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Abstract: Preclinical research has provided compelling evidence indicating that exposure to hypo-
baric hypoxia (HH) results in a deterioration of spermatogenesis. This adverse effect extends to the
underlying molecular mechanisms, progressively leading to impairments in the seminiferous epithe-
lium and germ cells and alterations in semen parameters. Indeed, several studies have demonstrated
that animals exposed to HH, whether in natural high-altitude environments or under simulated
hypoxic conditions, exhibit damage to the self-renewal and differentiation of spermatogenesis, an
increase in germline cell apoptosis, and structural alterations in the seminiferous tubules. One of the
primary mechanisms associated with the inhibition of differentiation and an increase in apoptosis
among germ cells is an elevated level of oxidative stress, which has been closely associated with HH
exposure. Human studies have shown that individuals exposed to HH, such as mountaineers and
alpinists, exhibit decreased sperm count, reduced motility, diminished viability, and increased sperm
with abnormal morphology in their semen. This evidence strongly suggests that exposure to HH
may be considered a significant risk factor that could elevate the prevalence of male infertility. This
literature review aims to provide a comprehensive description and propose potential mechanisms
that could elucidate the infertility processes induced by HH. By doing so, it contributes to expanding
our understanding of the challenges posed by extreme environments on human physiology, opening
new avenues for research in this field.
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1. Introduction

Hypoxia is a condition characterized by insufficient O2 at different levels, resulting
in several physiological manifestations. Different hypoxic types have been described,
including hypobaric-hypoxia (HH) (high altitude), hypoxemic-hypoxia (low O2 tension in
the arterial blood), anemic hypoxia (decrease in O2-carrying capacity), circulatory hypoxia
(heart is unable to pump enough blood), and histotoxic hypoxia (unable to utilize O2
effectively) [1]. Among these, high-altitude HH stands out as one of the most inhospitable
environments globally, primarily due to the reduction in barometric pressure, which
triggers a complex array of physiological responses [2,3].

Humans subjected to HH experience several adaptative mechanisms, including height-
ened ventilation, a rise in hematocrit concentration and increased hemoglobin level, and
precise regulation of pulmonary vasodilation and systemic vasoconstriction [4–6]. How-
ever, it is important to note that some individuals may experience acute mountain sickness,
a clinical condition characterized by symptoms such as headache, vomiting, sleep distur-
bances, and desaturation. In more severe cases, exposure to high-altitude conditions can
develop high-altitude pulmonary edema and high-altitude cerebral edema [7–9].
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While high-altitude HH environments may be considered challenging, it is worth not-
ing that more than 140 million people worldwide reside at altitudes above 2500 m [10,11].
In Western South America, vast mountain ranges, particularly the Andes, extend across
the region [12]. The Andes Mountains stretch from the extreme north of Venezuela to
the Chilean Patagonia, encompassing altitudes ranging from 2500 to 6000 m. At these
heights, various human activities take place, including tourism, cross-border care services,
education, and mining [13]. These geographically challenging conditions are marked by
reduced barometric pressure (BP), diminished oxygen partial pressure (PO2), heightened
ultraviolet (UV) radiation, and extreme temperatures, necessitating physiological adjust-
ments in organisms to cope with these extreme environmental factors. Santoloya et al.
and Gonzáles et al. [4,5] have indicated that indigenous communities inhabiting the An-
dean plateau exhibit moderate hyperventilation, increased hematocrit concentration, and
elevated hemoglobin level as compensatory mechanisms for the lower ambient oxygen
pressure, especially when compared to non-residents.

Mining activity is the economic mainstay for numerous countries, with many mining
operations in high-altitude hypoxic environments. For instance, in countries like Chile,
more than 38,000 individuals are exposed to altitudes exceeding 3000 m, experiencing
intermittent hypobaric hypoxia (IHH) and/or intermittent chronic hypobaric hypoxia
(ICHH) [14]. It is worth noting that, as per Chilean labor and health legislation, miners are
not mandated to undergo altitude training. However, the legal framework does establish
control measures, including health assessments for occupational exposure to high altitudes,
occupational surveillance programs, and measures to mitigate the effects of hypobaric
conditions [15]. Given that high-altitude environments lead to various physiological
adaptations and that mining plays a crucial economic role in several countries, it becomes
imperative to understand the consequences of HH exposure at multiple levels, including its
effects on muscular function, autonomic responses, and reproduction. Such understanding
can pave the way for innovative pharmacological and non-pharmacological strategies to
counter the challenges posed by HH exposure.

The adaptation mechanisms in response to chronic HH (CHH) and CIHH often exhibit
similarities, although their respective acclimatization timelines differ. Acclimatization to
CHH is typically achieved within a few months, while adapting to CIHH requires a more
extended period, ranging from 3 to 8 years. These adaptation mechanisms encompass
preserving myocardial contractility, preventing apoptosis of cardiomyocytes, increasing
coronary blood flow and promoting myocardial capillary angiogenesis, activating ATP-
sensitive K+ channels, and inhibiting mitochondrial permeability transition pores [7].
Additionally, angiogenesis, a mechanism involved during exposure to HH, entails the
creation of new blood vessels from pre-existing ones and is regulated by the vascular
endothelial growth factor (VEGF). Hypoxia triggers the up-regulation of VEGF transcription
through the hypoxia-inducible factor (HIF) pathway. This process enhances oxygen delivery
to tissues in hypoxic conditions [8,9]. On the other hand, erythropoiesis, the process
responsible for generating red blood cells, is orchestrated by the hormone erythropoietin
(EPO). Hypoxia affects erythropoiesis by up-regulating EPO transcription via the HIF
pathway, leading to an increase in red blood cell production. This augmentation contributes
to an enhanced oxygen-carrying capacity of the blood [8,9].

In addition to the well-documented physiological compensations that occur in re-
sponse to HH, research has also shown that HH can harm male fertility. This is associated
with increased oxidative stress at the testicular level, leading to the deterioration of sper-
matogenesis and alterations in semen parameters [16–19]. The first observations of impaired
human spermatogenesis associated with HH were made when a group of nine volunteers
was exposed to an altitude of 4270 m for 45 days, decreasing sperm count [16]. Subse-
quent studies by Verratti et al. (2016) and Okamura et al. (2003) involving mountaineers
exposed to high altitudes for 35 days reported declines in sperm count and a reduction
in the percentage of spermatozoa with normal morphology [16,20]. Similar findings have
been reported in pre-clinical models as well [21]. Additionally, a decrease in sperm count
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and reduced sperm normal morphology was observed in 10 mountaineers exposed to an
altitude of 7821 m for 35 days [16,20]. Similar results have been previously observed in
the rhesus monkey [21]. While the evidence regarding the negative impact of HH on male
fertility is consistent, it is simultaneously limited by the lack of detailed explanations for
the mechanisms underlying these effects. Therefore, the purpose of this manuscript is
to provide a comprehensive review of the literature, summarizing the relevant findings
regarding the effects of HH associated with high altitudes on spermatogenesis and semen
parameters. Furthermore, we aim to describe and propose potential mechanisms to ac-
count for the damage to germ cells and the seminiferous epithelium induced by increased
oxidative stress from HH exposure.

2. Hypobaric Hypoxia

At sea level, the atmospheric oxygen (O2) pressure remains constant at 156 mmHg,
constituting approximately 21% of the atmosphere. However, as geographical altitude
increases, atmospheric pressure decreases, reducing the PO2. Consequently, this decreases
the fraction of inspired O2, ultimately promoting a state of hypoxemia [22]. In response
to hypoxemia due to exposure to HH, compensatory mechanisms have been identified
that aim to enhance the availability and delivery of O2 at the tissue level [23]. The first
mechanism is a respiratory reflex via peripheral chemoreceptor activation [24,25]. When
HH exposure is prolonged, a molecular response is activated, which involves HIF, a member
of a family of transcription factors. HIF induces gene expression related to erythropoiesis,
angiogenesis, vascular remodeling, and energetic metabolism [26–29]. Activation of these
mechanisms increases ventilatory response to hypoxia, enhancing oxygen uptake and
triggering adaptive responses to short- and long-term high-altitude HH exposure [30]
(Figure 1).
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Figure 1. States of hypoxemia. When oxygen levels decrease, two distinct, time-related phenomena
are triggered. In the short-term, a respiratory reflex is activated through peripheral chemoreceptors,
specifically the carotid body. This reflex initiates a compensatory mechanism aimed at enhancing
the availability and delivery of oxygen at the tissue level. Following more prolonged exposure to
hypoxia, a molecular response is triggered. This response involves the hypoxia-inducible factor (HIF),
which, in turn, induces gene expression related to processes such as erythropoiesis, angiogenesis,
vascular remodeling, and energetic metabolism. Created with BioRender.com.
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In addition to the mechanisms mentioned earlier, exposure to HH results in an increase
in oxidative stress. HH-induced oxidative stress, arising from an oxygen deficit, can lead to
the accumulation of electrons. Without sufficient oxygen as the final electron acceptor, this
electron buildup triggers superoxide anion formation (O2•). Subsequently, this superoxide
anion can evolve into hydrogen peroxide (H2O2) and other reactive oxygen species (see
Section 3) [7]. This cascade of reactive oxygen species (ROS) has been proposed as the
underlying cause of various pathologies, including cardiovascular issues, neurodegen-
erative diseases, and male infertility [31]. Notably, it has been demonstrated that male
fertility problems associated with HH are closely linked to oxidative stress at the testicular
level [16–19]. However, the precise molecular mechanisms driving these physiological
phenomena have not been comprehensively elucidated. It is essential to note that while
there is evidence of compromised female fertility during exposure to HH, this aspect falls
beyond the scope of the present manuscript [32].

3. Oxidative Stress

Mitochondria serve as the central hub for adenosine triphosphate (ATP) production
within the cell, primarily through processes like respiration and oxidative phosphorylation.
However, this energy-generating mechanism has a notable consequence as it generates
byproducts from highly reactive oxygen-derived molecules, known as ROS [33,34]. The
primary ROS include superoxide anions (O2•), hydrogen peroxide (H2O2), peroxyl radicals
(ROO•), and hydroxyl radicals (OH•) [35]. ROS play crucial roles at low levels as inter-
mediaries in various cellular pathways. Nevertheless, when ROS levels surpass the cell’s
antioxidant defense capacity, it can lead to oxidative stress, potentially causing cellular
damage and dysfunction, including mitochondrial dysfunction [36–38].

Excessive production of O2• can damage mitochondrial DNA, causing mutations
and deletions that compromise mitochondrial integrity and functionality. This primarily
affects complexes I and IV of the electron transport chain, significantly reducing ATP
production and impairing the cell ability to maintain ionic gradients. Consequently, greater
ROS production occurs, negatively impacting cellular function and altering the structure
of proteins, lipids, and DNA. If the cell intrinsic DNA repair mechanisms cannot restore
the integrity of mitochondrial and nuclear DNA, the mitochondrial apoptosis signaling
pathway is activated [34,39,40].

Several environmental factors, including HH, can induce an increase in ROS. HH
involves a decrease in PO2, which reduces the oxygen supply to mitochondria, leading to an
accumulation of electrons in the electron transport chain [7]. Under normal circumstances,
O2 is the final electron acceptor in the mitochondrial electron transport chain [41]. However,
in the presence of HH, the lack of oxygen as the final acceptor leads to the production of
O2•. Subsequently, this anion can evolve into hydrogen peroxide (H2O2) and other ROS,
generating an excess of ROS that triggers detrimental processes for the cell, such as lipid
peroxidation, protein peroxidation, and DNA fragmentation [37].

Lipid peroxidation is a biochemical process in which lipids, such as fats and phos-
pholipids, undergo damage due to their reaction with ROS or free radicals. This process
is particularly relevant in plasma membranes, predominantly composed of polyunsat-
urated fatty acids, making them highly susceptible to ROS attack. The consequence of
this reaction is the excessive production of malondialdehyde. This oxidation product ad-
versely impacts the integrity and functioning of the cellular membrane and various cellular
processes [31,42].

Proteins, like lipids, are highly susceptible to damage caused by ROS. The main target
areas of ROS attack in proteins are the aromatic and heterocyclic rings of amino acid
residues. The primary types of damage caused by ROS in proteins include the modification
of amino acid residues, peptide bond breakage, alterations in the native three-dimensional
structure of the protein, and the formation of cross-linked protein polymerization. These
processes lead to disruptions in cellular protein components, ranging from misfolding of
proteins to forming protein plaques and protein denaturation [43]. On the other hand, ROS-
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dependent DNA fragments can interact with DNA, causing lesions such as base oxidation
and chain breaks. This oxidative damage can have significant consequences for health, as it
affects DNA replication and transcription and compromises genome integrity [44,45].

The evidence shown so far makes it clear that sperm are highly sensitive to ROS
production due to their limited antioxidant defense mechanisms and high content of
polyunsaturated fatty acids. ROS can cause oxidative damage to sperm cell membranes,
proteins, and DNA, leading to impaired motility, viability, and fertilization capacity [46]
(Figure 2).
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Figure 2. Hypoxic-dependent oxidative stress at the spermatozoa mitochondria. From glycolysis,
ATP is obtained, and acetyl-CoA is formed, which enters the citric acid cycle. After that, oxidative
phosphorylation is initiated to create ATP through different mitochondrial complexes. During HH,
the complexes I and IV of the electron transport chain are affected by an accumulation of electrons,
significantly reducing ATP production and impairing the cell ability to maintain ionic gradients.
Consequently, ROS production occurs, including superoxide anions (O2•), hydrogen peroxide (H2O2),
peroxyl radicals (ROO•), and hydroxyl radicals (OH•). ROS production negatively impacts cellular
function, increasing lipid peroxidation, protein peroxidation, and DNA fragmentation. Created
with BioRender.com.

4. Morphology of the Seminiferous Tubules

Advancements in recent decades have enabled the development of 3D reconstruction
techniques, providing detailed insights into the structure of the seminiferous tubules
(STs) [47,48]. The STs form a complex network responsible for the daily production of
millions of spermatozoa. They are organized into one to five hundred lobules, separated by
connective tissue that further connects to the rete testis. Additionally, the efferent ductulus
establishes communication with the head of the epididymis [49].

The seminiferous tubule is surrounded by (i) Peritubular myoid cells, flat cells that
form smooth muscle layers around the STs, providing structural support and aiding con-
tractions to move immotile sperm towards the rete testis; and (ii) Leydig cells, polygonal
cell clusters within the interstitial tissue near blood vessels, responsible for testosterone
production [50].

The inner of the seminiferous tubules present a highly organized preestablished archi-
tecture, conformed by seminiferous epithelium, which is structured for two different types
of cells. The first of these are Sertoli cells (SC), irregular columnar somatic cells attached to
the basal lamina. They have a large nucleus with even chromatin distribution, surrounding
and supporting germ cells. Tight junctions form the blood-testis barrier, dividing the
seminiferous epithelium into basal and adluminal compartments [51]. The second are
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Germ cells. These cells comprise a family whose fundamental purpose is transforming into
spermatozoa to transmit genetic information across generations. Morphological studies
have allowed us to characterize the shape and structure of the germ cells [52,53]. Indeed,
six types of germ cells have been identified in the adult testis, which differentiate into
spermatozoa [54]. These include Spermatogonia, diploid, undifferentiated cells adjacent
to the basement membrane, characterized by a dense nucleus housing a prominent nu-
cleolus. Their extensive cytoplasm contains ribosomes, vesicular endoplasmic reticulum,
and clustered mitochondria [52,55]. Primary Spermatocytes: Engaging in meiosis without
direct basal lamina contact, these cells possess a well-developed Golgi apparatus and rough
endoplasmic reticulum. Their nucleus assumes a spherical shape with filamentous chro-
matin, a characteristic of prophase I [56]. Secondary Spermatocytes: Haploid, ovoid cells
with a nucleus containing prominent chromatin clumps. The cytoplasm is rich in rough
endoplasmic reticulum [57]. Round Spermatids: These haploid cells exhibit a polygonal
or spherical morphology, approximately 6 µm in diameter. Their small nucleus contains
uniformly distributed chromatin. They undergo a transformative process to mature as
spermatozoa [58]. Elongated spermatids: Elongated spermatids are highly polarized cells
with a head that contains the genetic materials in highly condensed chromosomes on
one end and a long tail constituted by actin- and microtubule (MT) -based cytoskeletal
elements [59]. Spermatozoa: These highly diverse cells are recognized for mobility from
the insemination site to fertilization. Variations in head shape and flagellum length are
evident among different species. The acrosome, derived from the Golgi complex, stores
enzymes essential for penetrating egg coats. The nucleus, occupying a significant portion of
the head volume, is the repository for genetic information the male progenitor contributes.
The flagellum is the mobile apparatus, segmented into the neck, middle piece, principal
piece, and endpiece [60,61] (see Figure 3).
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Several studies conducted in preclinical models have shown that the STs external and
internal architecture is significantly damaged due to exposure to HH, attributed to ROS
production, and subsequently, cell damage [62–64].

5. Hypoxia-Dependent Primary Structural Damage of the Seminiferous Tubules

Over the past decade, there has been a growing body of evidence derived from
animal models, shedding light on the adverse impacts of exposure to hypoxia on the
components of the STs. The initial in vivo studies that demonstrated the harmful effects of
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HH on spermatogenesis were conducted by Monge and Mori-Chávez (1924) and involved
rabbits and cats exposed to 4400 m, revealing significant deterioration in the germinal
epithelium [65]. Similarly, Saxena (1995), after exposure to a simulated altitude of 4411 m,
reported damage to the germinal epithelium in Rhesus monkeys [21]. Moreover, Farias et al.
(2005) showed that 60 days of simulated HH at 4600 m was able to promote a significant
reduction in testicular mass, an increase in interstitial space, a decrease in the height of
the seminiferous epithelium, and a depletion of cellular tissue [66]. Similar results were
observed at high altitudes in the Chilean plateau (3260 m) [62].

Along with the previous observation, Liao et al. (2010), in rats exposed to 15 and
30 days at simulated high- altitude (5000 m), reported testicular abnormalities, such as germ
cell degeneration, seminiferous epithelium disorganization, reduced tubule cellularity, and
seminiferous epithelial vacuolation [67]. Furthermore, in the same manuscript, electronic
microscopy revealed an augmented presence of lipid droplets within SCs, the formation
of myelin-like structures in SCs cytoplasm, distended mitochondria characterized by the
loss of cristae, degenerated spermatogonia featuring condensed and marginated chromatin,
and sporadic nuclear envelope invaginations in primary spermatocytes [67].

In recent years, transcriptome research conducted in preclinical models has shed light
on the effects of testicular exposure to HH. These investigations have revealed that such
exposure leads to modifications in the expression of genes critical to the functioning of
the seminiferous tubule, raising concerns about its potential negative impact on male
fertility. Nevertheless, further research is imperative to comprehensively understand the
implications of these alterations [68,69].

The most frequently described damages resulting from exposure to both short and
long-term HH are alterations in the organization of the STs. These alterations include a
reduction in the number of SCs, an increase in the diameter of the seminiferous tubule, and
the folding of the basement membrane [63,66,70,71] (Figure 4).
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spermiogenesis. During spermiogenesis, the flagellum is extruded, the nucleus condenses 
and elongates, and the acrosomal vesicle covers the upper nuclear region [75,76]. Since 
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and continued oxygen availability for ATP production is required to support self-renewal 

Figure 4. Anatomy of the testis and germline and effects of hypoxia on seminiferous tubule cells.
Testis structures (left side): the epididymis is divided into four anatomical regions: the initial segment,
head (caput), body (corpus), and tail (cauda). On the right side, a cross-section of the seminiferous
tubule shows all cells participating in spermatogenesis. Cell differentiation is from the basal part of
the tubule to the lumen, starting from spermatogonia to spermatozoon. The seminiferous tubule
is divided in two (dotted line), showing normoxia (left) and hypoxia (right). During hypoxia, it
shows cell abnormalities ranging from cell apoptosis and damage to the epithelium, triggering
differentiation problems. Each cell type, including the Sertoli and Leydig Cells, is shown at the
bottom. Created with BioRender.com.
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6. Principal Damages Produced to Spermatogenesis by Hypoxia

Spermatogenesis is a complex process of self-renew and differentiation of the germinal
diploid cells culminating with the production of mature spermatozoa [72–74] (see Figure 3).
A-dark spermatogonia enter mitosis, and one daughter cell remains spermatogonia-Ad,
while the other acquires A-pale properties (Ap). Ap spermatogonia enters mitosis, and the
daughter cells are then named B-spermatogonia. Then, B-spermatogonia actively proliferate
and enter meiosis, thus named pre-Leptotene primary spermatocytes. Meiosis proceeds
through the Pre-Lep, leptotene, zygotene, and pachytene stages, where DNA replicates,
chromosomes with chromatids pair with their homologous chromosomes, and chromatids
suffer meiotic recombination. After this, pachytene primary spermatocytes suffer the first
meiotic division, with the separation of homologous chromosomes, resulting in haploid
secondary spermatocytes. The STs cells immediately suffer the second meiotic division,
with the separation of the chromatid. The resultant haploid round spermatids enter a
morphological, structural, and physiological differentiation process named spermiogenesis.
During spermiogenesis, the flagellum is extruded, the nucleus condenses and elongates,
and the acrosomal vesicle covers the upper nuclear region [75,76]. Since spermatogenesis
is highly regulated, extreme environments such as HH are capable of altering it. Indeed,
evidence shows that HH generates random apoptosis and inhibition of differentiation and
self-renewal throughout the germ line [67,71].

It has been estimated that an adult human being produces approximately 45 million
sperm per day, with an average velocity of around 1000 sperm/s [72]. To sustain this
high rate of sperm production, a population of stem cells with substantial proliferative
capacity and continued oxygen availability for ATP production is required to support
self-renewal and the differentiation of spermatogonia [77]. Previous research has revealed
that PO2 in the seminiferous epithelium is significantly low, measuring approximately
2 mmHg. This low oxygen level is likely associated with the distance that oxygen must
traverse through the tissue and the substantial oxygen consumption by the spermatogo-
nia [78,79]. Consequently, spermatogonia stem cells predominantly rely on glycolysis as
their primary metabolic pathway for ATP production. This metabolic strategy sustains their
self-renewal and helps safeguard their cellular components from oxidative stress-induced
damage [80–82]. Nonetheless, spermatogonia must be adaptable in their metabolic pro-
cesses, shifting between glycolysis and oxidative phosphorylation to ensure a sufficient
supply of energy (ATP) that can support the proliferation and differentiation of germ cells,
all while considering the availability of oxygen [78,83]. Chen et al. demonstrated that
oxidative stress resulting from oxidative phosphorylation can induce gene expression that
promotes spermatogonia differentiation. Furthermore, they reported that inhibiting both
glycolysis and oxidative phosphorylation leads to a reduction in the number of spermato-
gonia expressing signaling molecules associated with self-renewal and differentiation [84].
Therefore, it is plausible that exposure to conditions that induce oxidative stress, such as
HH, could potentially disrupt the differentiation of spermatogonia.

Studies conducted on rats exposed to HH have demonstrated a loss of germ cells in
all cell cycle stages. González et al. [85] and Farias et al. [86], in studies involving rats
exposed to simulated high-altitude hypoxia at 4200 m, reported a reduction in the germ
cell population, particularly spermatogonia and spermatocytes. Additionally, in a study
conducted by Bai et al. [71] on rats exposed to simulated high-altitude hypoxia at 3000 m,
a significant increase in the apoptosis rate of germ cells, particularly spermatogonia and
spermatocytes, was reported. Additionally, it has been observed that exposure to HH leads
to significant changes in testicular vascularization, increasing intratesticular temperature.
This increase in temperature triggers the inhibition of germ cell proliferation and leads to
the arrest of spermatogenesis [87].

The reduction in the population of germ cells has been attributed to an increase in the
rate of apoptosis associated with oxidative stress in spermatogonia and spermatocytes [71].
In support of this notion, Liu et al. [79] demonstrated that exposure to HH increases the
apoptosis of round and elongated spermatids. It is important to note that apoptosis can
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be triggered by various stimuli, resulting in physiological alterations at the endocrine
level [88]. One such physiological mechanism linked to apoptosis is associated with the
hypothalamus, pituitary gland, and testis axis. It has been observed that exposure to
HH leads to a decrease in the content of gonadotropin-releasing hormone (GnRH) in
hypothalamic neurons. This decrease in GnRH subsequently reduces the synthesis of
follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These changes affect
the steroidogenesis in Leydig cells, resulting in a reduction in the concentration of plasma
testosterone. This reduction in testosterone, in turn, contributes to an increase in the
apoptosis rate among germ cells [89–91].

The evidence mentioned above indicates that exposure to HH inhibits spermatogonia
and spermatocyte differentiation, increases the rate of germ cell apoptosis, and alters the
structural conformation of the seminiferous tubule (Figure 4).

7. Semen Parameters and Hypobaric Hypoxia

The male reproductive capacity depends mainly on the functionality and structural
integrity of its spermatozoa [92–94]. The World Health Organization (WHO) establishes
that the quality of semen can be measured by assessing the following sperm parameters:
ejaculated volume (1.4 mL), total sperm count (>39 × 106/ejaculated), total motility (42%),
progressive motility (30%), morphology (4% normal sperm), and viable sperm (54%) [95].
Although the evidence is limited, it has been shown that exposure to HH can promote
negative consequences in these semen parameters [62,79,85,86].

Saxena [21], using Rhesus monkeys exposed to HH for twenty-one days, simulating an
altitude of 4411 m, showed a significant reduction in semen volume, sperm concentration,
and motility. In addition, two studies have shown that rats exposed to HH increase the per-
centage of fragmentation of the sperm DNA [71,79]. From a human perspective, Okumura
et al. [16], in three healthy men exposed to HH for 90 days at 5100 m, showed through
semen analyses that there was a decreased sperm concentration (−21%) and an increase
in the percentage of sperm with abnormal morphology (35%). Similarly, a significant
reduction in the quality of the semen parameters (concentration, motility, viability, and
morphology) has been observed in trekkers, mountaineers, tourists, and workers [17,18,20].
Semen analysis of subjects exposed to 3600 m for one month showed several types of sperm
structure abnormalities, such as spermatozoa with small or large heads, double or multiple
heads, headless, crimp neck, expansion neck, tailless, double tail, short tail, and coiled
tail [19].

The evidence strongly indicates that sperm are highly sensitive to ROS due to their
limited antioxidant defense mechanisms and high content of polyunsaturated fatty acids.
ROS can lead to oxidative damage in sperm cell membranes, proteins, and DNA, ultimately
reducing motility, viability, and fertilizing capacity (for more details, see Section 3) [96,97].
Studies have demonstrated that the decrease in sperm concentration is associated with an
increase in oxidative stress at the testicular level due to hypoxia. This oxidative stress can
cause fragmentation in the nuclear DNA structure of germ cells, as indicated by the pres-
ence of 8-hydroxy-2’-deoxyguanosine during exposure to HH. Damage to nuclear DNA can
trigger either the mitochondrial apoptotic signaling pathway or death receptors, leading to
an increased apoptosis rate, primarily affecting spermatogonia and primary spermatocytes.
Oxidative stress is a crucial factor contributing to reducing sperm concentration [67,98–100].
Additionally, an imbalance in the metabolic pathways, specifically the shift between gly-
colysis and oxidative phosphorylation due to increased oxidative stress, may inhibit gene
expression necessary for the self-renewal of spermatogonia and their differentiation into
primary spermatocytes. This metabolic disturbance could also explain the reduction in
sperm concentration following exposure to HH [84]. In fact, in a study conducted by
Saxena, a significant increase in glucose levels in the semen fluid of Rhesus monkeys was
documented [21].

In addition to the previously mentioned factors, hypobaric hypoxia (HH)-induced
oxidative stress can damage DNA, such as nitrogenous base deletions, mutations, and poly-
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morphisms. This damage may result in a failed exchange of histones to protamines, leading
to lower sperm condensation or packing [101–103], provoking epigenetic regulation [104].
Furthermore, exposure to HH has been shown to alter the pattern of histone methyla-
tion at the N-terminal ends and induce changes in the process of histone-to-protamine
exchange during spermiogenesis. These alterations can lead to lower compaction of sperm
DNA. These two mechanisms, DNA damage and histone-to-protamine exchange, primarily
contribute to an increase in the percentage of sperm with abnormal head morphology.

According to the WHO Manual for Analysis of Human Semen and Sperm Interaction
with Cervical Mucus, sperm motility is one of the essential parameters, given that the
motility allows sperm to migrate from the insemination site to the fertilization area [95]. Of
note, it has been shown that oxidative stress also promotes the deterioration of sperm motil-
ity [71,79,105]. Indeed, low synthesis of ATP is proposed as one of the essential mechanisms
related to the loss of sperm motility during HH due to a metabolic shift [106]. Luo et al.
observed that, in human sperm, HH promotes an increment of mitochondrial DNA copies,
which has been proposed as a compensation mechanism for low ATP production [107].
Another study shows that a high degree of oxidative stress in the semen causes a decreased
activity in the enzyme glucose-6-phosphate dehydrogenase, contributing to reduced sperm
motility due to a metabolic deficiency [108].

Peroxidation of unsaturated fatty acids by increased oxidative stress has been proposed
as another mechanism that contributes to loss of motility in sperm, altering the fluidity
and, therefore, leading to a decrease in the motility of the sperm flagellum [105]. Besides,
it has been described that excessive oxidative stress causes protein oxidation that leads
to the crisscrossing of the peptide chains and the formation of carbonyl groups, which
damages the integrity of the structural protein [109,110]. Indeed, this allows hypothesizing
that the increase in oxidative stress induced by exposure to HH can generate damage to the
structural protein that makes up the axoneme, dysplasia of the outer dense fibers, and the
fibrous sheath.

8. Conclusions

The present review depicts that from pre-clinical models to human beings, the sper-
matogenic process is quite susceptible to oxidative stress prompted by HH, which induces a
rise in the apoptotic rate of germ line cells, inhibiting the differentiation of the spermatogo-
nia to primary spermatocytes. Furthermore, an increase in oxidative stress at the testicular
level and semen produces damage to the sperm structure, which is related to a reduction in
the quality of the semen parameters, suggesting that exposure to HH could be a risk factor
that increases the prevalence of male infertility. Nevertheless, it is necessary to obtain more
evidence to establish a relationship between exposure to HH and male infertility.
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