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Abstract: Myasthenia gravis (MG) is an autoimmune disease in which autoantibodies target structures
within the neuromuscular junction, affecting neuromuscular transmission. Muscle-specific tyrosine
kinase receptor-associated MG (MuSK-MG) is a rare, often more severe, subtype of the disease with
different pathogenesis and specific clinical features. It is characterized by a more severe clinical
course, more frequent complications, and often inadequate response to treatment. Here, we review the
current state of knowledge about potential pathomechanisms of the MuSK-MG and their therapeutic
implications as well as ongoing research in this field, with reference to key points of immune-mediated
processes involved in the background of myasthenia gravis.
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1. Introduction

Myasthenia gravis (MG) is an autoimmune disease of the postsynaptic part of the
neuromuscular junction (NMJ). Immunologically, MG is a heterogeneous group caused
by different, pathogenic antibodies against important synapse proteins. These antibodies
include Ig1 or Ig3 class antibodies against acetylcholine receptor (AChR), Ig4 class anti-
bodies against muscle-specific kinase receptor (MuSK), and antibodies against lipoprotein
receptor-related protein 4 (LRP4). Patients with MG have a similar clinical presentation,
but the immunopathology is unusually heterogeneous [1–4].

Approximately 5–8% of myasthenia gravis patients are positive for antibodies against
muscle-specific tyrosine kinase receptors [5,6]. Its prevalence varies between countries and
ethnic groups. Higher rates of MuSK-MG patients are observed in southern Europe, with a
pronounced prevalence in females, who account for more than 70% of patients. The disease
has an earlier age of onset, with a peak incidence in the latter part of the third decade of life,
and rarely occurs after the age of 70 [5]. In contrast to AChR-MG, no significant thymus
alterations, such as thymic hyperplasia, have been reported in MuSK-MG patients [7].
Furthermore, it is postulated that thymectomy does not improve clinical outcomes in these
patients [8].

MuSK-MG is a rare, often more severe subtype of the disease with different patho-
genesis and specific clinical features. MuSK-MG usually has an acute onset, involving
predominantly facial and bulbar muscles. Symptoms usually develop progressively, over
the course of several weeks. Initial respiratory crises are common. The disease can lead to
generalized muscle weakness to the stage of muscle atrophy. The muscle groups mainly
involved are facial muscles and the tongue. Severe skeletal muscle involvement can also be
confirmed [4–7]. The atypical onset of the disease, such as ocular involvement, lack of vari-
able symptoms, failure of acetylcholinesterase inhibitors, and negative electrophysiological
studies, impede the diagnosis of MuSK-MG [5,9,10].
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Here, we highlight the immunological mechanisms of the MuSK subtype of MG, the
commonality with other autoimmune nervous system disorders, and note the most recent
approaches to treatment.

2. Methods

The authors conducted a literature search focused on the topic of the pathomechanisms
and treatment of MuSK myasthenia gravis. The key search terms applied in PubMed via
MEDLINE were “myasthenia gravis” or “MG” or “MuSK MG” and “pathomechanisms”
and “immunology” and “treatment” (Figure 1). The online search covered the publication
period from database inception, i.e., 2010, until 31 December 2023. Reviews and research
studies, classified according to their relevance, were initially included, with the subsequent
exclusion of conference abstracts and papers written in languages other than English. In
addition, reference lists from the eligible publications were searched for their relevance to
the topic.

Figure 1. Flow chart of study selection.

3. MUSK: From Gene to Functions

Signal transmission is involved between the motoneuron and the muscle fiber mus-
cle, a specialized structure called the neuromuscular synapse or neuromuscular junction.
The motoneuron, together with the muscle fiber (or a group of fibers of the same type)
innervated by it, forms a motor unit.

In an NMJ, one can distinguish three essential elements:

1. The presynaptic part, including the motoneuron endings;
2. The synaptic gap into which synaptic vesicles are secreted from the motoneuron axon

and from which the neurotransmitter, acetylcholine, is released;
3. The postsynaptic region situated on the sarcolemma, which contains acetylcholine

receptors. The binding of acetylcholine by these receptors initiates a cascade of events
leading to muscle contraction [11,12].
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Formation of NMJs involves a complex signaling process, both spatially and tempo-
rally, between motoneurons and muscle myotubes, the end result of which is the clustering
of acetylcholine receptors (AChRs) on the postsynaptic side of the junction and a differenti-
ated nerve terminal on the presynaptic side. The key proteins in NMJ formation include a
neuronally derived heparan-sulfate proteoglycan, agrin, and three muscle proteins: down-
stream of kinase-7 (Dok7), low-density lipoprotein receptor-related protein-4 (LRP4), and
rapsyn [13,14]. LRP4 serves as a cis-acting (in muscle) transmembrane ligand for MuSK;
agrin acts as an allosteric regulator of LRP4’s interaction with MuSK; Dok7 functions as
a cytoplasmic activator of MuSK, whereas rapsyn binds directly to AChR to facilitate its
clustering [15,16]. Muscle-specific kinase was identified as a postsynaptic integral mem-
brane protein playing a crucial role in the development of the neuromuscular junction
synapse (Figure 2). The absence of NMJs is lethal. The inability to form or maintain normal
NMJs results in neuromuscular transmission pathologies such as myasthenia gravis and
congenital myasthenic syndromes (CMS).
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Figure 2. Developing NMJ: The key proteins in NMJ formation include a neuronally derived heparan-
sulfate proteo-glycan, agrin, and three muscle proteins: downstream of kinase-7 (Dok7), low-density
lipoprotein receptor-related protein-4 (LRP4), and rapsyn [13,14]. The low-density lipoprotein
receptor-related protein-4 (LRP4) serves as a cis-acting (in muscle) transmembrane ligand for MuSK;
agrin acts as an allosteric regulator of LRP4 interaction with MuSK; downstream of kinase-7 (Dok7)
functions as a cytoplasmic activator of MuSK, whereas rapsyn binds directly to AChR to facilitate its
clustering (based on [9], own modification).

MuSK was described for the first time as a novel Trk-related receptor tyrosine kinase
(RTK) enriched in the electric organ of Torpedo californica, a species of electric ray in the fam-
ily Torpedinidae [15–18]. Human gene coding MuSK is located on chromosome 9q31.3 and
consists of 11 constitutive and five alternative exons. Six transcript variants of MuSK have
been identified due to alternative splicing [19]. Initially, MuSK expression was considered
tissue-specific and limited to skeletal muscle cells. However, more detailed investigations
have shown the highest level of its transcripts in the small intestine and similar to skele-
tal muscle expression in the testis, bladder, and lung. The expression in brain tissue is
extremely low. However, it is detectable in some brain regions, especially the epithala-
mus. The detection of MuSK transcripts in mouse and human vascular leptomeningeal
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cells (VLMCs) additionally indicated alternative functions of MuSK in both neuronal and
non-neuronal cells [20]. Valenzuela et al. noticed the high transcript expression of two
main MuSK isoforms during the early embryonic development of rat myotome, which
then persisted in time of skeletal muscle formation. However, its mRNA has dramatically
decreased after birth [21]. Despite many similarities between rodent and human MUSK
genes, there are also differences. Nasrin et al. detected three alternative splicing isoforms
of MuSK transcripts in human skeletal muscle.

Furthermore, they have observed unique for the human gene, alternative exon 10
defective skipping. The exclusion of this exon from mRNA is more frequent in undiffer-
entiated and poorly differentiated human myoblast and myogenic cells than in skeletal
muscle [19]. Interestingly, two MuSK isoforms (one identical to the skeletal muscle variant)
are expressed in the brain. It was shown that hippocampal MuSK isoforms play a crucial
role in cholinergic response and help memory formation [20]. These data obtained on
animal models confirm observations of MG patients with memory deficits [22]. Human
MuSK is a transmembrane glycoprotein of type I and consists of several extracellular do-
mains, a single transmembrane helix, and a cytoplasmic tail with a tyrosine kinase domain
(TKD, Figure 2). The N-terminal fragment of MuSK includes a signal peptide, followed by
three immunoglobulin-like domains (Ig), and a frizzle-like cysteine-rich domain (Fz-CRD).
The first two Ig are crucial for lipoprotein receptor-related protein 4 (LRP4) interactions
as well as homodimerization. The central point of LPR4— the binding site on Ig1—is
determined by Ile96, and its mutation decreases the interaction of MuSK with LRP4 [20].
These interactions can be enhanced by agrin. Thus, agrin plays a role as an allosteric and
paracrine regulator, and its presence is not necessary for MuSK activation [23]. Furthermore,
LRP4 binding to MuSK impacts the hydrophobic surface situated opposite to Ile96 and
aids direct interactions between Leu83 and Met48, which leads to Ig1- dimerization and
autophosphorylation reactions [24]. The role of Fz-CRD is believed to be essential for MuSK
activation by Wnt signaling proteins in the lack of agrin [18].

The transmembrane domain is linked with TKD by a cytoplasmic juxtamembrane
segment. The autophosphorylation of Tyr553 within this segment creates the docking site
for the cytoplasmic protein Dok7. Similar to LRP4, Dok7 binding increases the strength of
MuSK dimerization, which is crucial for further activation of its kinase domain [25,26]. For
full activation, two (Tyr754, Tyr 755) of three (Tyr, 750, Tyr754, Tyr 755) tyrosines within
the activation loop of TKD need to be phosphorylated in the established order (Figure 3).
In contrast, the lack of phosphate groups on these tyrosines autoinhibits the activity of
MuSK [27]. Simultaneously with autophosphorylation of the activation loop, Dok7 is
phosphorylated at Tyr369 and Tyr406, which permits the binding of the adapter molecule
Crk and NMJ formation [28].

MuSK: From Gene to Disease

Currently, MuSK-MG is only diagnosed by detecting the autoantibodies against MuSK
in patients’ serum or plasma. AChR-MG, as well as LPR4-MG, correlates with increased
levels of IgG1 and IgG3 autoantibodies [29]. In contrast, antibodies against MuSK belong
mainly to the subclass IgG4. These IgG4s can block direct interaction between MuSK and
complex collagen Q-AChR and inhibit agrin-induced phosphorylation of MuSK, leading to
attenuation of AChR clustering [30,31]. IgG4 antibodies do not affect MuSK phosphoryla-
tion in cases of a lack of agrin stimuli. The same final effect of clustering of AChR inhibition
can be achieved by the less common IgG1-3 anti-MuSK antibodies. In contrast, IgG1-3
can act independently on agrin stimuli and leads to increased MuSK phosphorylation.
Thus, both inhibition and overphosphorylation of MuSK can attenuate AChR clustering
and lead to disorders in NMJs [31,32]. The pathogenicity and acute course of the disease
result directly from the quantitative composition of individual IgG fractions, as well as the
reduction of their galactosylation levels [33,34].
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It has been shown that HLA class II DR14, DR16, and DQ5 alleles are dominant in MuSK-
MG and can be predisposed to the production of autoimmunogenic IgG4 antibodies. On the
other hand, HLA-DR13 can be beneficial and protects against pathological IgG4 [5,6,35–37].

The role of cellular immune response in MuSK-MG is still unknown. The contribution
of Th1 and Th17 cells in this disease subclass has been postulated. The unclear mechanism
of the regulation of the activity of T cell subsets causes additional constraints in the develop-
ment of effective therapies [38]. Myasthenia gravis is associated with different circulating
miRNA profiles [39]. However, their role, especially in the pathogenesis and development
of MuSK-MG, is poorly studied. Elevated miRNAs in the serum of patients with MuSK-MG
include miR-151a-3p, let-7a-5p, let-7f-5p, and miR-423-5p. Furthermore, downregulation of
miR-210-3p and miR-324-3p has been found in the plasma of MuSK-MG relative to healthy
controls. Despite altered microRNA expression in MuSK-MG patients’ PBMC, its targets
and the signaling pathways that may play key roles in the development of the disease
remain unclear. For comparison, the state of knowledge about AChR-MG is much more
advanced, and increased expression of miR150-5p, as well as miR21-5p, is associated with
the differentiation and cellular response of T cells. Moreover, miR30e-5p has been found to
be a promising predictive biomarker for the disease. It is noteworthy, however, that studies
remain very limited and require proper grouping of patients. Circulating miRNAs are not
used in routine clinical practice for the diagnosis of MG [40–42].

Although MuSK-MG is classified as an autoimmunological disease, some mutations
of the MuSK gene may lead to similar symptoms. According to the National Center for
Biotechnology Information data (NCBI, www.ncbi.nlm.nih.gov), 52,922 different mutant
variants of the MUSK gene were detected. The mutations that abolish the protein’s activity
and functions are usually lethal. Crucial are the amino acids responsible for interactions
with LRP4 (Ile96, Leu83, and Met48), autophosphorylation of the tyrosine kinase domain
(Tyr 553), and Dok-7 interaction (Val790, Met605, Ala727). Other amino acids can result in
diminished expression of MuSK (c220insC). Similarly, dysfunctional mutations in all NMJ
proteins can lead to congenital myasthenic syndrome [43–45].

4. Specificity of Neurophysiological Diagnostic Tests

Extended neurophysiological assessment in patients with myasthenia gravis includes
repetitive nerve stimulation (RNS), quantitative EMG (QEMG), single fiber electromyogra-
phy (SFEMG), and electromyography (EMG) with nerve conduction study.

The SFEMG test was developed in the 1970s by Ekstedt and Stålberg [46,47]. Initiating
research into quantifying muscle fatigue, Ekstedt and Stålberg developed a multi-electrode

www.ncbi.nlm.nih.gov
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electrode for recording action potentials from single muscle fibers (SFAPs), which was
inspired by the electrode used by Buchthal et al. [48]. The criterion for SFAPs was a
rapidly increasing positive–negative peak of constant shape with successive discharges.
Differences in the timing of SFAPs resulted in a ‘jitter phenomenon’, which was attributed to
differences in the time at which muscle action potentials are initiated at the motor endplate.
This multi-electrode electrode was also used in the analysis of the propagation velocity of
individual muscle fibers. SFEMG allows quantitative measurement of, among other things,
the variability of neuromuscular transmission (jitter) during successive discharges of an
individual muscle fiber action potential. The test is performed by activating the muscle with
a voluntary contraction, recording potentials from the muscles of the face (orbicularis oculi,
frontalis) or upper extremity (extensor digitorum brevis). The average jitter is automatically
calculated from 20 pairs of potentials recorded from several electrode positions. An increase
in jitter with any intermittent impulse blocking indicates a significant disturbance in
neuromuscular transmission. Measurement of jitter has proven to be the most sensitive
method in detecting this type of pathology. This method is highly sensitive but not
completely specific for myasthenia gravis. Abnormal SFEMG findings, i.e., increased jitter
and blocking, also occur in Lambert–Eaton myasthenic syndrome, as well as in some other
neuromuscular diseases such as amyotrophic lateral sclerosis, other neurogenic lesions, and
some myopathies (including progressive external ophthalmoplegia, muscular dystrophies,
and myositis) [47–49]. In myopathy, reinnervation, fiber splitting, and denervation in the
late stage of fibrosis may be responsible for the increase in fiber density (FD) parameters.
However, jitter is increased in most patients with mitochondrial diseases that primarily
affect the extraocular muscles. In progressive extraocular ophthalmoplegia (PEO), as in
MG, abnormal jitter can be obtained, making it impossible to diagnose these disorders with
SFEMG alone [49–55].

The results of RNS testing in myasthenia gravis patients with anti-MuSK antibodies are
similar to those from SFEMG testing, showing a higher rate of positive results (sensitivity
86%) for facial muscle testing compared to MG cases with AchR antibodies (sensitivity 82%).
This reflects the greater propensity for facial muscle involvement in these MuSK antibody-
positive cases and highlights the importance of including facial muscles in RNS protocols
when assessing these patients [56]. However, Padua et al. conducted a study in a group of
patients with seronegative myasthenia gravis (SNMG) which distinguished patients with
(USK(+)) and patients without (MUSK(−)) anti-MuSK antibodies. The authors revealed
that the RNS test was abnormal in significantly more MUSK(−) than MUSK(+) patients
(p < 0.00001), while MuSK- patients had a more severe neurophysiological pattern with
SFEMG [57].

Comparisons between RNS and jitter analysis, between MuSK-MG and AchR-MG
patients, have shown that RNS is less sensitive (52%) in MG patients with antibodies to
muscle-specific kinase compared with MG patients with antibodies to the acetylcholine
receptor (93%) (p < 0.01) [58,59]. Nemoto et al. found positive jitter in 93% of patients
with AchR antibodies, but only in 50% of patients with MuSK antibodies, and the range of
jitter was greater in AchR-antibody patients versus AchR-negative patients (MCD: 76 µs in
patients with AchR antibodies, 36 µs in patients with MuSK antibodies) [60]. In contrast,
Nikolic et al. found no significant difference in pathological jitter detection between the
two subtypes of MG patients (90% in patients with MuSK antibodies vs. 93% in patients
with AchR antibodies, p > 0.05) [61]. However, the extent of jitter may be partly due to the
severity of the dysfunction in different muscles. Kuwabara et al. found abnormal jitter
in the extensor digitorum communis (EDC) muscle in only one of three MuSK-positive
patients, but all three had increased jitter in the frontalis muscle [62]. In contrast, all AchR-
positive patients (n = 11) showed equally abnormal jitter in both muscles. Similar results
were reported in a different study by Farrugia et al., where the greater of patients with
MuSK antibodies (n = 13) had normal jitter in the EDC notwithstanding abnormal jitter in
the orbicularis oculi muscle [63]. Since patients with MuSK antibodies are thought to have
predominant muscle weakness in the bulbar, facial, and neck compared to patients with MG
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with AchR antibodies, SFEMG should be undertaken in the most apparent muscles when
MG with MuSK antibodies is suspected in order to increase sensitivity [58]. In contrast, a
similar degree of SFEMG abnormalities was present in proximal muscles between MuSK(+)
and AchR(+) patients [64].

Overall, the literature also contains studies that show proximal myopathy is overrepre-
sented in MuSK(+) patients compared to AchR(+) patients. Both MuSK(+) and MuSK(−) pa-
tients, in contrast, have mild myopathy with frequent mitochondrial abnormalities [63,64].

5. Non-Neurological Manifestations of MuSK-MG

Myasthenia gravis also leads to reduced psychological and social well-being. The
literature presents papers on quality of life (QoL) in the MuSK-MG patient population com-
pared to AchR MG patients [65–68]. To assess health-related QoL, the SF-36 questionnaire
and scales are most commonly used: the Hamilton scale for depression and anxiety, the
Multidimensional Perceived Social Support Scale, and the Illness Acceptance Scale. In the
study by Stankovic et al. [65], QoL scores in the physical domain were indistinguishable in
MuSK-MG and AchR-MG patients, while the mental domain and total SF-36 scores were
even better in MuSK groups. Social support was better in the MuSK group. The SF-36 total
score correlated with anxiety (rho = 0.49, p < 0.01), depression (rho = 0.54, p < 0.01), and
MSPSS (rho = −0.35, p < 0.05), and depression was an independent predictor of worse QoL.
The authors conclude that, in addition to therapy for weakness, psychiatric treatment and
various forms of psychosocial conditioning should form part of regular treatment protocols
in MG [65].

6. Molecular Commonalities between MuSK-MG and Other Autoimmune Diseases of
the Nervous System

The IgG4 autoantibody subclass is implicated in a broad spectrum of more than
12 multisystem or fibroinflammatory autoimmune diseases, referred to as IgG4-related
diseases (IgG4-RD) [69,70]. IgG4 neurological disorders (IgG4-ND) are now developing
into an immunopathologically distinct spectrum of diseases, as recently indicated, due to
their association with pathogenic IgG4 antibodies targeting neuron-specific antigens. The
main IgG4 antibody-mediated neurological disorders (IgG4-ND) include MuSK myasthenia,
autoimmune nodopathies with antibodies against nodal-paranodal cell-adhesion molecules
(neurofascin-155 (NF155), contactin-associated protein 1 (Caspr1), and neurofascin isoforms
(NF140/186), Morvan syndrome, or neuromyotonia, anti-LGI1- and CASPR2-associated
limbic encephalitis, and several cases of the anti-IgLON5 and anti-DPPX-spectrum CNS
diseases. However, because IgG4 antibody titers appear to be decreased in remission and
increased in exacerbation, they may serve as potential biomarkers of treatment response,
further supporting a pathogenic role for self-reacting B cells. Patients with autoimmune
nodopathy usually have characteristic symptoms that emphasize the subacute onset of
severe neuropathy, tremor, and sensory ataxia [69–72].

Most significantly, they respond poorly to IVIg and plasmapheresis, but excellently
to rituximab, which induces long-term remissions. Although patients with anti-LGI-1
and CASPR2 antibodies are characterized by clinical heterogeneity, they also demonstrate
considerable overlap in clinical symptomatology; anti-LGI1 antibodies are most commonly
associated with epilepsy and limbic encephalitis, while anti-CASPR2 antibodies are as-
sociated with neuromyotonia, Morvan syndrome, and neuropathic pain. Anti-IgLON5
antibodies define a complex syndrome of chronic progressive brainstem symptomatology,
gait instability, distinct non-rapid eye movement (REM) and REM parasomnias, sleep-
disordered breathing, obstructive sleep apnea, cognitive decline, and movement disorders
as recently identified, most commonly craniofacial dyskinesias, chorea, dystonia, and
abnormal eye movements [3,71–75].
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7. Treatment

The majority of patients with MuSK-MG have little or no therapeutic response to treat-
ment with anticholinesterase drugs and experience an increase in cholinergic symptoms
even at low doses [4]. Modoni et al. demonstrated that cholinergic hyperactivity to stan-
dard doses of acetylcholine esterase inhibitors (AchE-Is) is a relatively common symptom
in patients with MuSK-MG, independent of AchE-I treatment, and may be an inherent
feature of the disease [75]. In addition, the response to standard doses of pyridostig-
mine used in AchR-MG is ineffective and poorly tolerated due to its side effects. Among
symptomatic medications for MuSK-MG, 3,4-diaminopyridine (3,4-DAP), ephedrine, and
albuterol have recently been considered. The use of 3,4-DAP in patients with MuSK-MG
has been described as moderately to mildly effective, with no notable side effects [5,76–80].

Conventional immunosuppressants are not commonly able to replace steroids in the
maintenance of the satisfactory long-term control of symptoms. In MuSK-MG patients
with exacerbated symptoms, high-dose prednisone, combined with plasma exchange,
is recommended. Intravenous immunoglobulin should also be considered in these pa-
tients. In patients with contraindications to steroids, traditional immunosuppressive drugs
(azathioprine, tacrolimus, mycophenolate, methotrexate, and cyclosporine) have been used,
but achieving and ensuring long-term and complete symptom control is usually more
difficult than in Ach-R MG patients. However, the majority of MuSK-MG patients are
refractory to treatment. In these cases, the use of rituximab has shown promising results
leading to sustained symptom control [80–83].

According to expert opinion, the treatment of MuSK-MG with rituximab (RTX), a
monoclonal antibody directed against the CD20 receptor, is highly effective. RTX is more
successful in MuSK-MG than in other MG subgroups and can be used for treatment at
an earlier stage [84–86]. Rituximab is a chimeric murine/human monoclonal antibody
produced by genetic engineering of Chinese hamster ovary tissue culture cells. It is a glyco-
sylated immunoglobulin containing fixed sequences of human IgG1 and variable sequences
of mouse light and heavy chains. It binds selectively to the transmembrane antigen CD20,
which is found on the surface of B lymphocytes (circulating naïve and memory B cells)
and is absent on other cells. RTX induces the death of cells containing the CD20 antigen
by mechanisms dependent on both the complement system and those associated with
antibody-dependent cellular cytotoxicity, as well as by apoptosis. B lymphocyte stem cells
are devoid of the CD20 antigen, and the B lymphocyte population can be reconstituted
after treatment with rituximab [85–87]. Marino et al. studied the long-term effects of RTX
in nine treatment-resistant patients with MuSK-MG, with follow-up periods of 17 months
to 13 years. Their data demonstrated that the therapeutic effects of RTX can continue for
several years following treatment, suggesting that by depleting autoreactive B-cell clones,
RTX can markedly disrupt the immunopathogenic circuitry responsible for maintaining the
disease [83]. It is recognized that B-cell activity depends on T–B lymphocyte cross-talk and
cooperation. Future studies are needed to investigate the effect of RTX on such interaction,
particularly in relation to specific T- and B-cell repertoires.

Other antibodies targeting B lymphocytes (CD20, CD19) with potential relevance in
myasthenia gravis, but without documented efficiency, include ocrelizumab, ofatumumab,
obinutuzumab, ublituximab, and ibalizumab. In addition, the potential efficacy of the
proteasome inhibitor was described in a report on the favorable impact of this drug in a
patient with severe myasthenia gravis with anti-MuSK antibodies [88–92].

Promising therapeutic targets in patients with MuSK-MG are monoclonal antibodies
against molecules involved in B-cell activation and against B cells at different stages of
their maturation (e.g., plasmablasts). Precision medicine using chimeric autoantibodies
against the T-cell receptor (CAAR-T) can also be effective. These are designed to target
antigen-specific B cells in MuSK-MG. Other drugs are monoclonal antibodies against FcRn
receptors: rozanolixizumab and efgartigimod. The principle of action of FcRn, a neonatal Fc
receptor, is to bind to the Fc region and rescue IgG from acidic lysosomal degradation. This
promotes recycling. The mechanism of action is very similar to that of IVIG. Efgartigimod
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is the first FcRn inhibitor to be approved for use in AChR-MG [93–96]. Clinical trials
have shown that FcRn inhibitors are more effective in MuSK-MG patients than in AchR-
MG patients. IgG4-dominant MuSK-MG is a weak complement-activating subclass of
immunoglobulin, and complement inhibition is not effective [97–99]. Results from the
REGAIN study showed that eculizumab was most effective in patients with anti-AChR
antibodies [100,101]. Eculizumab is a humanized monoclonal antibody directed against the
C5 component of the complement system. It inhibits the final step of complement activation
and the formation of membrane attack complexes (MACs). It does this by blocking the
conversion of C5a to C5b. With regard to the potential efficacy of the proteasome inhibitor
bortezomib, at least one case of a beneficial effect of this drug has been described in a
patient with severe myasthenia gravis with anti-MuSK antibodies [102,103].

In MuSK-MG, the thymus is usually atrophic. Thymic follicular hyperplasia (TFH)
occurs in rare cases. They are characterized by a more severe course and less responsive
to standard immunosuppression [104]. For patients with MuSK-MG, thymectomy is not
currently recommended. However, anterior mediastinal imaging is required in all patients
with an established diagnosis of MG, regardless of antibody type [105].

8. Conclusions

MuSK myasthenia gravis is a more aggressive and difficult-to-treat form of neuromus-
cular junction disease. In recent years, new information has become available on the poten-
tial pathomechanisms of this form of MG. Advances in research into immunopathogenesis
will contribute to the correct diagnosis of this autoimmune disease and the application
of effective treatment. Further research is needed on the role of thymus in MuSK MG
pathogenesis and its role as a potential therapeutic target too.
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Dok7 downstream of kinase-7
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IgG4-RD IgG4-related diseases
LRP4 low-density lipoprotein receptor-related protein 4
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