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Abstract: Hypoxia-inducible factor-1 (HIF-1) is a heterodimer transcription factor composed of an 

alpha and a beta subunit. HIF-1α is a master regulator of cellular response to hypoxia by activating 

the transcription of genes that facilitate metabolic adaptation to hypoxia. Since chondrocytes in ma-

ture articular cartilage reside in a hypoxic environment, HIF-1α plays an important role in chondro-

genesis and in the physiological lifecycle of articular cartilage. Accumulating evidence suggests in-

teractions between the HIF pathways and the circadian clock. The circadian clock is an emerging 

regulator in both developing and mature chondrocytes. However, how circadian rhythm is established 

during the early steps of cartilage formation and through what signaling pathways it promotes the 

healthy chondrocyte phenotype is still not entirely known. This narrative review aims to deliver a concise 

analysis of the existing understanding of the dynamic interplay between HIF-1α and the molecular clock 

in chondrocytes, in states of both health and disease, while also incorporating creative interpretations. 

We explore diverse hypotheses regarding the intricate interactions among these pathways and propose 

relevant therapeutic strategies for cartilage disorders such as osteoarthritis. 
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1. Introduction 

Hyaline cartilage is the most abundant type of cartilage in the human body and is present 

in areas such as the trachea and the bronchi, nose, epiphyseal growth plate, sternum, ventral 

segments of the ribs, and synovial joints. The primary function of articular cartilage is to pro-

vide a resilient surface with minimal friction in almost every synovial joint in the body, where 

it plays a crucial role in resisting compressive and shear forces [1]. 

Maintaining the organized architecture of articular cartilage is essential for its func-

tion. Damage to articular cartilage can lead to musculoskeletal conditions. Osteoarthritis 

(OA) is the most common form of chronic inflammatory joint diseases (arthritis), and a 

leading cause of musculoskeletal disability worldwide [2]. OA is a whole joint disease, 

involving all joint tissues, such as the articular cartilage, synovial membrane, subchondral 

bone, meniscus, and infrapatellar fat pad [3], and is characterized by the progressive de-

generation of articular cartilage. However, articular cartilage has a limited capacity for 

regeneration [2]. As articular cartilage degenerates, symptoms such as joint pain, swelling, 

stiffness, and loss of joint movement arise. OA can affect any joint but most commonly 

impacts the knee, the hip, the spine, and the joints of the hand [4]. A combination of fac-

tors, such as joint structure and function, the weight-bearing nature of articular cartilage, 

and the specific type of mechanical load, contribute to why OA predominantly affects 

specific joints while sparing others. Ankle OA, for example, is often secondary to factors 

such as trauma, chronic ankle instability, malalignment, and arthropathies [5]. OA is a 

heterogeneous disease with multiple etiologies, clinical phenotypes, and molecular 
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endotypes, which necessitates differential targeting approaches, opening pathways for the 

development of effective disease-modifying OA drugs (DMOADs) [6]. 

Despite the socio-economic burden posed by OA, typical management is currently 

palliative and reactive, rather than proactive and preventive [2]. Joint replacement surgery is 

a clinically relevant procedure for end-stage OA, but it is associated with more serious adverse 

events compared to non-surgical treatment options [7]. However, there are no currently avail-

able surgery-based, material-based, cell-based, or drug-based treatment options that could re-

liably restore the structure and function of hyaline articular cartilage, despite extensive re-

search and recent developments. There is an urgent need for fundamental research in this field 

to better understand why the regeneration of articular cartilage fails [8]. 

Cartilage tissue engineering can be effectively utilized in both managing and pre-

venting OA by employing various strategies. These include using cell populations capable 

of regenerating the cartilage matrix, designing suitable scaffolds to support cell growth 

and phenotype, incorporating growth factors to promote cartilage regeneration, and ap-

plying mechanical stimuli to enhance the effectiveness of the engineered cartilage [9]. Car-

tilage tissue engineering has promising prospects, especially when chondroprogenitor 

cells (CPC) are implanted in the site of injury [8]. This has resulted in the effective filling 

of the defect in animal [10] and in human pilot studies [11]. However, a better understand-

ing of the chondrogenic pathways is necessary to assist the delivered cells in forming and 

sustaining neocartilage at a site where the inflammatory microenvironment is not optimal 

for supporting chondrogenic differentiation. 

Chondrogenic pathways are regulated by multiple external and internal factors [12]. 

Biological rhythms are known to influence cartilage biology, and disruptions to this rhythmic-

ity have been reported to be risk factors for OA [13]. The chondrocyte clock is not only a critical 

regulator of the healthy chondrocyte phenotype in mature chondrocytes [14], but has also 

been demonstrated to be one of the drivers of the chondrogenic differentiation pathways 

[9,15,16]. The chondrocyte clock is entrained by mechanical cues through daily loading/un-

loading patterns [13,16]. However, the upstream and downstream effectors that modulate 

chondrocyte homeostasis via the molecular clock are incompletely understood. 

One such potential regulator is hypoxia-inducible factor-1 (HIF-1), which is a heter-

odimer transcription factor composed of HIF-1α and HIF-1β subunits. HIF-1α, which is 

activated by hypoxic conditions, is a key regulator of chondrogenesis [17]. There is now 

evidence that HIF-1α-mediated signaling is coupled to circadian clock synchronization in 

chondrocytes [18], but the specific mechanism(s) behind this crosstalk are not fully under-

stood. Therefore, the purpose of this narrative review is to offer a synoptic analysis of the 

current knowledge in the field. We discuss different possible hypotheses describing the 

interplay between HIF-1α and the chondrocyte clock and offer some related therapeutic 

strategies in cartilage disorders such as OA. 

For this narrative review, we searched PubMed for relevant primary research articles and 

recent review papers related to the molecular circadian clock and hypoxia-inducible factor-1α 

(HIF-1α), primarily in the field of cartilage/chondrocyte and osteoarthritis research. 

2. The Molecular Clock in Cartilage Development 

Every known organism on planet Earth is characterized by rhythmic patterns in its 

biological activities. Diurnal changes in mammalian behavioral patterns, metabolic ac-

tions, and physiological processes show a specific periodicity [19]. These ~24 h cycles are 

governed by the intrinsic molecular circadian clockwork. The endogenous clock is regu-

lated by various Zeitgebers or time cues [20]. The presence and absence of sunlight is the 

main regulatory factor of the daily biological rhythms [21]. The suprachiasmatic nucleus 

(SCN) in the hypothalamus is the central pacemaker of the circadian mechanisms, which 

is light-sensitive as it receives afferent fibers directly from the retina through the retino-

hypothalamic tract [22]. The central timing signals generated by the SCN are transferred 

to every tissue in the body, leading to the synchronization of the peripheral cells’ autono-

mous molecular clocks [23]. 
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The primary oscillator of the mammalian molecular clockwork is the transcrip-

tional/translational feedback loop (TTFL) [24]. The core clock genes of the TTFL are di-

vided into two types of interlinking mechanisms. During the positive feedback loop, the 

heterodimer of two transcription factors, aryl hydrocarbon receptor nuclear translocator-

like ARNTL/BMAL1 (BMAL1) and circadian locomotor output cycle kaput (CLOCK), 

bind to the E-box sequence in the promoter region of certain downstream genes and stimulate 

their expression, particularly in the morning [24,25]. These factors include clock genes that are 

characteristic for the negative feedback loop (period (PER1-2-3), cryptochrome (CRY1-2), REV-

ERB (nuclear receptor subfamily 1 group D member 2 [NR1D2])) and a number of clock-con-

trolled genes (CCGs) which direct tissue-specific gene expression processes [26,27]. Later in 

the day, the large amount of newly translated PER and CRY proteins inhibit the function of 

the positive feedback loop by interacting with the BMAL1/CLOCK complex, thus suppressing 

their own transcriptional activity (Figure 1) [28,29]. 

 

Figure 1. Molecular machinery of the circadian clock in chondrocytes. The circadian oscillator con-

sists of two interconnected TTFLs. In the core loop, the CLOCK/BMAL1 heterodimer induces E-box-

mediated transcription of PER and CRY, the negative regulators. PER and CRY proteins, in turn, 

repress E-box-mediated transcription. CLOCK and BMAL1 also control the expression of RORs and 

REV-ERB in the auxiliary loop, which modulate BMAL1 mRNA levels. The rhythmic activity of the 

clock components also determines the expression of clock-controlled genes (CCGs). Green lines in-

dicate stimulatory (positive), whereas red lines indicate inhibitory (negative) effects. See abbrevia-

tions in text. Created with BioRender.com. 

Molecular circadian clocks exist in nearly every mammalian peripheral organ and 

tissue, such as the liver, pancreas, or adipose tissue [30,31]. There is evidence that hyaline 

cartilage is no exception, and differentiating and mature chondrocytes also express the 

key clock-specific transcription factors at the molecular level, both in vivo and in vitro 

[13,32,33]. The chondrocyte clockwork is driven by systemic cues because hyaline carti-

lage is a peripheral tissue and is not directly influenced by daylight. Instead, systemic 

signals may originate from biochemical stimuli (cyclic dietary intake that changes the met-

abolic activity, e.g., the availability of glucose), biomechanical stimuli (locomotion 
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activities such as dynamic compressive mechanical load), or temperature stimuli (diurnal 

temperature changes in the body) [14,34]. However, the chondrogenic differentiation of 

certain stem cells can be influenced by the application of photobiomodulation [35], which 

suggests that if some of the peripheral joints (such as joints of the hand) are not completely 

dark, the tissues and cells of the synovial joint, including articular cartilage, may react to 

specific wavelengths of light. 

In a human in vitro model for cartilage formation, core clock genes were found to be 

inactive in undifferentiated embryonic stem cells; however, upon chondrogenic induction, 

the key regulatory proteins of the TTFL were detected in the differentiating chondrocytes, 

and an oscillating expression pattern was distinguished after synchronization [36]. In mi-

cromass cultures established from chondroprogenitor cells isolated from chicken embryonic 

limb buds, a functional circadian clockwork was identified after applying serum shock as a 

clock-resetting method. Not only the clock-specific BMAL1, PER2-3, and CRY1-2, but also the 

cartilage-specific SRY-box transcription factor 9 (SOX9), aggrecan (ACAN), and collagen type 

II alpha 1 chain (COL2A1) genes were expressed in a rhythmic oscillatory manner. Addition-

ally, this type of synchronization had a stimulatory effect on chondrogenesis [15]. Upon the 

knockout of BMAL1 in primary chondrocytes, the expression of the hypertrophic chondro-

cyte-specific matrix metallopeptidase 13 (MMP13) and RUNX family transcription factor 2 

(RUNX2) genes was significantly upregulated [37]. Conversely, PER1 was found to be a neg-

ative regulator of chondrogenesis. SOX6 and type II collagen protein levels were elevated after 

PER1 knockdown in chondrogenic ATDC5 cell cultures [38]. 

Despite the accumulating data, it is still not clearly known how circadian rhythm is 

established during the early steps of cartilage formation. 

3. HIF-1α: A Master Regulator of Cartilage Development 

While most cells of the human body require a higher (ranging from approximately 

7.5% to 4%, depending on the tissue [39]) concentration of oxygen for cellular respiration 

and energy production (also termed normoxia or ‘physoxia’), chondrocytes, the main cell 

type of cartilage tissue, reside at lower oxygen levels—this is known as hypoxic condition 

(O2 < 6%). The adaption to this special environment initiates during chondrogenesis and 

is primarily mediated by HIF-1 [40,41]. HIF-1 is one of the best-known transcription fac-

tors induced under hypoxic circumstances. The heterodimer HIF-1 possesses two differ-

ent subunits; HIF-1α is oxygen-sensitive and is therefore stable in hypoxia, while HIF-1β 

(aryl hydrocarbon receptor nuclear translocator (ARNT)) is stable in normoxia [17]. Alt-

hough they are constitutively expressed, in normoxia, HIF-1α is degraded via oxygen-

sensitive prolylhydroxylases. During this, the prolylhydroxylase-domain-containing pro-

teins (PHDs) hydroxylate HIF-1α, which, in this way, can be targeted by the von Hippel–

Lindau protein (VHL), part of the E3 ubiquitin–ligase complex [42]. This leads to the ubiq-

uitination of HIF-1α, making it a target of the 26S proteasome for degradation. In contrast, 

in hypoxia, PHDs are repressed and therefore cannot hydroxylate HIF-1α, making it sta-

ble and able to combine with HIF-1β to form the HIF-1 heterodimer. After being trans-

ported into the nucleus, HIF-1 acts as a transcription factor and binds to genes with a 

hypoxia response element (HRE) in their enhancer and promoter regions [43,44]. 

In response to hypoxia, HIF-1 triggers metabolic adaptions in the cell, including the 

increased expression of glucose transporters and glycolytic enzymes. Genes with various roles 

in apoptosis, cell proliferation, angiogenesis, and erythropoiesis are also activated by HIF-1α 

[45–47]. At the same time, HIF-1α has essential roles in numerous physiological and patholog-

ical cell processes like tumorigenesis, inflammation, and tissue development including chon-

drogenesis [41]. In addition to the most well-known factors that affect cartilage development, 

such as TGF-β, Wnt, SOX5, SOX6, and SOX9 [48,49], HIF-1α also has a pivotal role in chon-

drogenesis, by linking chondrocyte cell cycle with hypoxic conditions [50]. 

Due to the lack of vasculature, cartilage tissue develops in hypoxia. For chondrocytes 

to acclimatize to and survive in such a hypoxic environment, the HIF-1 transcription factor 

is essential. HIF-1 can influence the homeostasis of cartilage tissue by regulating the cell 
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metabolism. Phosphoglycerate-kinase 1 (PGK) mRNA levels affect cell death in the 

growth plate in HIF-1α+f/−;colIIcre or HIF-1α+f/+f;colIIcre null animals. In wild-type animals, 

PGK is present throughout the entire growth plate and has a higher expression level in 

the upper hypertrophic chondrocytes, where the environment is the most hypoxic. In the 

null animals, the level of PGK is lower. Moreover, the knock-out animals are smaller than 

the controls and there is a remarkable shortening of the forelimbs and the hindlimbs. 

However, vascular endothelial growth factor (VEGF) expression is also dependent on reg-

ulation by HIF-1, which may contribute to the changes in the growth plate via the vascu-

larization of the tissue [51,52]. 

HIF-1α is not only involved in the survival of chondrocytes in hypoxia, but also im-

pacts molecules and pathways that influence the cell cycle, thus controlling cell prolifera-

tion and differentiation [52,53]. Moreover, HIF-1α also has an impact on extracellular ma-

trix (ECM) synthesis (Figure 2). Among HIF-1α null and wild-type chondrocytes, the abil-

ity to produce ECM components changes according to the presence of normoxic or hy-

poxic conditions. Not only are the mRNA expression levels of ECM components such as 

aggrecan and type II collagen significantly higher, but the protein levels of these ECM 

elements are also considerably elevated in the wild-type chondrocytes in hypoxic condi-

tion compared to the HIF-1α null chondrocytes. In some cases, however, the same could 

be observed in normoxic conditions: the expression levels of COL2A1, for example, were 

statistically higher in the wild-type compared to the HIF-1α null cell cultures [54]. 

 

Figure 2. Schematic illustration of HIF-1α signaling in chondrogenesis and in mature chondrocytes. 

Please note that the pathways shown in the figure are not exhaustive. See abbreviations in text. Cre-

ated with BioRender.com. 

4. Interplay between HIF-1α and the Molecular Clock 

In recent years, an increasing number of studies aimed to identify interactions be-

tween the circadian clock and HIF pathways [24,55,56]. Crosstalk between the circadian 

clock and hypoxia-regulated pathways was predicted by the CircaDB online database [57]. 

Hypoxia can upregulate the expression of PER1, PER2, and CLOCK in mouse brain and 

human renal cancer cell lines [58,59]. More specifically, the oxygen-sensing region of HIF-

1α regulates the gene expression of BMAL1/MOP3 and CLOCK in various neonatal and 

adult murine tissues and the human hepatocellular cell line PLC/PRF/5 [55,60,61]. The 

hypoxia-response element (HRE), the DNA locus to which the HIF-1α:HIF-1β 
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heterodimers bind, is present in the promoter region of differentiated embryonic chon-

drocyte-expressed genes 1 (DEC1) and 2 (DEC2), which inhibit BMAL1 [62,63]. This 

means that hypoxia, through HIF-1α, can activate the negative regulators of the circadian 

rhythm (PER1, PER2, DEC1, and DEC2) in various tissues, leading to the suppression of 

BMAL1/CLOCK heterodimers. 

Interaction between these networks is considered to be not unidirectional. The 

strongest induction of hypoxia target genes was observed during PER2 peak time in the 

liver, kidney, and heart [64]. The importance of PER2 is further substantiated by mathe-

matical modeling, implying that PER2 plays the most crucial role in setting the period of 

the circadian clock [65]. The hypoxia-induced growth factor VEGF is inhibited by PER2 

and CRY1, which results in periodical fluctuations in its gene expression [66]. Recently, 

CRY1, but not CRY2, was found to negatively regulate HIF-1α and HIF-2α via specific 

protein–protein interactions in mouse embryonic fibroblasts (MEF) [67]. Similar results 

were reported in mouse muscles: CRY1 and CRY2 suppressed HIF-1α:BMAL1 heterodi-

mers [68]. Conversely, others have observed that PER2 and CRY1 separately enhanced 

HIF-1α activity by facilitating HIF-1α recruitment to the enhancer region of its down-

stream genes, without influencing its expression levels in HeLa cells [69]. Differences be-

tween cell types (MEFs, myotubes, and cervical cancer cells), and different CRY binding 

regions on HIF1 could provide an explanation for this. Apparently, the co-regulation of 

hypoxia and circadian pathways is more complex, due to the similarity between BMAL1 

(ARNTL) and HIF-1β (ARNT) protein structures, which can each form heterodimers with 

HIF-1α. Low levels of BMAL1 in MEFs decreased HIF-1α accumulation in hypoxia [70]. 

In line with this, the co-expression of BMAL1 and HIF-1α increased the expression of HRE 

genes, as an adaptation to the anaerobic metabolism [71,72]. 

As the previous findings suggested, there is an approximately 30–50% overlap 

among HIF-1α and BMAL1 target genes [64]. In addition, the BMAL1/HIF-1α heterodimer 

also stimulates Per2 transcription in C2C12 myoblasts, further reinforcing the connection 

between the circadian and hypoxia-related networks. Interestingly, in embryonic stem 

cells, BMAL1/HIF-1α complexes could not be observed [73]. In macrophages, the 

BMAL1/CLOCK heterodimer induces NRF2 transcription factor expression, which sup-

presses reactive oxygen species (ROS), and therefore HIF1-α, and thus dampens the pro-

duction of the proinflammatory cytokines IL-1β and IL-6 [74–76]. Notably, NRF2 does not 

appear to be regulated by circadian clock proteins in all tissues, for instance, in the cerebral 

cortex [77]. Another possible bridge in the intertwined relationship between the molecular 

clock and hypoxia is the sirtuin protein family, which are NAD+-dependent deacetylases. 

The co-factor of SIRT3 is under circadian control, and the absence of SIRT3 in mitochon-

dria increases ROS levels, resulting in HIF1-α stabilization in SIRT3 KO HEK293T and 

MEF cells [78]. When HEK293 and MEF cells were exposed to a weak-pulsed electromag-

netic field, this elevated ROS production due to changes in the expression of CRY [79]. 

Another interesting link is via casein kinases (CK1 δ/ε, CK2). In hypoxic conditions, they 

can post-translationally modify BMAL1 in hamster SCN cells, and in HEK293 and MEF 

cells [80,81], and HIF-1α in HeLa cells [82], which may strengthen the interconnection be-

tween circadian and hypoxic regulation. 

There is increasing evidence of crosstalk between HIF and circadian pathways in var-

ious in vivo animal models and clinical observations. Daily rhythms of tissue oxygenation 

were identified in rodents, which synchronize the molecular clocks in an HIF-1α-depend-

ent manner, and the modulation of oxygen concentrations accelerates the recovery from 

jet lag in a mouse model only if HIF-1α expression is intact [83]. Circadian and HIF-1α 

pathways can enhance carcinogenesis and tumor progression in glioblastoma [84] and re-

nal carcinoma [85]. Inhibition of the CLOCK–OLFML3–HIF-1α–LGMN–CD162 axis in-

creases CD8+ T-cell-mediated immune response in glioblastoma [84]. Obstructive sleep 

apnea reduces blood oxygen concentration, which activates the HIF pathways, and there-

fore disturbs the expression of circadian clock proteins [86], which is speculated to result 

in metabolic and cardiovascular diseases [87]. Dysregulated activation of the NF-κB 
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pathway may lead to chronic diseases, such as OA [88]. According to recent results, hy-

poxia increased NF-κB and proinflammatory cytokine activity; however, after CLOCK si-

lencing, hypoxia-induced inflammatory activity was subdued [89]. It is possible that the 

presence of the CLOCK protein may be a requirement for the inflammatory response 

caused by hypoxia, which can lead to multi-systemic inflammatory disorders, such as OA. 

This provides evidence for an intriguing, multi-directional crosstalk between the circadian 

clock, hypoxia, and the immune system, also highlighting the fact that the timing of the 

administration of pharmaceuticals (especially for ischemic and hypoxia-associated dis-

eases) is crucial to maximize their efficacy [90]. 

As described above, cartilage is time-sensitive. As a result of aging and chronic in-

flammation, the autonomous circadian rhythms were dysregulated in mouse cartilage 

[91–93]. In mouse OA cartilage, the downregulation of HIF-1α and upregulation of PHD2 

was observed [18], which is consistent with an earlier study, where hypoxia maintained 

normal cartilage homeostasis [94]. The disruption of circadian clock protein expression 

[18] or HIF-1α depletion [95] can lead to the degradation of cartilage ECM via the activa-

tion of matrix-metalloproteinase-13 (MMP-13). Additionally, PER2 was found to respond 

to dimethyloxalylglycine (DMOG, a PHD inhibitor; in other words, an HIF pathway acti-

vator) in an HIF-1α-dependent manner. Furthermore, an in vivo study described a con-

nection between circadian rhythms and the balance of collagen anabolism and catabolism 

[96]. The regulation of HIF-1α by BMAL1 was also confirmed in the mouse intervertebral 

disc; the inhibition of BMAL1 led to a reduced matrix-to-cell ratio in the nucleus pulposus, 

resulting in shorter discs during development [97]. In primary murine chondrocytes, the 

downregulation of BMAL1 dampened HIF-1α, HIF-2α, and VEGF expression, while its 

upregulation had the opposite effect [37]. An increased number of apoptotic cells in 

BMAL1 knocked-out primary chondrocyte cultures was observed, which can be partly 

explained by the inhibition of HIF-1α and VEGF expression, whereas HIF-1α can regulate 

pro- and antiapoptotic genes [44,98]. 

Some of the molecular components of hypoxia-mediated signaling pathways and 

their interactions with the molecular circadian clock are illustrated in Figure 3. 

 

Figure 3. Integration of hypoxia signaling and the molecular circadian clock. This schematic illustration 

highlights the identified interaction sites between hypoxia signaling pathways and the molecular circa-

dian clock in a hypothetical developing chondrocyte. The intertwining of these regulatory networks 
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suggests a complex interplay, influencing various cellular processes and contributing to the coordination 

of responses to both hypoxia and circadian cues. Please note that the molecular components of pathways 

shown in the figure are not exhaustive. Green lines indicate stimulatory (positive), whereas red lines in-

dicate inhibitory (negative) effects. Connections with unspecified effects are shown with grey lines. Ar-

rowheads indicate directionality (where relevant). Question marks indicate unconfirmed (hypothetical) 

connections. See abbreviations in text. Created with BioRender.com. 

5. Implications of HIF-1α Dysregulation in Cartilage Disorders 

As demonstrated above, HIF-1α plays an important role in chondrogenesis and in 

the physiological lifecycle of articular cartilage. However, HIF-1α-related malfunctions, 

from excessive induction to abnormal downstream signaling, are widely reported in car-

tilage-related pathologies [99,100]. Here, we focus only on the two most-documented 

fields: OA and chondrosarcoma. 

Inflammation is a key element in the pathogenesis of OA [101]. Articular chondro-

cytes are partially deprived of oxygen as a result of the inflamed synovial membranes 

using more oxygen [102]. Synovial fluid samples from OA patients demonstrated signifi-

cantly lower oxygen concentrations compared to healthy samples [103]. Comparing nor-

mal and OA joints, detectable differences in the levels of HIF-1α protein expression can 

be observed, irrespective of the location of chondrocytes within the articular cartilage. 

Hypoxic conditions, catabolic stress, and IL-1β are the main factors that can increase HIF-

1α accumulation in chondrocytes, delaying the rapid progression of OA at the early stages 

[47,104]. HIF-1α plays an essential role in directly increasing the expression of the SOX9 

transcription factor [105]. Another option to elevate SOX9 levels is via BMP2. The stimu-

lation of osteo- and chondrogenic differentiation by BMP2 was demonstrated in 

C3H10T1/2 mesenchymal stem cells in an HIF-1α-dependent manner [106]. In human ar-

ticular chondrocytes, through the upregulation of SOX9, the expression of COL2A1 and 

ACAN is increased, and chondrocyte differentiation is promoted [107]. Simultaneously 

with the positive regulation of COL2A1 and ACAN, the inhibition of collagen types I and 

III also occurs in human articular chondrocytes in an HIF-1α-dependent manner [108]. 

Through HIF-1α, chronic hypoxic conditions significantly decrease the expressions of 

ADAMTSs and MMPs in chondrocytes in OA [109], specifically affecting MMP-1 and 

MMP13 expression levels [110]. Despite the chondroprotective effects of HIF-1α, the 

newly synthesized matrix components are markers of early alterations in OA cartilage. In 

addition to the previously mentioned examples, the delay of OA progression has other 

HIF-1α-related maneuvers. As observed in a transgenic mouse model, HIF-1α can main-

tain ATP production via the induction of VEGF expression during oxygen-limited circum-

stances; thus, anaerobic glycolysis allows for metabolic adaptation for chondrocytes dur-

ing hypoxia [111]. The anti-catabolic responses related to GLUT1 and PGK1 genes are key 

targets of HIF-1α in early OA, as demonstrated by a comparative histological analysis of 

normal and OA human cartilage tissue samples [112]. Further mechanisms targeted by 

HIF-1α supporting chondroprotection in early OA are pathways involving anti-apoptotic 

responses and autophagy [44]. The inhibition of HIF-1α expression in N1511 mouse chon-

drocytes significantly reduced the activities of catalase and superoxide dismutase, and 

decreased the expression of Bcl and Bcl-xL [113]. HIF-1α may also affect the activation of 

caspase-8, AMPK, and mTOR in N1511 cells, suggesting that it serves a chondroprotective 

function by interacting with the apoptotic and autophagic responses under chronic hy-

poxic conditions [114,115]. 

Oxygen levels in tumor niches determine disease progression as cellular responses 

to hypoxia mainly promote neoplastic evolution [116]. In all skeletal tumors, the common 

cellular mechanisms affected by HIF-1α are cell proliferation, tissue vascularization and 

metastasis formation [117–119]. Although cartilage-related malignancies are referenced in 

a rich literature regarding hypoxia, the role of HIF-1α is also implicated in enchondromas 

[100]. Isocitrate dehydrogenase 1 mutations were reported to induce HIF-1α and conse-

quently influence angiogenic properties and tumorigenicity in the JJ012 human 
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chondrosarcoma cell line [120]. Angiogenesis is promoted by VEGF, but HIF-1α is not the 

only factor that stimulates VEGF expression in chondrosarcomas [121]. Patient-derived 

high-grade chondrosarcoma samples demonstrated increased HIF-1α expression levels 

associated with the upregulation of Bcl-xL. The survival rate of patients was reciprocal 

with HIF-1α positivity, suggesting prognostic roles of HIF-1α in chondrosarcoma [122]. 

The potential for HIF-1α to become a prognostic marker was further strengthened by a 

meta-analysis on bone tumors that revealed a significant correlation between the overex-

pression of HIF-1α and overall/disease-free survival [99]. 

In the field of molecular oncology, numerous studies reported connections between 

hypoxia signaling and the circadian clock. Depending on the cell type, the circadian clock 

exerts tumor-promoting or tumor-suppressing qualities. In glioma, loss of function muta-

tions were identified in CLOCK, CRY2, FBXL3, FBXW11, NR1D2, PER1, PER2, PER3, 

PRKAA2, RORA, and RORB genes [123]. Loss of function mutations in these tumor-sup-

pressive genes were negatively correlated with HIF-1α target genes (CA9, VEGFA, and 

LDHA) in glioma [123]. In colorectal carcinoma tissues, CLOCK showed a strong positive 

correlation with HIF-1 and VEGF expressions [124]. CLOCK interacted with HIF-1α to 

enhance VEGF mRNA expression, thus augmenting angiogenesis and promoting metas-

tasis formation [124]. Components of the molecular clock machinery were described by 

various studies in osteosarcoma cell lines [125–128], but not in chondrosarcoma cell lines. 

Although experimental evidence has been collected regarding the circadian clock in skel-

etal tumors, the potential crosstalk between hypoxia- and circadian-clock-related signal-

ing remains elusive. 

6. Therapeutic Approaches Targeting HIF-1α for Cartilage Repair 

The repair of articular cartilage has been a major challenge to date due to its heavily 

limited regenerative capacity. Traumatic or degenerative damage to this specialized tissue 

represents a significant clinical burden on the health care system [129]. Recent research 

suggests that HIF-1α is a promising target for therapeutic interventions aspiring to repair 

and regenerate cartilage [130]. 

As described earlier, HIF-1α, a transcription factor responding to hypoxic conditions, 

plays a pivotal role in cellular adaptation to low oxygen levels [131]. In chondrocytes, the 

activation of HIF-1α has the potential to control both autophagy [114] and apoptotic pro-

cesses [115,132]. Additionally, it can reduce the synthesis of inflammatory cytokines, man-

age the ECM environment of chondrocytes, and uphold the chondrogenic phenotype 

[133]. This phenotypic control extends to the regulation of glycolysis and the mitochon-

drial function associated with OA, ultimately leading to the formation of a more compact 

collagen matrix that delays the degradation of cartilage. Consequently, targeting HIF-1α 

presents a promising avenue for potential therapies in OA by modulating both chondro-

cyte inflammation and metabolism [130]. At the same time, in laboratory studies, it has 

been demonstrated that VEGF prompts the proliferation of chondrocytes while also trig-

gering the expression of MMP13 through the induction of HIF-1α [134]. 

Various possible therapeutic strategies have emerged to modulate HIF-1α activity for 

cartilage repair. One such approach involves pharmacological agents, such as the hy-

poxia-mimetic agent cobalt chloride. In human mesenchymal stem cells (MSCs), cobalt 

chloride mimics hypoxic conditions in vitro by stabilizing HIF-1α. The outcomes of the 

experiments by Teti et al. indicated that cobalt chloride did not impact cell viability. How-

ever, the increase in chondrogenic markers such as SOX9, COL2A1, VCAN, and ACAN 

relied on the specific cellular origin, with most results being quite promising [135]. The 

prolylhydroxylase (PHD) inhibitor DMOG also stabilizes HIF-1α. Hu et al. studied the 

effects of the DMOG-increased expression of HIF-1α in a DMM mouse model and found 

that it could alleviate apoptosis and senescence via mediating mitophagy in the chondro-

cytes [136]. The above studies have demonstrated the these agents’ potential for cartilage 

regeneration. 
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As gene-therapy-based approaches are earning more and more attention, enhancing 

HIF-1α expression by techniques including viral vectors or gene editing tools has a definite 

appeal. Okada et al. already demonstrated that gain-of-function of HIF-1α in primary chon-

drocyte cultures can suppress catabolic genes such HIF2A, which is a direct transcriptional 

target of NF-κB, and induces various catabolic factors, including MMP13, to subsequently ac-

celerate cartilage degeneration [137]. In this sense, HIF-2α has the opposite effect on HIF-1α. 

It serves as a regulator in cartilage degradation, governing the expression of numerous cata-

bolic elements such as matrix-degrading enzymes and inflammatory mediators [138]. 

Platelet lysate is also gaining increased attention due to its various favorable proper-

ties for regenerative medicine. In chondrocyte cultures, platelet lysate promoted the up-

regulation and nuclear transport of HIF-1α, and its binding to HRE [139]. This suggests 

that HIF-1α could be at least partially responsible for the regenerative effects of platelet 

lysate. Conversely, platelet lysate may become an easily accessible and safe method for 

HIF-1α activation. Despite the promising effects of platelet lysate on cartilage regeneration 

through HIF-1 signaling, there are several limitations and drawbacks to consider. One 

such limitation is the variability in platelet lysate composition, which can affect its bioac-

tivity and therapeutic efficacy. The preparation methods and donor variability can result 

in inconsistent levels of growth factors and cytokines in platelet lysate, impacting its abil-

ity to consistently activate HIF-1α signaling pathways [140]. 

Future targets may include various interacting partners that all influence the stability, 

and therefore the protein levels, of HIF-1α [141]. Prolylhydroxylase-domain-containing 

protein 2 (PHD2) utilizes oxygen and α-ketoglutarate as substrates to carry out the hy-

droxylation of HIF-1α. N-acetylglucosamine transferase (OGT) stabilizes HIF-1α by reducing 

α-ketoglutarate levels [142]. Recent findings indicate that HAUSP (USP7) acts as a deubiquiti-

nase for HIF-1α [143]. Under hypoxia, HAUSP undergoes K63-linked polyubiquitination by 

HectH9, enhancing its ability to deubiquitinate HIF-1α and acting as a scaffold for HIF-1α-

induced gene transcription [144]. Plasmacytoma variant translocation 1 (PVT1), a long non-

coding RNA, plays an oncogenic role in various cancers. Lysine acetyltransferase 2A (KAT2A) 

is a histone acetyltransferase. Studies reveal that lncRNA PVT1 stabilizes HIF-1α through 

KAT2A [145]. Furthermore, research demonstrates that the STAT3 protein competes with 

pVHL, binding to HIF-1α, and consequently increasing HIF-1α protein levels [146]. GATA-

binding protein 3 interacts with both full-length and the N-terminal section of HIF-1α (aa 1–

401) during hypoxia, inhibiting the ubiquitination of HIF-1α [147]. 

Nevertheless, challenges persist in translating these findings into clinically viable thera-

pies. Safety concerns, the precise control of HIF-1α activity to avoid undesired effects, and its 

long-term efficacy in clinical settings require further investigation. Additionally, optimizing 

activation methods and understanding the interplay between HIF-1α and other signaling 

pathways in chondrocytes are crucial to refine these approaches. Regardless, therapeutic strat-

egies targeting HIF-1α hold immense promise for cartilage repair and regeneration. 

7. Future Perspectives and Research Directions 

The intricate orchestration of the molecular pathways underlying cartilage develop-

ment involve a delicate interplay between HIF-1α and the molecular clock machinery 

[148,149]. HIF-1α stands as a central mediator in cellular responses to hypoxia, modulat-

ing an abundance of chondrogenic genes [17]. Studies have unveiled the significance of 

HIF-1α in promoting chondrogenesis by regulating key transcription factors, including 

SOX9, that are essential for cartilage-specific gene expression [44]. Furthermore, key mol-

ecules in the hedgehog pathway contain an E-box motif in their promoter regions, making 

them binding targets of the BMAL1/CLOCK heterodimer complex [150], or, hypotheti-

cally, even HIF-1α [151]. The hypoxic microenvironment within developing cartilage ac-

tivates HIF-1α, accentuating its role in steering MSCs towards the chondrogenic lineage. 

As described above, accumulating evidence sheds light on the intricate relationship be-

tween HIF-1α and the molecular clock machinery. Clock genes, such as BMAL1, CLOCK, 

and PER, exhibit regulatory control over HIF-1α activity, implicating the circadian rhythm 
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in the modulation of hypoxia-driven chondrogenesis. Even more interestingly, HIF-1α 

appears to reciprocally influence the expression of clock genes [86], suggesting a bidirec-

tional interaction between HIF-1α signaling and the molecular clock [9,15,16] in the con-

text of cartilage development. 

While current research has elucidated the impact of HIF-1α and the molecular clock 

on cartilage development, there are numerous compelling avenues for further explora-

tion. Deciphering the exact mechanisms governing the interaction between HIF-1α and 

specific clock components in chondrogenesis remains a critical area for ongoing research. 

Examining how external stimuli, such as changes in the environment or pathological condi-

tions, influence this intricate molecular network offers the promise of valuable insights into 

disorders related to cartilage. A comprehensive understanding of the nuanced regulation of 

chondrogenesis by HIF-1α and the molecular clock has the potential to open new avenues for 

therapeutic strategies. Targeted interventions that manipulate either HIF-1α or clock gene ex-

pression have the potential to advance cartilage regeneration and alleviate degenerative carti-

lage diseases. Utilizing the capabilities of these molecular regulators may pave the way for 

innovative approaches to treating cartilage-related pathologies in the future. 

8. Conclusions 

The convergence of HIF-1α signaling and the molecular clock in shaping the landscape 

of developing cartilage unveils a captivating network of molecular interactions. In addition, 

due to the multi-directional crosstalk between the circadian clock, hypoxia, and the immune 

system, the timing of therapeutic interventions is crucial to maximize their efficacy. 

Still, there are many unaddressed questions in this context. These include the broader 

context of signaling molecules regulated by these pathways, and the multi-directional in-

terconnections, including the immune response and inflammatory moieties. Furthermore, 

there is not yet solid evidence of whether these molecular changes in circadian rhythm 

and hypoxia response are the causes or consequences of cartilage development and carti-

lage diseases such as OA. Further exploration of these intricate interplays would not only 

deepen our understanding of cartilage biology but also holds transformative potential in 

advancing therapeutic interventions for cartilage-related disorders. The stabilization of 

HIF-1α can alleviate hypoxia-induced apoptosis, senescence, and matrix degradation in 

chondrocytes. Additionally, HIF-1α influences collagen synthesis and maturation, leading 

to a denser collagen matrix that hinders cartilage degradation. Finally, resetting the circa-

dian clock through interactions with HIF-1α and clock proteins presents a promising av-

enue for therapeutic interventions in cartilage disorders. 
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