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Abstract: Foot-and-mouth disease (FMD) is a highly contagious and economically important disease
of cloven-hoofed animals that hampers trade and production. To ensure effective infection, the
foot-and-mouth disease virus (FMDV) evades host antiviral pathways in different ways. Although
the effect of histone deacetylase 5 (HDAC5) on the innate immune response has previously been
documented, the precise molecular mechanism underlying HDAC5-mediated FMDV infection is not
yet clearly understood. In this study, we found that silencing or knockout of HDAC5 promoted FMDV
replication, whereas HDAC5 overexpression significantly inhibited FMDV propagation. IFN-β and
IFN-stimulated response element (ISRE) activity was strongly activated through the overexpression
of HDAC5. The silencing and knockout of HDAC5 led to an increase in viral replication, which was
evident by decreased IFN-β, ISG15, and ISG56 production, as well as a noticeable reduction in IRF3
phosphorylation. Moreover, the results showed that the FMDV capsid protein VP1 targets HDAC5
and facilitates its degradation via the proteasomal pathway. In conclusion, this study highlights that
HDAC5 acts as a positive modulator of IFN-β production during viral infection, while FMDV capsid
protein VP1 antagonizes the HDAC5-mediated antiviral immune response by degrading HDAC5 to
facilitate viral replication.

Keywords: innate immune response; FMDV infection; VP1; HDAC5; IFN-β

1. Introduction

Foot-and-mouth disease (FMD) is the most serious disease affecting livestock, result-
ing in substantial economic losses for animal husbandry [1–4]. There are seven serotypes of
FMD virus (FMDV) circulating worldwide namely O, A, C, Asia, SAT1, SAT2, and SAT3, as
well as numerous other subtypes. The disease can be prevented through vaccination of live-
stock but the development of vaccines against FMDV faces numerous challenges, primarily
due to the limited or non-existent cross-protection across serotypes and subtypes [5–7].
The FMDV genome has a length of approximately 8.5 kb and contains a genetic code for
four structural proteins: VP1, VP2, VP3, and VP4. Additionally, it includes the genetic
information for eight non-structural proteins: L, 2A, 2B, 2C, 3A, 3B, 3C, and 3D [8–10].
Among these viral proteins, VP1, VP2, and VP3 make up the entire outer capsid surface,
whereas VP4 contributes to the structural integrity of the inner capsid [2]. Studies have
shown that the FMDV VP1 protein is a crucial component of the capsid, which is involved
in the attachment and entrance of the virus to host cells via an arginine-glycine-aspartic acid
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(RGD) sequence in the G-H loop. The FMDV VP1 protein suppresses the type I interferon
response by interacting with sorcin and antagonizes the TPL2-mediated IRF3/IFN-β signal-
ing pathway [11,12]. The FMDV VP1 83E site is involved in the interaction with MAVS, and
this specific interaction inhibits interferon responses by destroying the interaction between
MAVS and TRAF3 [13]. Moreover, DNAJ3 inhibits FMDV replication by interacting with
and degrading VP1 via the lysosomal degradation pathway, as well as attenuating its
antagonistic role in the IFN-β signaling pathway [14].

Post-translational modifications, such as ubiquitination, SUMOylation, and phospho-
rylation, were found to be involved in FMDV infection. FMDV infection was inhibited by
the suppression of SUMOylation on the 3C function and ubiquitination of TRIM21, but
the propagation was promoted by FMDV separately degrading Vps28, RIG, and MDA5 in
different ways, and inhibiting the phosphorylation of IRF3 [15–19]. Histone deacetylation,
one of the post-translational modifications, has been reported to be significant in viral
infection [20,21]. Histone acetylation regulates the immune response induced by the bone
marrow-derived mast cell recognition of FMDV virus-like particles [22]. ID1 inhibits the
transcriptional activity of FOXO1 through HDAC4-mediated deacetylation, thus promot-
ing IFN-I production and antiviral immune responses. FMDV antagonizes the function
of ID1 by facilitating its degradation via Cdh1-mediated ubiquitination to promote viral
reproduction [23]. In a previous study, FMDV VP3 was found to interact with HDAC8 and
to promote autophagic degradation to facilitate viral replication [24]. However, whether
the vital FMDV capsid protein VP1 affects the immune response by regulating histone
acetylation during viral infection remains unclear.

In this study, we found that the replication of FMDV was increased in HDAC5-
silencing or knockout cells, whereas it was decreased in HDAC5-overexpressed cells. We
also found that HDAC5, a positive regulator of the expression of IFN-β and ISGs, promoted
the activation of the IRF3/IFN-β signaling pathway, while FMDV VP1 degraded HDAC5
through the proteasome pathway to facilitate viral replication. Our study provides new
insights into the therapeutic potential for developing new antiviral strategies.

2. Materials and Methods
2.1. Cells, Virus, and Infection

Human embryonic kidney 293T (HEK293T), porcine kidney (PK-15), and baby hamster
kidney-21 (BHK-21) cells were obtained from ATCC (GNHa10, BH-C706, and SCSP-502,
respectively) and cultured in Dulbecco’s modified DMEM medium (Solarbio, 11995, Beijing,
China) supplemented with 10% fetal bovine serum (FBS) (Gibco, 10099141C, Waltham, MA,
USA) and 1% penicillin-streptomycin (Beyotime, C0222, Shanghai, China). An HDAC5-
KO BHK-21 cell line was generated using CRISPR/Cas9 technology [25]. To generate
the HDAC5-KO cell line, double-stranded oligonucleotides corresponding to the target
sequences were cloned into the pSpCas9 (BB) plasmid (sgRNA CCCGTAGCGCAGGGTC-
CATG). The plasmids with the correct sequence were transfected into BHK-21 cells and
incubated for 48 h. Cells were further cultured in DMEM (10% FBS) supplemented with
1 µg/mL puromycin (Beyotime, ST551, Shanghai, China) and the cell medium was replaced
every 48 h. Single colonies were selected to establish clonal cell lines after puromycin screen-
ing. Western blotting and sequencing were performed to identify monoclonal cell lines.

The FMDV O/BY/2010 strain and Sendai virus (SeV) were maintained at the National
Foot-and-Mouth Disease Reference Laboratory of the Lanzhou Veterinary Research Institute.
The VSV and VSV-GFP viruses were stored in our laboratory. Cells were infected with
viruses (FMDV, VSV, and VSV-GFP, MOI = 0.05; SeV,50 HAU/mL) and incubated for 1 h.
Subsequently, the cells were cultured in a fresh medium without FBS. The supernatants
were then harvested at the indicated time points, and the titers of viruses were quantified
using TCID50.
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2.2. Reagents, Antibodies, and Plasmids

Polyinosinic-polycytidylic acid (poly(I:C)) was purchased from InvivoGen (tlrl-picw,
Hongkong, China). HDAC5 and control siRNAs were obtained from GenePharma (A100001,
Shanghai, China). Primary and secondary antibodies, including anti-phosphorylated IRF3
(CST, #4947, Danvers, MA, USA), anti-total IRF3 (CST, #4302, Danvers, MA, USA), anti-β-
actin (Sigma-Aldrich, A5316, St. Louis, MO, USA), anti-GFP (TRANS, HT801-01, Beijing,
China), anti-Flag (Abmart, M20008, Shanghai, China), anti-Myc (Santa Cruz Biotechnology,
sc-40, Dallas, TX, USA), anti-mouse IgG (H + L), F(ab′)2 Fragment (Alexa Fluor® 488 Con-
jugate, CST, #4408, Danvers, MA, USA), and anti-rabbit IgG (H + L), F(ab′)2 Fragment
(Alexa Fluor® 594 Conjugate, CST, #8889, Danvers, MA, USA) were purchased from the
indicated manufacturers. The antibody against the FMDV VP1 protein was provided by
Professor Haixue Zheng. MG132 (20 µM) (Merk & Co., M8699, Darmstadt, Germany),
chloroquine diphosphate (CQ) (100 µM) (Sigma-Aldrich, C-271, St. Louis, MO, USA),
NH4Cl (5 M) (Sigma-Aldrich, 9434, St. Louis, MO, USA), 3-methyladenine (3-MA) (10 µM)
(Sigma-Aldrich, 189490, St. Louis, MO, USA), DMSO (Sigma-Aldrich, D8414, St. Louis,
MO, USA), and DAPI (Sigma-Aldrich, 10236276001, St. Louis, MO, USA) were purchased
from the indicated manufacturers. pcDNA3.1, HDAC5-Myc, VP0-Flag, VP1-Flag, VP3-Flag,
2A + 2B-Flag, 2B-Flag, 2C-Flag, 3A-Flag, 3C-Flag, and 3D-Flag were constructed and stored
in our laboratory.

2.3. Coimmunoprecipitation and Western Blotting

Coimmunoprecipitation was performed to confirm the interaction between HDAC5
and VP1 in HEK293T cells. HEK293T cells (6 × 106) were seeded on 100 mm dishes
overnight. Cells were transfected separately with 5 µg HDAC5-Myc, 5 µg VP1-Flag, and
5 µg empty-vector as indicated, and incubated for 36 h. Subsequently, the cells were
harvested separately and lysed in NP40 buffer (Beyotime, P0013F, Shanghai, China) supple-
mented with 1% protease inhibitor. The supernatants were collected after centrifugation at
13,000× g rpm for 20 min and incubated with anti-Myc or anti-Flag overnight at 4 ◦C. The
lysate–antibody complexes were incubated with protein G beads (cytiva, 17061801, Cardiff,
UK) for 4–6 h at 4 ◦C. The beads were wash with cold NP40 buffer for five times and eluted
with sodium dodecyl sulfate (SDS) loading buffer (Solarbio, P1016, Beijing, China) by boil-
ing for 10 min. Protein samples were separated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE), and analyzed by Western blotting.

For Western blotting, cells were lysed in RIPA buffer (Beyotime, P0013B, Shanghai,
China) supplemented with 1% protease inhibitor (Beyotime, P1006, Shanghai, China). The
lysates were centrifuged at 13,000× g rpm for 20 min to remove cellular debris and nuclei.
Protein samples were obtained by denaturing the supernatants with sodium dodecyl
sulfate (SDS) loading buffer (Solarbio, P1016, Beijing, China) at a high temperature for
10 min. Next, the samples were separated using SDS-PAGE and subsequently transferred
to polyvinylidene fluoride membranes. To prevent non-specific interactions, 5% skim
milk was used for blocking for 60 min at room temperature. The primary antibodies
were incubated overnight as follows: anti-HDAC5 (1:1000), anti-β-actin (1:4000), anti-
VP1 (1:2500), anti-p-IRF3 (1:1000), anti-IRF3 (1:1000), anti-Myc (1:2500), anti-Flag (1:3000),
anti-GFP (1:3000). The secondary antibodies were incubated for 60 min. Lastly, antibody–
antigen interactions were detected using a chemiluminescence reagent (Beyotime, P0203,
Shanghai, China).

2.4. Reporter Gene Assays

HEK293T cells (1 × 105) were seeded on a 48-well culture plate overnight. Firefly
luciferase reporter (pIFN-β-luc, pISRE-luc, 100 ng), pRL-TK (10 ng), and other indicated
plasmids (100 ng) were co-transfected into HEK293T cells and incubated for 24 h. Cells
were detected without virus infection, or after SeV infection for 12 h. Dual-luciferase assays
were conducted to detect the activity of the IFN-β or IFN-stimulated response element
(ISRE) reporters.
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2.5. RNA Extraction and RT-qPCR

mRNA expression was examined using real-time qPCR. Total RNA was extracted
using the TRIzol reagent (Sangon Biotech, B610409, Shanghai, China). An SYBR Green
RT-qPCR kit (Takara, RR037, Kyoto, Japan) was used to quantify specific mRNAs. Each
sample’s β-actin expression was used to normalize the data. All experiments were con-
ducted in triplicate. The 2−∆∆Ct method was employed to analyze relative expression
changes [26]. The primer sequences used in this study are listed in Table 1.

Table 1. RT-qPCR primers.

Gene Name Sequence (5′-3′)

Human HDAC5
CCACGCTAGATGAGATCCAGACAG

CACAAGGCAGCACAGCATACATC

Human IFN-β
GGACGCCGGACGCCGCATTGACCATCTATG

ACAATAGTCTCATTCCAGCCAGTGC

Human GAPDH
GTGACGTTGACATCCGTAAAGA

GCCGGACTCATCGTACTCC

Human ISG56
TCATCAGGTCAAGGATAGTC

CCACACTGTATTTGGTGTCTAGG

Human ISG15
GGAATAACAAGGGCCGCAGCAG

AGGTCAGCCAGAACAGGTCGTC

VSV-G
CAAGTCAAAATGCCCAAGAGTCACA

TTTCCTTGCATTGTTCTACAGATGG

Mouse IFN-β
CAGCTCCAAGAAAGGACGAAC

GGCAGTGTAACTCTTCTGCAT

Mouse ISG15
TCCTGGTGTCCGTGACTAACTC

AAGACCGTCCTGGAGCACTG

Mouse ISG56
TGAGATGGACTGTGAGGAAGGC

TCTTGGCGATAGGCTACGACTG

Mouse GAPDH
AGGTCGGTGTGAACGGATTTG

TGTAGACCATGTAGTTGAGGTCA

FMDV-VP1
GACAACACCACCAACCCA

CCTTCTGAGCCAGCACTT

Sus IFN-β
ACCTACAGGGCGGACTTCAA

GTCTCATTCCACCCAGTGCT

Sus ISG15
ATGGGCTGGGACCTGACGG

TTAGCTCCGCCCGCCAGGCT

Sus ISG56
ACGGCTGCCTAATTTACAGC

AGTGGCTGATATCTGGGTGC

Sus β-actin
GCTGGCCGGGACCTGACAGACTACC

TCTCCAGGGAGGAAGAGGATGCGGC

2.6. Cell Treatments, Transfection, and ELISA

PK-15, BHK-21, and HEK293T cells were transfected with plasmids, siRNA, or poly(I:C)
(2 µg/mL) using JetPRIME Polyplus reagent (Polyplus Transfection, 101000046, Strasbourg,
France).
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PK-15 cells were transfected separately with siCtrl and siHDAC5, and incubated for
36 h. The transfected cells were infected with FMDV. Culture supernatants were harvested
at the indicated time points and detected by ELISA. WT and HDAC5-KO BHK-21 cells
were infected separately with FMDV. Culture supernatants of WT and HDAC5-KO BHK-21
cells were harvested at the indicated time points and detected by ELISA. HEK293T cells
were transfected separately with empty-vector and HDAC5 (2 µg), and incubated for 36 h.
The transfected cells were infected with VSV. Culture supernatants were harvested at the
indicated time points and detected by ELISA. The production of IFN-β in PK-15, HEK293T,
and BHK-21 cells was detected using ELISA according to the manufacturer’s instructions
(Elabscience, E-EL-H0085c, Wuhan, China; JYM, JYM0026Hu, Wuhan, China; Cloud-Clone,
SEA222Mu, Wuhan, China; respectively).

2.7. RNA Interference

siHDAC5 and siCtrl sequences were designed by Suzhou GenePharma Co., Ltd
(Shanghai, China). The siRNA sequences are listed in Table 2.

Table 2. siRNA sequences targeting Sus HDAC5 gene.

siRNA Name siRNA Sequence (5′-3′)

siHDAC5-1
GUCCAGUGCUGGUUACAAATT

UUUGUAACCAGCACUGGACTT

siHDAC5-2
GGCAAGUUCAUGAGCACAUTT

AUGUGCUCAUGAACUUGCCTT

siHDAC5-3
CCACGCUAGAGAAAGUCAUTT

AUGACUUUCUCUAGCGUGGTT

siRNA control
UUCUCCGAACGUGUCACGUTT

ACGUGACACGUUCGGAGAATT

2.8. Statistical Analysis

The experiments were repeated thrice to ensure data accuracy. All analyses, including
unpaired two-tailed Student’s t-tests, were performed using GraphPad Prism software
(version 6.0, GraphPad Software, Boston, MA, USA). Significantly different means are
indicated by asterisks. Statistical significance is expressed as follows: No significant (ns),
* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

3. Results
3.1. HDAC5 Inhibits FMDV Replication

To study the impact of HDAC5 on FMDV infection, PK-15 cells were transfected
with three siRNAs specifically targeting HDAC5 or a control siRNA (siHDAC5 vs. siCtrl).
Subsequently, qPCR and Western blotting were used to detect HDAC5 mRNA and protein
levels, respectively. Among the three siRNAs, siRNA3 (siHDAC5) showed the most efficient
silencing of HDAC5 mRNA, and was, therefore, used in this study to knockdown the
expression of HDAC5 (Figure 1A,B).

To investigate the potential role of HDAC5 in FMDV replication, siHDAC5 or siCtrl
was transfected into PK-15 cells, followed by viral infection. FMDV VP1 is an essential
protein for FMDV replication and is widely used as a marker for FMDV production [11].
In this study, we found that compared with controls, the expression and transcription
of FMDV VP1 were markedly increased in HDAC5-silenced PK-15 cells (Figure 1C,D),
which was further supported by the viral titers of FMDV in HDAC5-silenced PK-15 cells
(Figure 1E).
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Figure 1. The deficiency of HDAC5 promotes FMDV proliferation. (A,B) siCtrl or three HDAC5
siRNAs were transfected into PK-15 cells (2 × 105) and incubated for 48 h. Subsequently, the cells
and culture supernatants were separately harvested at the indicated time points. (A) Western blotting
was used to evaluate β-actin and HDAC5 protein expression. (B) RT-qPCR was applied to quantify
the mRNA levels of HDAC5. (C–E) siCtrl or HDAC5 siRNA-3 (siHDAC5) was transfected into PK-15
cells (2 × 105) and incubated for 36 h, followed by FMDV infection. Subsequently, the cells and
culture supernatants were separately harvested at the indicated time points. (C) Western blotting
was used to evaluate β-actin and VP1 protein expression. (D) RT-qPCR was applied to quantify
the mRNA levels of VP1. (E) TCID50 was employed to test the viral titers of FMDV. (F–H) WT and
HDAC5-KO BHK-21 cells (1 × 106) were infected with FMDV. Subsequently, the cells and culture
supernatants were separately harvested at the indicated time points. (F) Western blotting was used
to evaluate β-actin and VP1 protein expression. (G) RT-qPCR was applied to quantify the mRNA
levels of VP1. (H) TCID50 was employed to test the viral titers of FMDV. Groups were compared by
unpaired Student’s t-test. p < 0.05 *, p < 0.01 **, p < 0.001 ***, p < 0.0001 ****.

We further assessed the propagation of FMDV in HDAC5-KO BHK-21 cells. An
HDAC5 knockout (KO) cell line was generated in BHK-21 using CRISPR/Cas9. To generate
the HDAC5-KO cell line, double-stranded oligonucleotides corresponding to the target
sequences were cloned into the pSpCas9 (BB) plasmid, which was transfected into BHK-21
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cells. Single colonies were selected to establish clonal cell lines after puromycin screening.
DNA sequencing results showed that thirteen bases of the first exon of one allele of HDAC5
were deleted in the HDAC5 knockout (KO) cell line (Figure S1A,B). The expression of
HDAC5 was completely blocked in the KO cells (Figure S1C), and there was no significant
difference in viability between WT and HDAC5-KO cells (Figure S1D).

As shown in Figure 1F–H, both the expression of FMDV VP1 and mRNA were in-
creased in HDAC5-KO BHK-21 cells, as well as the viral titers of FMDV. VSV is generally
considered to be a model virus for RNA virus research. Moreover, to further investigate
whether HDAC5 regulates the replication of other viruses, we also examined VSV repli-
cation in HDAC5-KO BHK-21 cells. As shown in Figure S1E–H, the expression of VSV
labelling GFP protein and mRNA of structural G protein were significantly increased in
HDAC5-KO BHK-21 cells compared with control groups, as well as the titers of VSV. These
results indicate that HDAC5 inhibits the replication of RNA viruses, such as FMDV and
VSV, during viral infection.

3.2. HDAC5 Enhances IFN-β and ISGs Expression during FMDV Infection

Previous studies have shown that HDACs are involved in regulating the IFN-I sig-
naling pathway during viral infection [23,27,28]. To further investigate the role of HDAC5
in regulating the IFN-I signaling pathway, we examined whether IFN-β expression and
production are affected by HDAC5 in HEK293T cells. As shown in Figure 2A,B, after
SeV stimulation, the overexpression of HDAC5 enhanced the activity of IFN-β and ISRE
luciferase reporter. Next, we examined the function of HDAC5 knockdown on the pro-
duction of IFN-β and ISGs upon FMDV infection in PK-15 cells. The data indicated that
HDAC5 knockdown significantly inhibited the mRNA expression levels of IFN-β and ISGs
and increased the viral genomic copy numbers of FMDV (Figure 2C–E,I). Furthermore,
the production of IFN-β in the HDAC5 knockdown cell was greatly decreased compared
with the control group upon FMDV stimulation (Figure 2J). Since poly(I:C) is a synthetic
analog of double-stranded RNA, we also studied the effect of HDAC5 knockdown on
the production of IFN-β and ISGs after poly(I:C) transfection in PK-15 cells. As shown in
Figure 2F–H, we found that the knockdown of HDAC5 also markedly inhibited the mRNA
expression levels of IFN-β and ISGs.

To determine whether HDAC5 regulates the production of IFN-β and ISGs in HDAC5-
KO BHK-21 cells upon stimulation by FMDV and poly(I:C), we analyzed the mRNA expres-
sion levels of IFN-β and ISGs. As shown in Figure 3A–F, the knockout of HDAC5 signifi-
cantly suppressed the mRNA levels of IFN-β, ISG15, and ISG56 in BHK-21 cells compared
with the control groups, as well as the secretion of IFN-β protein (Figure 3I, and markedly
promoted the viral genomic copy numbers and viral titers of FMDV (Figure 3G,H). To
explore whether HDAC5 regulates the production of IFN-β and ISGs after VSV stimula-
tion, we repeated the above experiments in HDAC5-KO BHK-21 cells infected with VSV
instead of FMDV. The knockout of HDAC5 resulted in the inhibition of IFN-β, ISG15,
and ISG56 transcription levels, and increased the viral genomic copy numbers of VSV
(Figure S2A–C,J). At the same time, the secretion of IFN-β was highly decreased compared
with the control groups (Figure S2K). Next, we investigated the synthesis of IFN-β and
ISGs in HEK293T cells transfected with HDAC5 plasmid and treated with poly (I:C) or
VSV. The overexpression of HDAC5 significantly promoted the synthesis of IFN-β, ISG15,
and ISG56 stimulated by poly (I:C) or VSV (Figure S2D–I) and inhibited the viral genomic
copy numbers of VSV (Figure S2L). The production of IFN-β was notably increased in
HDAC5-overexpressed cells (Figure S2M). Taken together, these results show that HDAC5
activates the IFN-β signaling pathway during FMDV and VSV infection.
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Figure 2. HDAC5 regulates the FMDV-triggered production of IFN-β and ISGs. (A,B) vector-control
or HDAC5 plasmids were transfected into HEK293T cells (1 × 105), as well as IFN-β or ISRE reporter
plasmids, and incubated for 24 h. After SeV stimulation for 12 h, a dual-specific luciferase assay
was used to detect activity of the IFN-β or ISRE reporter system. (C–E) siCtrl or siHDAC5 was
transfected into PK-15 cells (2 × 105), followed by treatment with FMDV. Subsequently, cells were
separately harvested at the indicated time points. RT-qPCR was applied to quantify the mRNA levels
of IFN-β, ISG15, and ISG56. (F–H) siCtrl or siHDAC5 was transfected into PK-15 cells (2 × 105),
followed by treatment with poly(I:C) (2 µg/mL). Subsequently, cells were separately harvested at the
indicated time points. RT-qPCR was applied to quantify the mRNA levels of IFN-β, ISG15, and ISG56.
(I) RT-qPCR was applied to quantify the mRNA levels of VP1 (as in (C–E)). (J) Culture supernatants
were separately harvested at the indicated time points, and ELISA was employed to detect IFN-β
secretion (as in (C–E)). Groups were compared by unpaired Student’s t-test. p < 0.05 *, p < 0.01 **,
p < 0.001 ***, p < 0.0001 ****.
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Figure 3. HDAC5 knockout inhibits the FMDV-, and poly(I:C)-stimulated production of IFN-β and
ISGs. (A–C) WT and HDAC5-KO BHK-21 cells (1 × 106) were infected with FMDV. Subsequently,
cells were harvested separately at the indicated time points. RT-qPCR was used to quantify the mRNA
levels of IFN-β, ISG15, and ISG56. (D–F) WT and HDAC5-KO BHK-21 cells (1 × 106) were transfected
with poly (I:C) (2 µg/mL). Subsequently, cells were harvested separately at the indicated time points.
RT-qPCR was applied to quantify the mRNA levels of IFN-β, ISG15, and ISG56. (G) RT-qPCR was
applied to quantify the mRNA levels of VP1 (as in (A–C)). (H) TCID50 was employed to test the
viral titers of FMDV (as in (A–C)). (I) Culture supernatants were harvested at the indicated time
points, and ELISA was employed to detect IFN-β secretion (as in (A–C)). Groups were compared by
unpaired Student’s t-test. p < 0.01 **, p < 0.001 ***, p < 0.0001 ****.

3.3. HDAC5 Regulates FMDV-Induced Phosphorylation of IRF3

To better understand the potential mechanism of HDAC5 in antiviral innate immunity,
we investigated the effects of HDAC5 on the activation of the IFN-β promoter caused by
specified elements, including RIG-I, MDA5, MAVS, TBK1, IKKε, and IRF3. We found that
HDAC5 promoted the transcriptional activity of IFN-β stimulated by these plasmids, respec-
tively (Figure 4A–F). IRF3 is essential for IFN-β expression and the antiviral response [29–31].
Compared with the control groups, the overexpression of HDAC5 remarkably promoted
the phosphorylation of IRF3 upon FMDV infection (Figure 4G). The deficiency of HDAC5
strongly inhibited the phosphorylation of IRF3 in PK-15 cells upon FMDV infection, as well as
in HDAC5 knockout BHK-21 cells (Figure 4H,I). Meanwhile, we detected phosphorylation of
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IRF3 in cells infected with VSV; Knockout of HDAC5 significantly reduced the phosphorylation
of IRF3 (Figure S3). These results indicate that HDAC5 promotes IRF3-mediated antiviral
innate immune responses during both FMDV and VSV infection.
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Figure 4. HDAC5 activates the FMDV-induced phosphorylation of IRF3. (A–F) Plasmids as indicated
were transfected into HEK293T cells (1 × 105) and incubated for 24 h. A dual-specific luciferase assay
was used to detect the activity of the IFN-β reporter system. (G) HDAC5 or empty-vector plasmids
(2 µg) were introduced into PK-15 cells (2 × 106) and incubated for 36 h, followed by FMDV infection.
Subsequently, the cells were harvested separately at the indicated time points at specific time points.
Western blotting was used to evaluate the protein expression of phosphorylated IRF3, total IRF3, HDAC5,
VP1, and β-actin. (H) siCtrl or siHDAC5 was transfected into PK-15 cells (2 × 106) and incubated for
36 h, followed by FMDV infection. Subsequently, the cells were harvested separately at the indicated time
points. Western blotting was used to evaluate the protein expression of phosphorylated IRF3, total IRF3,
HDAC5, VP1, and β-actin. (I) WT and HDAC5-KO BHK-21 cells (1 × 106) were stimulated with FMDV.
Subsequently, the cells were harvested separately at the indicated time points. Western blotting was used
to evaluate the protein expression of phosphorylated IRF3, total IRF3, HDAC5, VP1, and β-actin. Groups
were compared by unpaired Student’s t-test. p < 0.01 **, p < 0.001 ***, p < 0.0001 ****.
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3.4. FMDV Capsid Protein VP1 Targets and Degrades HDAC5 through the Proteasome Pathway

Studies have reported that the proteins of FMDV hinder the IFN-β signaling path-
way [14,32,33]. To further investigate which viral protein regulates HDAC5 and counteracts
the IFN-β-mediated signaling pathway, the vital viral proteins of FMDV that could affect
the expression of HDAC5 in HEK293T cells were screened, and the expression of HDAC5
after co-transfection with viral proteins of FMDV and HDAC5 was detected. As shown
in Figure 5A, the expression of HDAC5 was significantly reduced by VP1 and 3C. The
decrease of HDAC5 induced by VP1 was further verified. As shown in Figure 5B, VP1 re-
duced the expression of HDAC5 in a dose-dependent manner. To investigate whether there
was an interaction between VP1 and HDAC5, immunoprecipitation was performed using
an anti-Myc antibody. As shown in Figure 5C, HDAC5-Myc precipitated VP1-Flag, and
the expression of HDAC5 was decreased by VP1 compared with that in the control groups.
Converse immunoprecipitation was performed using an anti-Flag antibody, and we found
that VP1-Flag also interacted with HDAC5-Myc and reduced the expression of HDAC5
(Figure 5D). These results indicated an interaction between HDAC5 and VP1. Furthermore,
the reduction in HDAC5 expression was reversed by the proteasome inhibitor, MG132
(Figure 5E). These results indicate that VP1 degrades HDAC5 via the proteasomal pathway.
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Figure 5. FMDV protein VP1 interacts with and degrades HDAC5 though the proteasome pathway.
(A) Plasmids (1 µg) as indicated were transfected into HEK293T cells (1 × 106) and incubated for
36 h. Subsequently, the cells were harvested separately. Western blotting was used to evaluate the
protein expression of HDAC5, VP0, VP1, VP3, 2A + 2B, 2B, 2C, 3A, 3C, 3D, and β-actin. (B) Plasmids
as indicated were transfected into HEK293T cells (6 × 106) and incubated for 36 h. Western blotting
was used to evaluate the protein expression of HDAC5, VP1, and β-actin. (C,D) HDAC5-Myc,
VP1-Flag, and empty-vector (5 µg) were transfected into HEK293T cells (6 × 106) and incubated for
36 h. Subsequently, the cells were harvested separately. Western blotting was performed on both
whole-cell lysates (WCL) and IP complexes using specific antibodies. (E) HDAC5-Myc, VP1-Flag, and
empty-vector (1 µg) were transfected into HEK293T cells (1 × 106) and incubated for 36 h, followed
by DMSO, MG132 (10 µM), CQ (100 µM), NH4Cl (5 M), and 3-MA (10 mM) treatment. Subsequently,
the cells were harvested separately. Western blotting was used to evaluate protein expression of
HDAC5, VP1, and β-actin.
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4. Discussion

Studies have reported that class IIa HDACs, such as HDAC4, HDAC5, HDAC7, and
HDAC9, are involved in the regulation of innate immune responses and viral replication [34–36].
Furthermore, HDAC4 has been shown to restrict VACA and HSV-1 replication by promot-
ing IFN-I signaling and is targeted for proteasomal degradation by the VACA C6 protein in
HEK293T and HeLa cells [28]. The expression of HDAC4 was found to enhance resistance
to VSV through the activation of STAT1 in Hep3B core cells but was downregulated by
HCV core protein [37]. HDAC9 was shown to enhance TBK1 kinase activity by interacting
with and deacetylating TBK1 at the lys241 site, eventually promote the production of
IFN-I [38]. Although HDAC5 has been reported to prevent the replication of DNA viruses
such as VACV, HSV-1, and HBV [39–41], its role in the replication of RNA viruses and its
mechanism have yet to be fully elucidated.

In this study, the deficiency of HDAC5 was found to markedly suppress IRF3/IFNβ-
mediated signaling while promoting viral replication, mRNA expression, and the titers of
FMDV and VSV. Meanwhile, the overexpression of HDAC5 in HEK293T cells upon poly(I:C)
treatment was observed to promote the mRNA expression of IFNβ, ISG15, and ISG56, as
well as those of IFN-α, IL6, IL8, and ISG54, indicating that HDAC5 may be a common
target for many RNA viruses, reflecting its potential as a pan-antiviral. The replication
of FMDV was inhibited by HDAC5, while the FMDV capsid protein VP1 counteracted
HDAC5-meidiated activation of antiviral immune responses and facilitated viral replication
by degrading HDAC5. A previous study reported that the deregulation of HDAC5 by IRF3
is crucial for the induction of lymphangiogenesis caused by KSHV. However, the study
only reported the interaction between IRF3 and HDAC5 and did not investigate the specific
regulatory mechanism of HDAC5 on IRF3/IFNβ-mediated signaling [39]. In our study,
the deficiency of HDAC5 inhibited the phosphorylation of IRF3, and no interaction was
observed between HDAC5 and IRF3 in HEK293T cells, which may be due to the different
cell types or experimental treatments used.

To screen which FMDV viral proteins interact with HDAC5, coimmunoprecipitation
was performed. Among FMDV viral proteins, the most obvious degradation of HDAC5
was mediated by 3C, but no interaction was observed between 3C and HDAC5. So VP1
was selected for further study. The FMDV protein VP1 suppresses the IFN-I signaling
pathway by interacting with sorcin and counteracts the antiviral immune responses of TPL2
mediated by reducing the phosphorylation of TPL2 at Thr290 [11,12]. In the present study,
VP1 was found to degrade HDAC5 in a dose-dependent manner. VP1 interacted with
and degraded HDAC5. Moreover, rescue of HDCA5 protein degradation occurred upon
VP1 overexpression with MG132 treatment, indicating that VP1 enhances the degradation
of HDAC5 through the proteasome pathway. However, additional studies are needed to
elucidate the specific mechanisms underlying HDAC5 degradation.

FMD, caused by the FMDV, is a serious infectious disease with devastating economic
consequences [42]. Vaccination remains the most effective method for disease prevention
and control [43,44]. Therefore, improving FMDV amplification and vaccine production
is essential [45]. To improve FMDV amplification and vaccine production, it is crucial
to maintain a stable viral copy number and expand the number of PK-15, BHK-21, and
IBRS-2 cells. BHK-21 cells derived from one-day-old mice are used for the proliferation
of viruses because of their fast growth rate and broad virus-sensitive spectrum, which
is also recommended by the WTO for FMDV culture and the production of inactivated
FMDV vaccines. CRISPR-Cas9 technology has been widely used not only to regulate gene
expression, viral replication, and virus-induced immune responses, but also to promote the
production of vaccine virus. In our study, the HDAC5-KO BHK-21 cell line was established
using CRISPR-Cas9 technology. In contrast to the wild-type cells, HDAC5-KO BHK-21 cells
exhibited no noticeable variance in their growth rate, but showed a higher viral titer, which
implies potential for FMDV vaccine production.

In conclusion, this study demonstrated that HDAC5 activated the IRF3-mediated
innate immune response against RNA viruses, such as FMDV. To counteract the antiviral
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effect of HDAC5, FMDV VP1 attenuated the HDAC5-mediated antiviral immune response
by interacting with and degrading its expression through the proteasome pathway. These
findings highlight the significance of the host protein HDAC5 in the regulation of RNA
viral replication and provide novel insights into the mechanisms by which FMDV VP1
evades the antiviral immune response to facilitate viral replication, opening new avenues
for increasing viral vaccine production and developing new antiviral therapies targeting
this host protein.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells13060539/s1, Figure S1: HDAC5 knockout promotes VSV
replication; Figure S2: HDAC5 promotes poly(I:C)- and VSV-stimulated IFN-β signaling; Figure S3:
HDAC5 activates VSV-induced phosphorylation of IRF3.
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