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Abstract: Sleep fragmentation (SF) can increase inflammation and production of reactive oxygen
species (ROS), leading to metabolic dysfunction. SF is associated with inflammation of adipose tissue
and insulin resistance. Several studies have suggested that melatonin may have beneficial metabolic
effects due to activating AMP-activated protein kinase (AMPK). However, it is unclear whether
melatonin affects the AMPK signaling pathway in SF-induced metabolic dysfunction. Therefore, we
hypothesize that SF induces metabolic impairment and inflammation in white adipose tissue (WAT),
as well as altered intracellular homeostasis. We further hypothesize that these conditions could be
improved by melatonin treatment. We conducted an experiment using adult male C57BL/6 mice,
which were divided into three groups: control, SF, and SF with melatonin treatment (SF+Mel). The
SF mice were housed in SF chambers, while the SF+Mel mice received daily oral melatonin. After
12 weeks, glucose tolerance tests, insulin tolerance tests, adipose tissue inflammation tests, and AMPK
assessments were performed. The SF mice showed increased weight gain, impaired glucose regula-
tion, inflammation, and decreased AMPK in WAT compared to the controls. Melatonin significantly
improved these outcomes by mitigating SF-induced metabolic dysfunction, inflammation, and AMPK
downregulation in adipose tissue. The therapeutic efficacy of melatonin against cardiometabolic
impairments in SF may be due to its ability to restore adipose tissue homeostatic pathways.

Keywords: sleep fragmentation; metabolic dysfunction; AMP-activated protein kinase (AMPK); melatonin

1. Introduction

Sleep fragmentation (SF), which is characterized by frequent arousals and interruptions
of sleep continuity, is becoming more common due to environmental factors and various
sleep disorders such as obstructive sleep apnea (OSA) and insomnia [1]. Over the past
decade, extensive research has demonstrated significant links between chronic SF, whether
induced experimentally or in patient populations, and markedly increased risks of obesity,
impaired glucose tolerance, insulin resistance, type 2 diabetes, hypertension (HTN), and
other features of metabolic syndrome [2]. Although the exact underlying mechanism
between SF and metabolic dysfunction is not clearly elucidated, the activation of oxidative
stress and increased inflammation have been proposed to play an important role in these
associations [3–5].

Melatonin is a hormone secreted by the pineal gland that regulates the sleep–wake
cycle and has been found to have a wide range of metabolic regulatory bioactivities. Accu-
mulating data from preclinical and experimental studies also support that melatonin may
have beneficial effects on insulin signaling, adipocyte differentiation, and lipid metabolism
in obesity, as well as inflammation in diabetes and related comorbidities [6–9].
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AMP-activated protein kinase (AMPK), a key cellular energy sensing complex [10,11],
has emerged as a mediator between the misalignment of circadian rhythms and metabolic
homeostasis [12,13]. Activation of AMPK has been associated with beneficial effects on
metabolism, such as improving insulin sensitivity and ameliorating obesity [14,15]. Inter-
estingly, melatonin has been reported to activate AMPK, providing a potential mechanistic
link between melatonin and improved cardiometabolic outcomes [16,17]. Recently, several
studies have also shown that SF induces insulin resistance by promoting inflammation
in adipose tissue through nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase [18]. Thus, the present study aims to investigate the potential role and underlying
mechanisms of melatonin in ameliorating metabolic dysfunction induced by SF, with a
particular focus on AMPK activation in white adipose tissue (WAT), in a mouse model.

2. Materials and Methods
2.1. Schematic Diagram and Graphical Summary of a Mouse Model of SF

A schematic diagram of the experiment and a graphical summary of the mouse model
of SF are summarized in Figure 1.
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Figure 1. Schematic representation of the experimental designs and graphical summary of the study.
(A) Schematic of the experimental protocols. SF+Mel mice were housed in the SF chamber, and
melatonin was administered by oral gavage at a concentration of 40 mg/kg daily. Subsequently, mice
in the control group were housed under standard housing conditions. A glucose tolerance test (GTT)
and insulin tolerance test (ITT) were performed at 4 weeks, 8 weeks, and 12 weeks of SF exposure in
three groups. (B) Proposed design to study the effect of melatonin on SF-induced metabolic changes.

2.2. Experiment Design and Animals

Adult male C57BL/6 mice (8 weeks old, 22–23 g; Eumseong, Chungcheongbuk-do,
Republic of Korea) were obtained from the DBL laboratory for the study. Mice were
maintained on a normal chow diet and housed in a controlled environment with a regular
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12 h light–dark cycle at a constant temperature (24 ± 2 ◦C) and ad libitum access to food
and water. Mice were randomly divided into three groups: control mice (n = 10), mice
housed in standard housing conditions and sleep fragmented (SF, n = 10), and melatonin-
treated SF mice (SF+Mel, n = 10) housed in an SF chamber as described previously (model
80391; Lafayette Instrument, Lafayette, IN, USA) [19]. Due to limitations on blood volume
and adipose tissue size, we used separate sets of mice to study glycemic response and
reactive oxygen species (ROS) detection on adipose tissue stromal vascular fraction (SVF).
Body weight was measured weekly for each mouse. Mice were sacrificed after 12 weeks of
exposure to SF (Figure 1A), and tissue samples were collected for further analysis. Animal
experiments were performed according to a protocol approved by the IACUC of Jungwon
University (JWU-IACUC-2022-3).

2.3. Sleep Fragmentation and Melatonin Treatment

The SF group and SF+Mel group mice were exposed to SF for 12 weeks. The machine
used to induce sleep fragmentation has previously been described [19,20]. In brief, the
timer of the moving sweep bar was set for mice with severe sleep apnea, waking more than
30 times per hour. The sweep bar was set to move once every 2 min and moved when the
light was on (9:00 a.m. to 9:00 p.m.). SF+Mel mice were orally administered melatonin
(Sigma, St. Louis, MO, USA) at a concentration of 40 mg/kg daily [8].

2.4. Biochemical Analysis

A glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed on all
three groups at 4 weeks and 12 weeks of SF. The animals were fasted for 6 h, with water
available ad libitum. An oral GTT was conducted using sterile glucose (2 g/kg body weight
with oral zondae). For the insulin tolerance test, the mice were intraperitoneally injected
with insulin (St Lenexa, KS, USA) at a concentration of 0.75 units/kg body weight. Blood
samples for GTT and ITT were collected from the tail vein of each mouse at 0, 30, 60, 90,
and 120 min. Blood glucose levels were measured using a glucometer (Barojan, Handok,
Seoul, Republic of Korea). Additionally, the area under the curve (AUC) was calculated for
GTT and ITT using the trapezoidal method. Triglyceride (TG) and total cholesterol levels
were also assessed using an Accutrend Plus system (Roche, Basel, Switzerland) [21]. Serum
C-peptide levels were measured using an enzyme immunoassay kit (Novus Biological, E
Easter Ave, Centennial, CO, USA) according to the manufacturer’s protocol. The linear
range of the C-peptide was 0.16–10 ng/mL, with both intra- and inter-individual coefficients
of variation of up to 6.0%.

2.5. Immunofluorescent Staining for Detecting the AMPK and F4/80 in WAT

After mice were sacrificed, epidymal WAT samples were fixed with 4% paraformalde-
hyde for 24 h. The samples were transferred to 15% sucrose (JUNSEI Co., Ltd., Chuo-ku,
Tokyo, Japan) for 12 h and 30% sucrose for 24 h at 4 ◦C. The WAT samples were embedded
in O.C.T. compound [22]. Sections of 12 µm were obtained using a cryomicrotome. The
cryosections were stained with a fluorescein isothiocyanate (FITC)-conjugated primary an-
tibody against AMPK alpha 1 (Novus Biologicals, E Easter Ave, Centennial, CO, USA) and
F4/80 (Invitrogen, Carlsbad, CA, USA) at a dilution of 1:50 overnight at 4 ◦C. After washing
with phosphate-buffered saline (PBS), the sections were costained with 1 uL Hoechst 33342
(Thermo Fisher, Waltham, MA, USA) for 15 min at room temperature. Fluorescence images
were obtained by excitation at 610 nm and collected at 600–700 nm using a confocal laser
scanning microscope (LSM 800, Carl Zeiss, Jena, Germany). Image analysis was performed
using ZEISS ZEN lite 3.8 (Oberkochen, Germany).

2.6. Quantitative Real Time Polymerase Chain Reaction

To analyze the gene expression of AMPK and inflammatory signaling pathway-related
phenotypes, we extracted total RNA from the WAT using a RNeasy Lipid Tissue Mini kit
(Qiagen, Hilden, Germany), following the manufacturer’s protocol. We then synthesized
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cDNA using a Tetro cDNA synthesis kit (Meridian Bioscience Inc., Cincinnati, OH, USA)
and conducted quantitative real-time polymerase chain reaction (qRT-PCR) tests using
a StepOne PlusTM real-time PCR system (Applied Biosystems, Waltham, MA, USA).
The gene expression assay employed commercially available specific TaqMan primers
and probes for Prkaa1 (assay ID: Mm01296700_m1), Stk11 (assay ID: Mm00488470_m1),
Camkk2 (assay ID: Mm00520236_m1), IL1β (assay ID: Mm00434228_m1), IL6 (assay ID:
Mm00446190_m1), TNF (assay ID: Mm00443258_m1), IL10 (assay ID: interleukin 10), TGF-
β1 (assay ID: Mm01178820_m1), ADGRE1 (assay ID: Mm00802529_m1), CCL2 (assay ID:
Mm00441242_m1), and GAPDH (assay ID: Mm99999915_g1). All reactions were performed
in triplicate. The 2(−∆∆CT) method was utilized to compare gene expression among
various groups [23]. GAPDH was used as an internal control.

2.7. Flow Cytometry Analysis and Western Blotting

To detect AMPK and ROS levels in SVF derived from WAT, flow cytometry analysis
was performed. SVF was isolated by incubating and digesting fat cells from WAT with type
I collagenase (Gibco, New York, NY, USA) and type II dispase (Sigma, St. Louis, MO, USA)
in Dulbecco Modified Eagle Medium (Thermofisher, Waltham, MA, USA) for 25 min at
37 ◦C. The cell suspensions were filtered through a 40 µm strainer (SPL, Republic of Korea)
and then centrifuged at 1500 rpm for 5 min to separate the floating adipocytes from the SVF
pellet. To detect mitochondrial ROS in SVF, we used the MitoSOX flow cytometry assay
kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. This assay
selectively detects superoxide in the mitochondria of living cells. A total of 1.5 × 106 cells
obtained from suspended SVF pellet were stained with 5 µM Mitosox-red and incubated
for 40 min at 37 ◦C [18,24]. In addition, intracellular staining was also performed to
examine AMPK levels in SVF. The SVF pellets were fixed with Fix/Perm buffer at room
temperature and washed with Perm/wash (Biolegend, San Diego, CA, USA). The SVF
pellet was then resuspended with staining buffer (Biolegend, San Diego, CA, USA), and
3 × 106 cells were stained with FITC-conjugated AMPK alpha1 antibody (NOVUSBIO, E
Easter Ave, USA) for 30 min in the dark. Flow cytometric analyses were conducted using
a BD Accuri C6 flow cytometer (BD Biosciences, San Jose, CA, USA), and the obtained
data were analyzed using Flow JO version 10 software (Tree Star, San Carlos, CA, USA).
To examine the phosphorylation level of AMPK at threonine 172 (pAMPK), protein was
extracted from WAT using protein extraction solution (Intron-Bio Ltd., Ggyeonggi-do,
Republic of Korea). The protein samples (20 ug) were separated by electrophoresis on
10% SDS-PAGE and transferred onto a PVDF membrane. After blocking with 5% BSA in
TBST, the membranes were incubated with primary antibodies p-AMPK (Cell signaling,
1:2000), AMPK alpha (Cell signaling, 1:4000), and β-actin-conjugated HRP (Santa Cruz,
1:1000) at 4 ◦C overnight. The following day, the membrane’s pAMPK was incubated
with HRP-conjugated anti-rabbit IgG (Cell Signaling, 1:5000) at room temperature for 1 h.
Proteins were visualized using a chemiluminescent peroxidase substrate (Amersham), and
the blots were detected using the ChemiDoc system (Bio-Rad, Hercules, CA, USA). The
signals were quantified using ImageJ ver. 1.54 analysis software.

2.8. Statistical Analysis

The data are presented as the mean ± standard error (SE). Statistical analyses were
performed using Mann–Whitney U-tests or Kruskal–Wallis tests to examine the difference
between groups, unless otherwise stated in the figure legends. All statistical analyses were
performed using SPSS software (version 25.0, IBM Corp., Armonk, NY, USA). Statistical
significance was identified at the 0.05 significance level.

3. Results
3.1. The Change in Body Weight after Exposure to SF and Treatment with Melatonin in Mice

Figure 2 shows the changes in body weight in three groups of mice after 12 weeks
of exposure to SF. The SF group exhibited a significant increase in body weight starting



Cells 2024, 13, 470 5 of 13

at 4 weeks of exposure (Figure 2A). At the end of the 12-week period, both weight and
weight gain in the SF group were significantly higher than in the control group (p < 0.05).
In addition, the SF+Mel group exhibited a significant decrease in body weight and weight
gain compared to the SF group after 12 weeks of melatonin treatment (p < 0.05).
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Figure 2. The effects of SF exposure and melatonin treatment on body weight and weight gain were
studied in three groups, control, SF, and SF+Mel, for a period of 12 weeks. (A) Changes in body
weight in control, SF, and SF+Mel groups of mice for 12 weeks. (B,C) Comparison of body weight
and weight gain in three groups of mice after 12 weeks. Changes in body weight and weight gain
were compared between the groups using the Mann–Whitney U test. * p < 0.05.

3.2. The Alteration of Lipid Profiles after Exposure to SF and Treatment with Melatonin

To compare the lipid profiles of the control, SF, and SF+Mel groups at 4, 8, and
12 weeks, we measured the levels of total cholesterol and TG in the blood samples. There
were no significant differences in total cholesterol or TG levels among the three groups
at 4 or 8 weeks (p > 0.05). However, after at 12 weeks, the TG level in the SF group was
significantly higher than that in the control group (Figure 3B). After 12 weeks of melatonin
treatment, the SF+Mel group showed a significant decrease in TG levels compared to the
SF group (Figure 3B).
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3.3. Melatonin Improved Glycemic Dysregulation in SF Exposed Mice

GTT and ITT were performed at 4 and 12 weeks in three groups. The SF mice exhibited
significantly higher glycemic levels in both GTT and ITT compared to the control mice at
12 weeks (Figure 4B,C), but this was not observed after 4 weeks of exposure in SF mice.
Interestingly, the glucose levels obtained from GTT and ITT in the SF+Mel groups were
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significantly reduced compared to those of SF mice after 12 weeks of melatonin treatment
(Figure 4B,C). The glucose AUC also exhibited significant decreases (Figure 4D,E). Addi-
tionally, we measured C-peptide levels, known to be an important marker of β-cell function
and insulin production [25,26], to examine the differences between the three groups. As a
result, the C-peptide levels in the SF mouse group were significantly lower than those in the
control mice (SF mice vs. control mice, 0.31 ± 0.2 ng/mL vs. 0.55 ± 0.2 ng/mL, p < 0.05).
In contrast, the levels were increased in the SF+Mel group after 12 weeks of melatonin
treatment. The SF mice had a level of 0.31 ± 0.2 ng/mL, while the SF+Mel mice had a level
of 0.65 ± 0.2 ng/mL (p < 0.05, Figure 4F).
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Figure 4. Changes in factors associated with glucose metabolism after exposure to SF and melatonin
treatment for 12 weeks in three groups. (A) The fasting glucose levels in the control, SF, and SF+Mel
group mice for 12 weeks. (B) Glucose levels over time according to an oral GTT in three groups
of mice. (C) Glucose levels over time according to an intraperitoneal ITT in three groups of mice.
(D,E) Glucose AUC derived from GTT and ITT in three groups of mice. (F) C-peptide levels in the
control, SF, and SF+Mel group mice. The AUC was calculated using the trapezoidal method. Data are
expressed as mean ± SE. Mann–Whitney U tests were performed to compare differences. * p < 0.05,
** p < 0.01.

3.4. SF Exhibited Increased ROS and Inflammation in WAT, and These Improved with Melatonin
Treatment for 12 Weeks

To investigate whether SF could increase ROS and inflammation in WAT, we measured
ROS levels using a commercially available Mito-Sox kit (Invitrogen, USA). As shown in
Figure 5, SF mice exhibited a significant increase in ROS levels in the SVF of WAT compared
to control mice (control vs. SF, 12.6% vs. 31.0%). Additionally, we administered melatonin
for 12 weeks to examine its effect on ROS levels in SF mice. The study revealed that SF+Mel
mice had a significantly lower level of ROS in SVF compared to SF mice (Figure 5A, SF
vs. SF+Mel, 31.0% vs. 14.2%). Additionally, Figure 5B displays a representative image
of F4/80, which is not only a marker for inflammatory macrophages, but also plays a
crucial role in regulating adipose tissue function and insulin sensitivity. After 12 weeks
of treatment with melatonin, the F4/80 levels in WAT were significantly decreased in
the SF+Mel group compared to the SF group. To support these phenomena in WAT, we
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performed gene expression assays using the specific primers mentioned above. When
comparing gene expression among the three groups, we observed an increase in the pro-
inflammatory cytokines IL-1β and TNF-α in the SF group. Additionally, F4/80 and MCP-1,
which are widely used as markers of macrophage inflammation, also significantly increased.
However, treatment with melatonin alleviated the gene expression of these cytokines and
macrophages.
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Figure 5. Changes in ROS and inflammation in WAT after exposure to SF and melatonin treatment
for 12 weeks in three groups. (A) Representative flow cytometry image of ROS in WAT from control,
SF, and SF+Mel mice (each sample pooled 3 mice, 3 experiments/each group). (B) Representative
image of immunofluorescence staining showing the F4/80 positive cells in WAT from control, SF,
and SF+Mel mice (5 experiments/each group; nuclei were stained with Hoechst; scale bar: 20 µm).
(C) Relative gene expression associated with inflammatory pathways using qRT-PCR in WAT of
the same experimental groups. Data presented as mean ± SE. Differences were assessed by Mann–
Whitney U Tests. * p < 0.05. IL; interleukin, TNF; tumor necrosis factor, TGF; transforming growth
factor, Adgre1; adhesion G protein-coupled receptor E1 (known as F4/80), CCL2; chemokine C-C
motif ligand 2 (known as MCP-1).

3.5. SF Decreased AMPK Level and Melatonin Treatment Improved AMPK Levels in WAT for
12 Weeks

To investigate whether SF could decrease the AMPK levels in WAT, the AMPK levels
were measured using an immunofluorescent staining assay and flow cytometry with a
specific antibody. The results showed that the AMPK levels in SVF derived from the
WAT of SF mice decreased compared to that of control mice, but it was increased in
SF+Mel mice after 12 weeks of melatonin treatment (Figure 6A, control vs. SF vs. SF+Mel,
23.3% vs. 13.8% vs. 20.3%). The confirmation of this phenomenon was achieved using an
immunofluorescent technique (Figure 6B). Similar findings were observed when comparing
gene expression among the three groups. Additionally, we performed Western blotting
using a specific antibody to detect phosphorylation of AMPK at threonine 172 (pAMPK),
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which plays an important role in AMPK activity [27]. After 12 weeks of melatonin treatment,
pAMPK levels in the WAT of SF+Mel mice significantly increased compared to SF mice,
which had significantly decreased levels.
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Figure 6. Changes in AMPK levels in WAT after exposure to SF and melatonin treatment for 12 weeks
in three groups. (A) Representative flow cytometry image of AMPK levels in WAT from control, SF,
and SF+Mel mice (each sample pooled 3 mice, with 3 experiments/each group). (B) Representative
immunofluorescence staining image showing the AMPK levels in WAT from control, SF, and SF+Mel
mice (5 experiments/each group; nuclei were stained with Hoechst; scale bar: 20 µm). (C) Gene
expression and phosphorylation levels of AMPK from WAT in three groups. The gene expression
level was measured by RT-qPCR. In addition, the phosphorylation level of AMPK at threonine 172
(pAMPK) was measured by Western blotting (5 experiments/each group). The intensity of the bands
was quantified using ImageJ software. Data are expressed as mean ± SE. Differences were analyzed
by Mann–Whitney U tests. * p < 0.05. AMPK; AMP-activated protein kinase.

3.6. The Gene Expression Levels of Glycolipid Pathway Associated with AMPK in WAT after
Exposure to SF and Melatonin Treatment

We examined the gene expression levels of glycolipid metabolic pathways associated
with AMPK after 12 weeks of exposure to SF and treatment with melatonin in WAT. We
observed a significant increase in the expression of both HMGCR (3-hydroxy-3-methyl-
glutaryl-CoA reductase) and SREBP-1 (sterol regulatory element-binding protein-1) in SF
mice. However, these significantly decreased after melatonin treatment (Figure 7, p < 0.05).
In addition, the expression level of GLUT4 (glucose transporter 4), which plays an important
role in regulating glucose metabolism, significantly decreased in WAT of SF mice. However,
it increased after melatonin treatment.
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4. Discussion

SF is a common component of various sleep disorders, such as OSA, insomnia, and
periodic leg movement. It is characterized by repeated interruptions in sleep without
necessarily leading to full awakenings. SF has become increasingly prevalent in modern
society. Extensive evidence has revealed that it is linked not only to various cardiometabolic
diseases, such as obesity, impaired glucose metabolism, insulin resistance, and HTN [28,29],
but also to deleterious consequences for daytime sleepiness and cognitive function [30]. A
significant finding in this study is that chronic SF in a mouse model resulted in metabolic im-
pairment, regardless of any effects from sleep loss or disruption of circadian rhythms. Most
strikingly, it reveals the potent effects of melatonin treatment in improving the dysfunction
of glycolipid metabolism induced by SF. After 12 weeks of melatonin supplementation,
SF mice exhibited marked improvements in weight, glycemic regulation, TG levels, and
AMPK signaling pathways in adipose tissue. This mimics highly prevalent conditions such
as OSA and insomnia, where arousals and SF represent the primary underlying abnormal-
ity [2,18,29]. The ability of SF alone to recapitulate the metabolic sequelae observed in sleep
apnea patients further cements the crucial mechanistic role it plays in cardiometabolic risk.

Melatonin is a hormone secreted by the pineal gland that regulates the sleep–wake
cycle and has metabolic regulatory roles in the body. Accumulating studies have shown
that melatonin plays an important role in the regulation of glucose homeostasis, lipid
metabolism, oxidative stress, and inflammation, making it relevant in metabolic disease
research [8,9,31]. We found that melatonin effectively mitigated the metabolic disturbances
induced by 12 weeks of SF, demonstrating promise in treating obesity and insulin resistance.
This suggests that melatonin could be a viable preventative or therapeutic agent for pa-
tients suffering from SF. However, it is crucial to elucidate the mechanisms underlying the
metabolic benefits of melatonin treatment. Based on the results, we discuss the key findings
associated with SF-induced metabolic dysfunction in a logical order. First, it was found
that SF stimulates immune cell infiltration and inflammation in WAT, which is consistent
with previous research [18]. After 12 weeks of SF, markers of tissue inflammation and
macrophage accumulation were universally heightened. The study found that there was an
increase in the gene expression of cytokines such as IL-1β and TNF-α, as well as F4/80 and
MCP-1, in adipose tissue. There are established indicators of immune cell migration and
pro-inflammatory polarization in adipose tissue [5,32–34]. Chronic inflammation in WAT is
known to drive insulin resistance and metabolic deterioration through pathways such as
JNK and NF-kB [33]. Therefore, the significant increase observed in this study likely consti-
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tutes a major cause of the metabolic dysfunction induced by SF. Second, the study showed
a significant increase in the production of mitochondrial ROS in WAT after 12 weeks of SF.
This is closely related to inflammation, as oxidative stress can trigger pro-inflammatory
signaling cascades that disrupt insulin pathways [5,35]. Mitochondrial dysfunction is also
inherent in the progression of obesity and diabetes [36,37]. Increased ROS generation is
likely both a result and a cause of metabolic impairment induced by SF [5]. Third, melatonin
administration significantly suppressed inflammation and oxidative stress caused by SF
in WAT. This was evidenced by reduced immune cell infiltration, pro-inflammatory gene
expression, and mitochondrial superoxide levels after 12 weeks of melatonin treatment.
Previous studies have confirmed the well-documented anti-inflammatory and antioxidant
properties of melatonin and suggested that these properties contribute to its metabolic
benefits [38,39]. Therefore, preventing the activation of damaging inflammatory and redox
pathways in WAT may have prevented the downstream insulin signaling deficits. This idea
is supported by the observed improvements in glucose homeostasis [6,40]. Fourth, more
importantly, we found that AMPK dysregulation played a significant role in SF-induced
metabolic impairment, which was partially reversible with melatonin. AMPK is a protein
kinase that monitors and regulates the energy state of a cell. This kinase is activated when
cellular levels of adenosine triphosphate (ATP) decrease, indicating either high energy
consumption or decreased energy supply [10,27]. In this study, we observed that SF signifi-
cantly suppressed both AMPK levels and the phosphorylation level of AMPK at threonine
172 (pAMPK) in WAT, while melatonin increased the expression back towards normal
function. Reduced AMPK expression could decrease fatty acid oxidation, glucose uptake,
and mitochondrial capacity [41]. These factors are closely linked to insulin sensitivity and
metabolic health [10,42]. Correspondingly, SF mice exhibited decreased gene expression of
GLUT4, along with increased expression of lipogenic genes such as HMGCR and SREBP-1.
The study suggests that melatonin may improve glucose metabolism by restoring energetic
balance in WAT through the rescue of AMPK expression and related pathways [10,41]. The
results suggest that melatonin treatment can activate AMPK phosphorylation at threonine
172, which may lead to functional activation [10,41]. Previous studies have shown that
melatonin can activate and regulate glucose levels in metabolic tissues by supporting
AMPK [17,41,43]. This is likely achieved by synchronizing hypothalamic circadian clocks,
which in turn regulate peripheral AMPK rhythms through downstream neurohormonal
networks [12,44]. Disruption of circadian control contributes to metabolic disorders, such
as sleep apnea and shift work [5,37,45]. The chronobiotic properties of melatonin may
restore the metabolic oscillations necessary for proper AMPK functioning [12,46]. Further
studies should investigate the interplay between melatonin, AMPK signaling, and circa-
dian rhythmicity to uncover valuable targets for preventing or managing cardiometabolic
disease. Moreover, it is worth considering whether melatonin protects mitochondria by
scavenging reactive oxygen species and maintaining cellular energy production in SF
mice. This is because the activation of AMPK can vary in different types of tissues [43,47].
Thus, the metabolic benefits are likely due to a combination of reduced inflammation, a
balanced redox state, and optimized AMPK signaling. Thus, future research should aim to
distinguish the relative contributions of these interconnected pathways in detail.

It is important to discuss the limitations of our study. Firstly, we used a mouse model
of SF, which does not fully replicate the complex physiological and metabolic disturbances
observed in clinical conditions such as sleep apnea. Therefore, it is difficult to extrapolate
the magnitude of effects to actual patients in clinical settings. Secondly, although the
mice showed weight gain and metabolic changes, the degree of impairment appeared
relatively mild to moderate over 12 weeks. High-risk patients may have different treatment
responses due to more pronounced or progressive metabolic disease. Therefore, longer SF
exposures, similar to those seen chronically in humans, could increase clinical relevance.
Additionally, the study convincingly demonstrates the therapeutic efficacy of melatonin;
however, the underlying mechanisms were only partially characterized. Several pathways,
including inflammation, oxidative stress, and AMPK signaling, have significant crosstalk.
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More dedicated molecular approaches are necessary in order to elucidate the proportional
contribution of each process to metabolic protection. Additionally, the generalizability of
the effects is unclear. To establish broader applicability to patients, efficacy should be tested
in older mice, females, other strains, or disease models (e.g., diet-induced obesity).

Despite the aforementioned drawbacks, this study has several advantages. Firstly, it
reveals melatonin as a promising therapeutic agent for ameliorating the metabolic distur-
bances induced by chronic SF. This is a unique study exploring the effect of melatonin in a
model that closely mimics sleep apnea or environmentally induced SF. The study results
are compelling, as melatonin supplementation prevented weight gain, insulin resistance,
hyperlipidemia, and adipose tissue inflammation triggered by SF. Additionally, the study
provides important mechanistic insight into pathways underlying the pathogenesis of
SF-induced metabolic dysfunction, including dysfunction of adipose tissue AMPK signal-
ing. The activation of AMPK may be a key mediator of the beneficial metabolic actions
of melatonin following chronic SF. These insights enhance our understanding of how SF
enhances cardiometabolic risk and reveal potential therapeutic targets. The study utilizes
an array of techniques, from gene expression to histology, to comprehensively characterize
metabolic, inflammatory, and intracellular signaling responses to SF and melatonin.

5. Conclusions

In summary, this study provides insight into the pathogenesis of SF-induced metabolic
impairment, while uncovering melatonin as a promising therapeutic agent in this setting.
The study indicates that chronic SF triggers inflammation, oxidative stress, and AMPK
downregulation, changes that are largely mitigated by long-term melatonin supplementa-
tion. The restoration of WAT function appears to be central to the efficacy of melatonin in
improving systemic metabolism. These findings should encourage research into clinical
applications for high-risk patients with SF, such as OSA and insomnia. Larger trials are
needed to confirm whether melatonin therapy can reduce the cardiovascular events and
mortality associated with sleep apnea through glycemic and weight control. From a mech-
anistic perspective, further investigation of the interplay between inflammation, redox
pathways, and AMPK signaling will help to establish the main drivers of SF-mediated
metabolic dysfunction.
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