORFs;
reviewed in [72]). In addition, uncharged tRNAs directly inhibit the activity of TORC1 in S.
cerevisiae in in vitro experiments [73]. In S. pombe, tRNA precursors, rather than uncharged
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mature tRNA, modulate the nutrient-sensing TORC1 pathway during the transition from
vegetative growth to sexual reproduction [74].

In addition to the availability of amino acids, the charge state of tRNAs is also regulated
by the activity of the individual aminoacyl-tRNA synthetases. The activities of many
aminoacyl-tRNA synthetases are regulated by stress and nutrient availability either directly
or through interaction with stress- or nutrient-responsive accessory proteins [75–80]. In
this way, the cell can change the charge status of individual tRNA types. The level of
uncharged tRNAs is an indicator that integrates metabolism and stress factors to adjust
cellular responses via GAAC and TORC1 signalling pathways. In addition, the charge state
of individual tRNA species governs their availability for translation and may therefore
contribute to translatome remodelling via a mechanism described above (Figure 1).

2.3. Modifications of tRNA

Each type of tRNA is modified at different positions, with an average of 11 modifi-
cations per tRNA molecule in yeast. These modifications occur in all parts of the tRNA
molecule. Some of them are conserved among all tRNA species in a given organism and also
across evolutionary distant genera, while others are specific to a particular tRNA or a par-
ticular species [81]. Examples of the former are dihydrouridine modifications within the D
loop and formation of ribothimidine (T) and pseudouridine (Ψ) within the TΨC loop. Mod-
ifications in the anticodon, particularly at wobble position 34, are among the most frequent
and important for tRNA function, as they ensure correct codon–anticodon pairing and
dual-codon recognition and thus influence the translation rate and fidelity [27,82]. Some
modifications are simple reactions (e.g., methylations) catalysed by a single enzyme, while
others require multistep biosynthetic pathways carried out by large enzyme complexes. An
example of such a complex dual modification is the addition of a methoxycarbonylmethyl
group to carbon 5 and a thiolation of carbon 2 in uracil at position 34 (mcm5s2U34).

The cells have a large enzymatic machinery for carrying out tRNA modifications,
which, in S. cerevisiae, consists of at least 73 proteins (representing more than 1% of the
genome) [83]. Therefore, the cells can modify the tRNA epitranscriptome by altering
the amount and activity of tRNA-modifying enzymes. Hypomodified tRNAs are less
effectively used for translation, are more likely to be degraded, and are less aminoacylated
or even misacylated [84–86]. Consequently, changes in the tRNA epitranscriptome can
shift the decoding capacity of the tRNA pool, leading to reprogramming of translation due
to different translation rates in different mRNAs, an effect comparable to changes in the
concentration of different tRNAs.

This hypothesis is supported by the transcriptome-wide data showing that different
stress conditions induce specific changes in tRNA modification patterns [87,88] and by
the findings that reduced modification of some tRNAs leads to reduced translation rates
at cognate codons [89]. Quantification of modified nucleotides in tRNAs under different
stress conditions revealed that the extent of methylation of certain nucleotides is increased
under oxidative stress but not under other stress conditions, and that these modifications
are required for the proper response to oxidative stress [87]. The subsequent study fo-
cused on tRNALeu

CAA, which is hypermethylated at wobble cytosine 34 under oxidative
stress. Reporter protein and proteomic analyses showed that this oxidative-stress-induced
methylation indeed increased the efficiency of translation of UUG containing mRNAs [90].
Similarly, increased methylation of cytosine 32 in tRNAThr

GGU induced by the treatment of
cells with the alkylating agent methyl methanesulfonate led to a concomitant increase in
the amount of proteins enriched in cognate codons [89].

Further support comes from the findings that some tRNA-modifying enzymes are
influenced by stress and nutrient availability. Urm1, which is involved in the thiolation
of the wobble uracil at position 34 of tRNALys

UUU, tRNAGlu
UUC, and tRNAGln

UUG [91], is
a highly unstable protein whose concentration is sensitive to translational perturbations
caused by nutrient deprivation and stress [92]. In addition, the availability of the sulphur-
containing amino acids cysteine and methionine in the cell is crucial for the function of
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Urm1 in the tRNA thiolation pathway [93]. Urm1 also plays a direct role in the removal
of reactive oxygen species (ROS), as it is covalently bound to the peroxidase Ahp1 in a
ubiquitin-like manner [94,95]. Thus, Urm1 may act as a sensor that integrates signals
of nutrient availability and oxidative and other stresses and modulates tRNA thiolation
in response to these signals, leading to altered decoding capacity and reprogramming
of translation.

Reduced modification in some tRNAs can also lead to decreased translation fidelity,
as the hypomodified tRNA can pair to non-cognate codons. For example, loss of the
N6-threonylcarbamoyl modification at adenine 37 in tRNALys

UUU leads to increased mis-
reading of the STOP codons UAA and UAG by the hypomodified tRNALys

UUU [96]. The
resulting increased read-through at translation stop sites not only induces proteotoxic stress
and the accumulation of dysfunctional proteins, but may also contribute to phenotypic
diversity and the emergence of new phenotypes by expressing the sequences in the 3′

untranslated regions (3′UTR) that are silent under normal conditions [97,98].
Reduced tRNA modification can also lead to tRNA degradation. For example, hypo-

modified tRNAMet
i is degraded by a mechanism involving the nuclear TRAMP (Trf4/Air2/

Mtr4 Polyadenylation) complex and the exosome [99,100], demonstrating that the amount
of a particular tRNA can be regulated by the activity of the modifying enzymes. The lack of
modification of several other tRNA species leads to their degradation via the RTD (Rapid
tRNA Degradation) pathway, in which exonucleases Xrn1 and Rat1 are involved [101]. The
RTD pathway plays a similar role in S. pombe, suggesting an evolutionary conservation
of this regulation [102]. Moreover, hypomodified tRNAs are effectively withdrawn from
translation by their retrograde transport to the nucleus [103]. Thus, regulated modifications
not only alter the functional properties of individual tRNA species during translation but
may also be involved in the targeted adjustment of the amount of a particular tRNA.

To serve as an effective regulatory mechanism, tRNA modifications should not only
be produced in a regulated manner but also be removed in response to cellular signals. The
only known tRNA de-modifying enzymes are the mammalian demethylases ALKBH1 and
ALKBH3 [104,105]. In yeasts, no specific enzyme is known to remove tRNA modifications.
Nevertheless, stress factors can have a direct effect on tRNA molecules. For example,
thiolation at uracil 34 (s2U34) can be directly removed through reaction with ROS [106].

Taken together, regulation of the expression of specific tRNAs, their processing, modi-
fication, localisation, degradation, and aminoacylation could lead to differential efficiency
in the translation of mRNAs with different codon compositions. Thus, relatively subtle
changes, such as shifts in the abundance of individual tRNA species or in the extent of
their post-transcriptional modifications, which require only a relatively small amount of
energy and material, could alter the pool of translated mRNAs and lead to global changes
in the cellular proteome. Individual tRNA species can be viewed as hubs that take up and
integrate inputs from different pathways. The resulting output in the form of tRNA abun-
dance and functional state then alters the translational landscape, modulates signalling
pathways, and regulates other cellular processes (Figure 2). What was originally seen as
merely a molecular adapter that brings the amino acid to its cognate codon on the mRNA
also has properties of a regulatory molecule with functions beyond translation.
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modifications, and other properties (green area, green arrows). These changes are reflected in altered
properties of the translational apparatus and other outcomes that lead to overall changes in the
cellular proteome (red area, red arrows), allowing the cell to adapt and respond appropriately to
environmental conditions. See the text for details. GAAC, General Amino Acid Control; TORC1,
Target of Rapamycin Complex 1; PKA, Protein Kinase A.

3. Long Non-Coding RNAs

Long non-coding RNAs (lncRNAs) are defined as RNA molecules that are longer than
200 nucleotides and are not translated into proteins [107]. They are a heterogeneous group
of RNAs that are present in all kingdoms of life, and they are created by different processes
and have different biological functions that are executed by a variety of mechanisms.
LncRNAs have only relatively recently been recognised as a functional class of RNAs,
although some evidence of transcription from DNA regions outside of the known genes
has been reported previously. Probably the first well-described example of a functional
non-coding RNA is Xist RNA, which plays a role in the inactivation of an X chromosome
in female mammals [108]. Since then, in particular with the onset of next-generation
sequencing technologies, thousands of lncRNAs have been found, and for many of them
the mechanism of their function has been elucidated [107]. However, we are still far from
fully understanding their role in the cell. Although most examples and functional diversity
have been documented in mammalian cells, hundreds to thousands of lncRNAs have also
been described in various evolutionarily distant yeast species [109–114]. The function of the
vast majority of them has not been characterised, and there are only a few examples where
the exact molecular mechanism underlying the function has been uncovered. It seems that
yeast cells rely more on regulation by lncRNAs during stress, starvation, and developmental
decisions than under optimal growth conditions. Non-coding antisense transcripts are
enriched in environmentally controlled genes, and major changes in lncRNAs have been
detected during environmental stress and nutrient starvation [115–119]. The mechanisms
of lncRNA function in yeast are usually in cis, with the expression of a particular lncRNA
affecting the expression of a neighbouring or overlapping gene, but some examples of
trans-acting lncRNAs have also been described [120,121]. A comprehensive overview of
this topic is provided in recent reviews [107,119,122,123]. In addition to the regulatory
functions of lncRNAs discussed below, some studies show that some of these lncRNAs
contain short open reading frames (ORFs), and the binding of ribosomes to these lncRNAs
suggests that they could be translated, although nothing is known about potential peptides
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produced [124,125]. Similarly to the discovery of peptides with biological functions encoded
by short ORFs (<100 codons) in the yeast genome, which were previously thought to be non-
coding (reviewed in [126]), lncRNAs could thus be another source of such short peptides.

Here, we describe cases in which lncRNAs are involved in the stress response and
longevity of various yeasts and in the regulation of lifestyle changes in multicellular
yeast populations.

One of the mechanistically best understood examples of the action of lncRNAs in
transcriptional regulation is the process by which lncRNAs regulate the expression of the
FLO11 gene, which encodes the surface glycoprotein adhesin Flo11. Flo11 is associated
with various developmental processes in S. cerevisiae and is required for cell adhesion
to various surfaces and invasive growth [127–130]. The function of Flo11 is essential for
various multicellular phenotypes of strains that form structured multicellular communities,
such as various types of biofilms, flocs, and mats. These multicellular structures protect
their cell inhabitants from various environmental stresses and starvation through metabolic
adaptation, diversification, and metabolite exchange within and between different cell
subpopulations [17,18,131,132]. The regulation of FLO11 expression is perhaps one of the
most complex ones described to date in S. cerevisiae, reflecting the importance of lifestyle
changes promoted by Flo11 in yeast populations. In addition to a very large promoter
region that integrates multiple environmental signals [133], FLO11 is regulated by lncRNAs
(Figure 3a). Bumgarner et al. [134] identified two intergenic lncRNAs, ICR1 and PWR1,
upstream of the FLO11 transcription start site, which are expressed from the sense and
antisense strands, respectively. ICR1 is located upstream of FLO11 and covers most of its
3 kb promoter. Its transcription interferes with the transcription of FLO11 and is negatively
regulated by the transcription of the second lncRNA PWR1, which is expressed from the
opposite strand and partially overlaps ICR1. The expression of PWR1 is regulated by the
positive transcriptional regulator Flo8 and the repressor Sfl1. The two transcription factors
Flo8 and Sfl1 are regulated in opposite manners by the nutrient-sensing PKA pathway,
which promotes filamentation. Thus, when Sfl1 is active, ICR1 RNA is produced and FLO11
expression is repressed. When Flo8 is active, the expression of PWR1 represses ICR1, which
in turn enables FLO11 expression [134]. Expression of a similar pair of lncRNAs has also
been detected upstream of FLO10, which encodes a different flocculin involved in different
type of multicellular behaviour [134].

Filamentation and cell–cell adhesion are also controlled by lncRNA in the human
pathogen Cryptococcus neoformans [135]. Here, the central protein for cell–cell adhesion,
hyphae and biofilm formation, and colony morphology is the adhesin Cfl1, which is
under the control of the transcription factor Znf2. Znf2 is able to sense environmental
signals, such as stress, and, interestingly, also the presence of extracellular Cfl1 produced
by neighbouring cells, which serves as a signalling molecule to coordinate the expression
of adhesins within the population [135,136]. The upstream non-coding transcript RZE1
regulates ZNF2 transcription via an unidentified mechanism [135].

Osmostress-activated protein kinase Hog1 orchestrates the cellular response to pertur-
bations in osmotic conditions by activating a variety of transcription factors. Together with
these transcription factors, Hog1 binds directly to the promoters of target genes to stimulate
their transcription initiation and elongation [137]. An important part of the Hog1-mediated
stress response is the inhibition of the cell cycle through activation of inhibitors of Cdc28, a
cyclin-dependent kinase (CDK) that controls cell cycle progression in S. cerevisiae. Hog1 also
controls the expression of CDC28 through an antisense lncRNA that completely overlaps
the CDC28 gene (Figure 3b). The expression of lncRNA is positively correlated with the
expression of CDC28 via the mechanism of DNA-loop-mediated activation [138]. In this
model, Hog1 is initially active at an antisense promoter downstream of CDC28 and recruits
the RSC chromatin remodelling complex, which induces the expression of CDC28 antisense
lncRNA. These transcription-mediated chromatin changes stimulate the formation of a
DNA loop between the CDC28 promoter and terminator, mediated by Ssu72, and the
transfer of Hog1 to the CDC28 promoter, leading to the production of Cdc28. Thus, Hog1
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inhibits Cdc28 at the protein level but induces the expression of CDC28. These seemingly
opposing processes lead to cell cycle arrest but prepare the cell for re-entry into the cell
cycle once it adapts to stress or the conditions become favourable again [137].
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Figure 3. Examples of the regulatory role of lncRNAs in yeast developmental changes and stress.
(a) Regulation of FLO11 expression by the lncRNAs PWR1 and ICR1, which are regulated by the
transcription factors Sfl1 and Flo8. When the signalling pathways that induce cell filamentation
are inactive, Sfl1 is active and Flo8 is inactive, leading to the expression of ICR1, which represses
FLO11. Activation of signalling pathways that regulate filamentation leads to activation of Flo8
and inactivation of Sfl1, which eventually leads to expression of FLO11. (b) Regulation of CDC28
expression by a DNA loop induced by the expression of an overlapping antisense lncRNA controlled
by the kinase Hog1. (c) Regulation of fbp1 expression by upstream lncRNAs, called mlonRNAs in
S. pombe. Their expression is under the control of the stress-responsive transcription factor Atf1.
(d) Induction of genomic instability in the rDNA locus by lncRNA expressed from the E-pro promoter.
The transcription factor Spt4 and the histone deacetylase Sir2 regulate the transcription from E-pro.

In S. cerevisiae, more than 1400 lncRNA transcripts have been identified by both
microarray-based and sequencing technologies [116,139]. They can be categorised into two
basic groups according to their stability. Stable unannotated transcripts (SUTs) and cryptic
unstable transcripts (CUTs) are predominantly produced by bidirectional transcription from
promoters of some genes and generally act in cis to regulate the expression of neighbouring
genes, although at least four SUTs have been reported to act in trans [140]. Functional
profiling of deletion strain collection revealed that many of the lncRNAs (including the
four SUTs mentioned above) are required for proper fitness and survival under different
environmental conditions [120].

The genomic study in S. pombe revealed changes in the expression of many lncRNAs
under osmotic stress conditions [118]. More than two hundred antisense transcripts were
identified, with enrichment in those overlapping genes involved in the general stress
response and the specific response to osmotic stress. The respective protein levels were
anticorrelated with the lncRNA/mRNA levels, suggesting that in most cases, transcription
of antisense RNA reduces the expression of a neighbouring or overlapping gene (i.e., they
are cis-acting) [118]. However, some of the identified lncRNAs act in trans. Deletion of
SPNCRNA.1164 resulted in resistance to oxidative stress, likely due to increased expression
of distant genes atf1, atf21, and atf31, which encode key transcription factors downstream
of the stress-activated MAP kinase Sty1 pathway, which promotes cellular responses to
environmental stress and starvation. SPNCRNA.1164 is one of few well-documented and
confirmed examples of trans-acting lncRNA in yeast [118].
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Atf1 also regulates the lncRNA-mediated expression of a key enzyme of carbon
metabolism, fructose-1,6-bisphosphatase Fbp1, through carbon starvation. In this case,
Atf1 and other transcription factors control the expression of sense lncRNAs with variable
lengths (called mlonRNAs) upstream of fbp1 (Figure 3c) [141]. These transcription events
alter the chromatin state of the fbp1 promoter region and make it more accessible to
transcription initiation factors, leading to transcription of fbp1 [141,142]. The involvement of
lncRNAs in the stress response in S. pombe was further deciphered through high-throughput
functional profiling of a library of strains in which one of ca. 150 intergenic lncRNAs
(termed lincRNA) was deleted or overexpressed under a variety of different stress and
nutrient conditions. Most lincRNA alterations (60% for the deletion library and 90% for the
overexpression library) exhibited a phenotype under at least one condition [143].

LncRNA is also involved in the regulation cellular senescence in S. cerevisiae. One of
the hallmarks of replicative ageing in yeast is the formation of extrachromosomal rDNA
circles (ERC) (reviewed in [144]). The genetic stability of rDNA loci, which controls ERC
formation, is regulated by lncRNAs transcribed by RNA polymerase II from the intergenic
spacer region in rDNA (Figure 3d). Bidirectional transcription is initiated at the promoter
called E-pro [145] and is positively regulated by the transcription factor Spt4 [146]. The
lncRNA transcription prevents cohesin binding to rDNA and promotes genomic instability,
leading to recombinational formation of ERC and accelerated replicative ageing. Silencing
of ribosomal DNA mediated by the histone deacetylase Sir2 blocks lncRNA transcription,
increases rDNA stability, and leads to an extension of the replicative lifespan [146].

A large number of lncRNAs has also been identified in differentiated populations
of yeast colonies. Traven at al. [147] discovered several lncRNAs that are differentially
expressed in different colony cell subpopulations. In other studies, several hundreds of
long non-coding transcripts were discovered to be differentially expressed in cells in the
upper (U cells) and lower (L cells) regions of an aged colony or in the so-called aerial
or root parts of a structured biofilm colony [119,148–150]. These were mostly antisense
transcripts that were either coregulated or antiregulated with their respective coding mRNA.
The lncRNA/gene pairs covered many cellular functions, from metabolism and signal
transduction to regulation of the cell cycle and sporulation [119]. Despite the apparent
differences in lncRNA expression, no clear conclusion can be drawn from these data, in part
due to the fragmented nature of the current understanding of lncRNA’s mode of action.

Inactivation of the lncRNA called DINOR in Candida auris resulted in DNA damage,
filamentation and wrinkled appearance of colonies, decreased virulence, and sensitivity
to various drugs and stress factors [151]. The expression of DINOR was induced by DNA
damaging agents and various drugs and stress factors, suggesting a function of DINOR
in multiple stress response pathways. A study of genetic interactions revealed a link to
the TORC1 pathway, but the exact mechanism of DINOR activity remains unclear. Long
ncRNAs may also play a role in Candida spp. virulence, as a bioinformatic meta-analysis
of RNA-seq datasets found many non-coding RNAs that alter their expression [111]. A
similar analysis in Cryptococcus neoformans revealed a similar picture of massive lncRNA
transcriptome reprogramming under conditions simulating host infection and elevated
temperature and increased levels of oxidants [113].

4. Other Types of RNA
4.1. Ribosomal RNAs

Experiments in Escherichia coli have shown that certain oxidation products of rRNA
have an impact on the ribosomal translation rate. While oxidation of some bases decreased
ribosomal performance, oxidation of other bases had no effect or even increased transla-
tion [152]. Furthermore, oxidative stress induced the formation of covalent rRNA–protein
cross-links in the yeast ribosome, although the effects on ribosomal function remain un-
clear [153]. Sublethal doses of oxidants as well as genetic perturbations leading to oxidative
stress resulted in cleavage of yeast 25S rRNA at a specific site, cutting off the so-called
expansion segment 7 (ES7), an rRNA element on the surface of the ribosome [154]. Its
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absence does not affect the rate of translation, but it can alter the binding of ribosome-
associated proteins because ES7 mediates the interaction of ribosomes with ribosome
biogenesis factors, chaperones, and enzymes that modify the nascent polypeptides, such
as acetyltransferase and methionine aminopeptidase [155–157]. The cleavage of ES7 is
catalysed by iron-mediated ROS production through Fenton chemistry. Experimental evi-
dence suggests that the Fe2+ ion involved in ROS production is bound to the ribosome and
may direct ROS production to induce site-specific cleavage [158]. A hypothetical model
suggests that ROS-mediated cleavage of ES7 alters ribosomal properties, possibly to adjust
the production of specific proteins or remodel the entire proteome. The presence of an
ROS-sensitive “fragile” site in 25S rRNA and oxidative modifications of rRNA may be part
of the ROS-sensing mechanism that promotes changes in ribosomal properties in response
to oxidative stress.

Various stress conditions and ageing also lead to the repression of rRNA expression
and endonucleolytic cleavage of 25S rRNA at specific sites [88,159–161]. Interestingly, this
response is mediated by an unknown signalling molecule or metabolite acting as a quorum-
sensing molecule [162]. In various yeasts, including C. albicans, S. cerevisiae, and S. pombe, a
significant increase in rRNA resistance to exonucleolytic 5′-3′ cleavage was observed upon
cell entry into the stationary phase or treatment with the TORC1 inhibitor rapamycin [163].
The exonuclease resistance is conferred by the presence of the 5′ cap structure on rRNA
molecules, and it is possible that capped rRNA is transcribed by RNA polymerase II.
However, considering that ribosomal RNAs are transcribed as 35S precursors and post-
transcriptionally spliced to 18S and 25S rRNAs, it is unlikely that canonical RNA Pol
II-associated cotranscriptional capping is involved in the process [163,164]. The structure
of the 5′cap and the mechanism of its formation are unknown. The capped rRNA may
form functional ribosomes, leading to the attractive hypothesis that under starvation or
stress conditions, a specific ribosome subtype with specific properties can be formed, thus
enabling a specific mode of translation.

Ribosomal RNA undergoes extensive modifications at approximately 100 nucleotides.
The absence of some of these modifications may affect ribosomal functions, thus serving
as a possible regulatory mechanism. However, in contrast to the results obtained with
tRNA, direct sequencing of yeast rRNA under different environmental conditions revealed
few differences in rRNA modification pattern, thus questioning the modification as a
physiological regulator of ribosomal function [88,165]. In contrast, Liu et al. [166] described
an interesting regulation between metabolism and rRNA modification. The adenines
A1781 and A1782 of 18S rRNA are dimethylated under normal growth conditions. These
adenines are only monomethylated under sulphur or methionine starvation conditions
due to limited availability of the methyl group donor S-adenosyl-methionine. Methylation
changes influence ribosomal properties and promote increased translation of mRNAs
coding for proteins involved in sulphur metabolism, possibly in an attempt to restore
intracellular sulphur levels [166]. The mechanism by which ribosomes selectively translate
mRNAs related to sulphur metabolism is currently unknown. One possible mechanism
involves the selection of specific mRNAs by RNA-binding proteins.

4.2. RNAs from Introns

RNA derived from excised introns plays an interesting role in growth regulation in
S. cerevisiae [167,168]. An analysis of a collection of strains in which individual introns
were deleted revealed that deletions of most introns, although not showing an obvious
phenotype under nutrient-rich conditions, led to a reduced ability of cells to survive star-
vation [168]. Furthermore, most strains from this collection overgrew the wild-type strain
when nutrients were resupplied. The intron deletion phenotype was independent of the
function of the host gene but rather was linked to aberrant repression of ribosomal pro-
tein genes by a mechanism involving the nutrient-sensing kinases TORC1 and PKA [168].
While excised introns form lariat structures that are rapidly degraded in the nucleus under
optimal growth conditions, the accumulation of unusual linearised forms of introns from
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34 particular genes has been observed in cells from saturated dense liquid cultures and
from cell lawns grown on solid medium [167]. Deletion of the introns of the five most
prevailing genes resulted in a strain that exhibited reduced survival during starvation,
which is consistent with the above-mentioned study by Parenteau et al. [168]. In addition,
treatment with the TORC1 inhibitor rapamycin and the secretory stress-inducing chemicals
tunicamycin and dithiothreitol also resulted in linear intron accumulation. Notably, this lin-
ear intron accumulation occurred under conditions of prolonged slow TORC1 inactivation,
which differs substantially from the rapid TORC1 inactivation triggered by rapid nutrient
depletion. The possible mechanism by which intron RNA regulates growth is by binding
and regulating the function of the spliceosome [167,168]. Because introns are relatively rare
in S. cerevisiae and are predominantly found in growth-related ribosomal protein genes,
the inhibition of splicing represents a potential negative regulatory mechanism that affects
ribosome production and thus cell growth [169]. A reduced amount of intronic RNA in
strains with intron deletions thus leads to insufficient splicing repression and, consequently,
to a higher expression of ribosomal protein genes, resulting in the strain’s inability to
survive starvation. These two studies highlight intronic RNAs as regulators of cell growth
that are integrated into nutrient-sensing signalling pathways.

4.3. Small Nuclear RNAs

The function of spliceosomes can be regulated by post-transcriptional modifications
of spliceosomal small nuclear RNAs (snRNAs). For instance, U2 snRNA can undergo
inducible pseudouridylation at positions 56 (Ψ56) and 93 (Ψ93) through the action of the
pseudouridine synthase Pus7. Under normal growth conditions, these modifications are
not present. Heat stress and starvation induce the formation of Ψ56 [170], whereas star-
vation in saturated cultures and rapamycin treatment induce the formation of Ψ93 [171].
Both modifications occur within a flexible stem region of U2 snRNA that is important for
the catalytic function of the spliceosome. However, the exact biological consequences of
these modifications are unclear. Pseudouridylation in U6 snRNA at position 28 by pseu-
douridine synthase Pus1 is specifically stimulated during growth on solid medium and
under conditions that induce pseudohyphal growth. Cells lacking Ψ28 failed to produce
pseudohyphae, and artificially increased pseudouridylation was sufficient to enhance pseu-
dohyphae formation [172]. Hence, regulated pseudouridylation of snRNA can reprogram
the spliceosome to alter gene expression during starvation and differentiation. Stress-
induced and filamentation-related pseudouridylation can influence spliceosome function
not only in terms of overall activity (likely inhibitory) but also in terms of recognising
non-optimal and modified splice sites, thereby inducing alternative splicing or regulating
the splicing of a specific subset of genes [170,172,173].

4.4. RNAs in Extracellular Vesicles

Many organisms across different kingdoms of life secrete extracellular vesicles (EVs)
that contain various substances, including proteins, polysaccharides, lipids, and nucleic
acids [174,175]. Secretion of EVs, which contain RNA along with other components, has
been reported in many yeast species, including S. cerevisiae and the clinically important
yeasts Candida spp. and Cryptococcus spp. [176]. EV secretion has been proposed as an
important factor in the establishment of yeast’s protective mechanisms, such as modifi-
cations of the cell wall, production of the capsule and extracellular matrix, and even as a
means of intercellular signalling. Especially in the latter case, RNA could play a pivotal
role. Extracellular RNA and DNA have been detected in C. albicans biofilms [176,177], and
the EVs’ secretion is likely a mechanism for transporting these nucleic acids out of cells.
As shown for C. albicans infection, extracellular nucleic acids are recognised by the host
immune system and trigger an ROS-mediated immune response [177].

A global analysis of the RNA content of EVs was performed in four yeast species: P.
brasiliensis, C. neoformans, C. albicans, and S. cerevisiae [176]. In all species, EVs contained
a mixture of different cellular small RNAs, mainly snoRNA, tRNA, snRNA and mRNA
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fragments, as well as miRNA-like molecules with homology to miRNAs from different
organisms. The function of most extracellular RNAs, if any, is unknown. However,
the presence of many small RNAs that can potentially function as miRNAs in different
organisms raises the intriguing possibility that extracellular RNAs modulate expression
in other cells through RNA interference, thus enabling communication within or between
species. The role of EV-derived RNA in cell-to-cell communication has been described in
the emerging pathogen Cryptococcus gattii [178]. EVs secreted by yeast cells during infection
are phagocytosed by macrophages into phagosomes, where they induce the growth of
non-virulent cryptococcal cells residing in the phagosome. Treatment of the vesicles with
RNAse or protease diminished this effect, implying that RNA, along with specific proteins,
plays a role in the long-distance transmission of a virulence signal. Nonetheless, the exact
mechanism of signal transmission has yet to be elucidated [178].

Recently, a novel discovery revealed small-RNA-mediated cross-kingdom signalling
that governs the interaction between C. albicans and the host’s immune system [179].
Upon infection with C. albicans, macrophages secrete EVs that contain miRNAs and other
compounds. One of the miRNAs, hsa-miR-24-3p, enters Candida cells and induces hyphal
growth, which is a crucial virulence factor, by lowering the concentration of the CDK
inhibitor Sol1. The mechanism of action of hsa-miR-24-3p likely involves translational
repression directed by the sequence homology between hsa-miR-24-3p and SOL1 mRNA.
Interestingly, one of the functions of hsa-miR-24-3p in human cells is RNAi-mediated
repression of p27, a conserved CDK inhibitor homologous to C. albicans SOL1 [180]. In
addition, hsa-miR-24-3p secretion is stimulated by soluble β-glucans, the immunogenic
components of fungal cell walls [179]. Candida cells can therefore recognise the presence
of activated macrophages through this mechanism and exploit miRNA produced by the
macrophages to regulate the expression of their own homologous gene, thereby increasing
their virulence.

5. Conclusions

A growing body of evidence suggests that non-coding RNAs of various types may
represent an additional mechanism by which cells alter their physiology in response to
external stimuli. In addition to the traditionally studied protein-based regulators and the
increasing interest in the regulatory roles of small metabolites (metabolic intermediates),
research into the regulatory roles of ncRNAs is thus becoming another rapidly developing
area of research. In the frequently identified examples of regulation in which ncRNAs are
involved, changes in the external living conditions of the cell/organism are reflected in
the cell physiology. It can therefore be assumed (although direct evidence is often lacking)
that these regulations contribute to various processes, such as rapid cellular adaptations,
escape from stress and other harmful conditions, or changes in the stationary phase where
other mechanisms might be switched off. Several genome-wide screening studies have
already revealed significant differences in the representation of ncRNA in differentiated
cells of structured multicellular populations, such as colonies and biofilms. Their functions
are largely unknown, but specific cell subpopulations within these structures influence
and respond in a coordinated manner to developmental changes that are often associated
with nutrient deprivation and an increase in stress factors. A future challenge is to deter-
mine whether non-coding RNAs could play an important role in the development and
differentiation of these structures.
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