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Abstract: Many essential biological processes are triggered by the proximity of molecules. Meanwhile,
diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened
up avenues to precisely control the proximity of molecules and eventually downstream signaling
processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-
activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the
immune response and are activated by receptor–ligand binding at the cell membrane. The latter
initiates a signaling cascade within the cell, which finally triggers the coupling of the two key
molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in
the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via
STIM/Orai coupling, is essential for various immune cell functions, including cytokine release,
proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that
have been used so far to achieve precise control over the CRAC channel pathway and thus over
downstream signaling events related to the immune response.

Keywords: CRAC channels; STIM1; Orai1; calcium (Ca2+) synthetic biology; chemical inducers of
dimerization; proteolytic cleavage; optogenetics; engineered immune cells

1. Introduction—The Role of Ca2+ Release-Activated Ca2+ (CRAC) Channels
in Immunology

Calcium ions (Ca2+) are the most widely used intracellular messengers that actuate
numerous biological processes within the human body [1–4]. A major Ca2+ entry pathway
is activated by the depletion of intracellular Ca2+ stores and is thus called the store-operated
Ca2+ entry (SOCE) route. A key player in SOCE is the Ca2+ release-activated Ca2+ (CRAC)
channel [5–9], which plays a versatile role in numerous biological processes, including
but not restricted to immune system function [10–15]. In immune defense, these channels
play a decisive role in the innate and adaptive immune response [10,14,16]. In the innate
immune system, as a fast and non-specific defense system that reacts to any germs entering
the human body, CRAC channels contribute to the function of neutrophils, macrophages,
monocytes, dendritic cells (DCs), natural killer (NK) cells, and mast cells [10,16]. If the
innate immune response is unable to destroy the invading germs, the adaptive immune
system, consisting of T cells, B cells, and antibodies, takes over the task, which is also
subject to the control of CRAC channels [10–15]. Dysregulations in CRAC channel function
can lead to severe diseases [11,15–22] such immunodeficiencies or cancer.

In a first step, CRAC entry into lymphocytes is triggered via receptor stimulation
at the cell membrane; for instance, by binding of an antigen to the T or B cell receptor
(TCR or BCR), or by the formation of antigen–antibody complexes to the Fc-receptor for
IgE (FcεRII) on mast cells or to Fc-receptors for IgG (FcγRs) on dendritic cells (DCs),
natural killer (NK) cells, or macrophages [10,14,15,23–27]. This initiates a cascade of protein
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phosphorylation, leading to the activation of phospholipase Cγ (PLCγ) and the production
of second messengers. PLCγ hydrolyzes phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)
into the soluble head group inositol-1,4,5-trisphosphate (IP3) and the PM-associated lipid
diacylglycerol (DAG). Diffusible IP3 binds to IP3R and triggers transient Ca2+ release
from the ER [5,9]. The reduction in Ca2+ concentration in the ER is perceived by the
stromal interaction molecules (STIM) 1 and 2 in the ER membrane [28–30]. STIM proteins
translocate to the ER-PM junctions to bind to and open the CRAC channel pore-forming
complex Orai in the PM, formed by Orai1 and its homologues Orai2 and Orai3 [9,31–35].
The resulting influx of extracellular Ca2+ causes sustained elevation of Ca2+ levels, which
is required for the immune response [14,15,36–39]. In lymphocytes in particular, Orai1
has been considered as essential, as patients with mutations in Orai1 display a SCID-like
immunodeficiency [38]. Nevertheless, the other two isoforms, Orai2 and Orai3, also form
part of the CRAC channel in immune cells [40]. Among the STIM isoforms, both STIM1 and
STIM2 play essential roles in lymphocytes [10–14,16], although STIM1 has been suggested
to be more dominant [10,14,41].

During the innate immune response, Ca2+ mobilization results in the recruitment and
activation of neutrophils, monocytes, macrophages, and dendritic cells [16,42,43]. Among
the different phagocytotic innate immune cells, the roles of STIM and Orai proteins are best
characterized in neutrophil function, especially in phagocytosis, degranulation, cytokine
release, and radical oxygen species (ROS) production [44–49]. CRAC-dependent Ca2+ entry
promotes the activation and maturation of dendritic cells while also playing a role in their
phagocytic activity [50–53]. In addition, macrophages require SOCE for the production
of tumor necrosis factor (TNF-α) [48] and nitric oxide [54,55], as well as phagocytosis.
However, due to limited data, the exact role of CRAC channels in monocyte or macrophage
function is still unclear [16,56].

As unique effectors of innate responses, mast cells are the major drivers of IgE-
mediated allergic responses, including allergies, atopic dermatitis, asthma, and anaphylaxis.
CRAC channel activity contributes to mast cell activation via FcεRI receptors, which is an
important driver for the secretion and synthesis of allergic mediators including histamine,
proteases, prostaglandins, and leukotrienes [57–63]. Therefore, Ca2+ influx via CRAC
channels controls the degranulation of cytosolic vesicles and the release of proinflammatory
cytokines, as demonstrated in mast cells, natural killer (NK) cells, and cytotoxic T cells
(CTL) [58,60,61,63,64].

In adaptive lymphocytes, several lines of evidence suggest that Ca2+ signaling plays
an important role in the development and positive and negative selection of T and B
lymphocytes [14,65–71]. Furthermore, Ca2+ signaling in T and B cells is responsible for
short-term and long-term immune responses [72]. Short-term functions include the activa-
tion of lymphocytes, which is ensured by the stable establishment of the immunological
synapse [73–76] and is associated with reduced lymphocyte motility [27,71,77,78]. More-
over, secretion and cell death of the target cell occur within seconds [13,64,79–84]. Long-
term functions, which are only established when the immunological synapse and the
enhanced Ca2+ levels persist for hours, represent Ca2+-dependent gene expression, which
determines effector functions and differentiation [39,85–88]. The duration and strength
of the Ca2+ signal defines the pattern of gene expression [14,15,39,89–91]. Gene expres-
sion can be controlled by numerous Ca2+-dependent enzymes, including calcineurin,
calmodulin kinases, and transcription factors such as NFAT [39,92–94], NF-kB [95,96], and
CREB [97]. Therefore, SOCE is essential for the regulation of chemokine and cytokine
gene expression, including interleukins (IL-2, IL-4, IL-10, IL-17), interferon-γ (IFNγ), and
tumor necrosis factor (TNF). It also regulates several metabolic pathways such as glycolysis
and mitochondrial respiration, thereby controlling lymphocyte proliferation and effector
functions [14,88–91,98].

In addition to maintaining a healthy immune response, a close relationship between
CRAC channels and disease through impaired store-operated Ca2+ entry (SOCE) in patients
with immunodeficiencies became apparent 15 years before the molecular nature of CRAC
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channels was identified [31,38,84,99,100]. RNAi screening and genetic linkage analysis in
patients with inherited defects in CRAC channel function eventually led to the discovery
of STIM1 and Orai1 in 2005/2006 [28,29,34,35,38]. Meanwhile, a series of homozygous loss-
and gain-of-function (LoF and GoF) mutations in Orai1 and STIM1 have been identified
to cause CRAC channelopathies [30,38,101–115] due to an imbalance in the cellular Ca2+

homeostasis. Severe combined immunodeficiency (SCID) with recurrent and chronic viral,
bacterial, and fungal infections occurs in patients who completely lack SOCE due to an
inherited LoF mutation in the Orai1 and Stim1 genes. Additionally, these patients with
immunodeficiencies suffer from humoral autoimmunity, characterized by the presence
of autoantibodies targeting erythrocytes and platelets, leading to the development of
hemolytic anemia and thrombocytopenia [30,107,116,117]. Furthermore, they can develop
a variety of severe non-immunological symptoms. GoF mutations in these CRAC channel
components have been shown to lead to dysfunctions such as York platelet and Stormorken-
like syndrome and tubular aggregate myopathy, autoimmunity, muscular hypotonia, and
ectodermal dysplasia [21].

In addition to the CRAC channels’ role in many immune cell functions, they are also
potential drug targets for the treatment of various inflammatory reactions, allergic dis-
eases [118,119], and many cancer types [20,120–128]. Several studies have confirmed that
the genetic deletion or inhibition of CRAC channels hinders T cell and mast cell functions
and diminishes inflammation of autoimmunity, transplant rejection, and asthma [119].
Particularly, the development and the progression of several T cell-mediated autoimmune
diseases, including inflammatory bowel disease [129] (IBD), experimental autoimmune
encephalomyelitis [130,131] (EAE), graft-versus-host disease [132,133] (GvHD), and pso-
riasis form skin inflammation [134–136], have been linked to Orai and STIM proteins.
Furthermore, CRAC channels have recently been found to play a role in the aging-related
deterioration of the immune system, namely immunosenescence, as altered expression of
CRAC channel components affects Ca2+ homoeostasis in specific T cell subsets [137,138].

The potential role of CRAC channels in cancer development and progression has been
deeply discussed in several recent review articles [120,122,123,126,128,139–144]. However,
the importance of CRAC channels has been also revealed in Ca2+-dependent tumor killing
by a subset of lymphocytes such as CTL and NK cells. They eliminate cancer cells by
releasing cytotoxic or lytic granules containing perforin and granzymes at the immune
synapse between cytotoxic cells and cancer cells [63,82]. Since CRAC channels are upreg-
ulated in many cancers, partial downregulation or inhibition of one of its components in
CTLs could increase perforin-dependent cancer killing and simultaneously impede tumor
growth within the tumor microenvironment [64,145,146].

To summarize, the CRAC channel components STIM and Orai play an essential role
in the immune response. It is therefore not surprising that their dysregulation can lead to
severe diseases, thus making them important targets for therapeutic intervention.

2. CRAC Channel Working Mechanisms

The CRAC channel forms a complex of STIM [28,29,31] and Orai [33–35] isoforms. In
general, the presence of STIM1 and Orai1 is sufficient to fully reconstitute CRAC chan-
nel function. However, their function can be modulated by STIM2, Orai2, and Orai3,
resulting in a variety of CRAC channels of different compositions. This ensures cell
type-specific regulation by CRAC channels and is relevant in the development of dis-
eases [121,122,140,147–156]. Their activation mechanisms have been summarized in detail
in previous reviews [9,32,154,157–165]. In the following paragraphs, only the most impor-
tant activation steps and mechanisms necessary for understanding the following chapters
on the application of synthetic biology tools to the CRAC components STIM1 and Orai1 are
briefly described. As synthetic biology tools have not yet been applied to other STIM and
Orai isoforms, the differences between the properties and mechanisms of the different iso-
forms are beyond the scope of this review, but they are described in detail elsewhere [166].
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STIM1 senses the ER-Ca2+ concentration via its EF-sterile alpha motif (EF-SAM) point-
ing into this organelle. In the resting state, Ca2+ binds to the EF-SAM domain, which
stabilizes STIM1 in the quiescent state [32,167–170]. Upon Ca2+ store depletion, the STIM1
Ca2+ sensor loses the bound Ca2+, which serves as a trigger for structural rearrangements
within the entire STIM1 protein to assume an active conformation [171–176]. These struc-
tural changes include an unfolding of the N-terminal segment, which is conferred via the
short transmembrane domain to the cytosolic region of STIM1 [32,163,177,178]. The STIM1
C-terminus is tightly folded in the resting state [174,175], while it elongates upon store
depletion [172,175,176,178]. It includes three coiled-coil (CC) regions, which contribute to
the maintenance of the quiescent state [104,172,174–176] and are involved in the coupling
to the counterpart Orai1 in the elongated conformation [179–182]. Several small STIM1
C-terminal fragments have been identified to be sufficient for Orai1 activation, includ-
ing the CRAC activation domain (CAD, aa 342-448), the STIM1 Orai activating region
(SOAR, aa 344-442), the coiled-coil domain-containing region b9 (CCb9, aa 339-444), or
the Orai-activating small fragment (OASF, aa 233-474) [183–186]. Following the coiled-coil
segment, the STIM1 C-terminus additionally contains a flexible region containing a CRAC
modulatory domain [187] as well as lipid binding domains [188–190].

Following store depletion, structural remodeling of the STIM1 C-terminus allows it to
bridge the distance between the ER and PM at junctions where the membranes are only
10–25 nm apart from each other [191]. There, STIM1 forms tight contacts with the Orai1
channel, which forms a hexameric complex [192–195] with each subunit composed of four
TM domains, a cytosolic N- and C-terminus, and two extracellular and one intracellular
loop [33,35,38]. The Ca2+ ion pore is formed in the center by six TM1 domains, which is
surrounded by TM2 and TM3 and at the complex periphery by TM4 [192–195]. TM4 is
connected via a bent region, the so-called nexus [196], to the C-terminus, with the latter
functioning as the main coupling site for STIM1 [179]. It is currently assumed that STIM1
coupling to the Orai1 C-terminus induces a signal that leads to a global conformational
change of the entire channel, which results in the opening of the pore [159,166,197–200].
The cytosolic loop2 has been reported to contribute to Orai1 gating via direct coupling
to STIM1 [201–203]. Also, the Orai1 N-terminus is involved in STIM1-mediated Orai1
activation [202,204–206]. However, the extent to which the N-terminus and loop2 contribute
to STIM1-mediated activation and the molecular nature of their potential binding pockets
remains unknown. In summary, Ca2+ store depletion-induced CRAC channel activation
involves structural rearrangements within STIM1, allowing it to couple to Orai1 and
activate Ca2+ entry into the cell.

3. Synthetic Biology, Application to CRAC Channels, and Impact on CRAC
Channel-Dependent Downstream Signaling

Synthetic biology comprises methods and tools that are used to manipulate basic bio-
logical components at the level of DNA, proteins, cells, or even multicellular structures in
order to redesign a biological process [207–209]. An elegant method of rewiring biological
processes is the control of physical distance, which is beneficial for various processes in
nature, including cell–cell contacts, signal transduction, and protein transport. Researchers
have taken advantage of this fact to better understand cellular signaling processes us-
ing small molecules [210], proteases [211], or photosensory modules [212] to induce the
proximity of cellular components. Furthermore, in synthetic immunology, engineered
chimeric receptors have made it possible to selectively target disease [208]. Arguably, the
greatest advantage of induced proximity is the potential to rapidly initiate a downstream
signaling process in living cells and monitor its consequences, which enables precise kinetic
studies [210,213].

In the following sections, we focus on the application of synthetic biology to CRAC
channels and the use of the newly designed CRAC channel tools in downstream signaling
cascades relevant in immune cells.
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3.1. Chemical Inducers of Proximity (CIPs)

Chemical inducers of proximity (CIPs) are small molecules with the special ability to
link two proteins, both binding to distinct parts of the dimerizer molecule [214–216]. Many
of these molecules are naturally occurring; for instance, the macrolactam product, FK506
(Tacrolimus [217]), which binds the prolyl isomerase, FKBP12, on one side and the Ser/Thr
phosphatase, calcineurin, on its other side. In nature, the latter is crucial for immunological
activation [215]. Additional examples are cyclosporin A, which binds to calcineurin and
the prolyl isomerase, CyP, impeding the translocation of the nuclear factor of activated T
cells (NFAT) to the nucleus [218], and the immunosuppressant rapamycin, which couples
to a prolyl isomerase, FKBP, and a Ser/Thr phosphatase, FRB [219,220] (Figure 1A).
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in the presence of the rapalog rapamycin (turquoise). (B) The FKBP/FRB system has been applied
directly to STIM1. Illustration of STIM1 C-termini fused to FRB and FKBP. Their dimerization can
be induced by rapalog. (C) Alternatively, 5 FRB proteins linked together enable rapamycin-induced
SOAR dimerization through interactions with FKBP linked to SOAR (FKBP was fused to a nanobody
(GNb (blue)) against GFP (green) that could bind GFP-STIM1-SOAR). (D) The FKBP/FRB system
has been applied indirectly via PIP-depleting phosphatase to STIM1. Schematic of the methodology
for rapamycin-induced phosphatase recruitment to the plasma membrane to induce PIP depletion
shows the pathway for PIP2 conversion either to IP3 and DAG via PLC or to PI4P via INPP5E (blue)
and PI by Sac1 (grass green). Rapamycin-induced PIP depletion has been used to understand the role
of PIPs in STIM1 activation (schemes adapted from references [184,188]).

First, evidence for a better understanding of signal transduction through the proximity
of signaling molecules has been provided by synthetic small molecule-induced dimerization
of the T cell receptor. Indeed, FK1012-induced dimerization of T cell receptors was sufficient
to trigger downstream TCR signaling events [210]. Furthermore, the timing of various
cellular processes could be better determined by using chemical dimerizers. For instance,
transcriptional activity was found to be most efficient when more than 1 signaling input
was provided [210,221]. Meanwhile, different variants of chemical inducers of proximity
(CIPs) have been used to control protein degradation, induce cell death, drive cell transport
mechanisms, regulate gene activation, and impact signal transduction pathways [210].

CIP technologies have already been demonstrated to have the potential for therapeutic
approaches, e.g., mitigating complications from engineered immune cells (graft-versus-
host disease, B cell aplasia, repopulation after successful transplantation) [210,222–224]. In
particular, cellular therapies based on the use of CIPs turned out to be promising strategies
to guarantee the delivery of precise amounts of therapeutic proteins with temporal control.
For instance, selective induction of apoptosis has been achieved through targeted activa-
tion of caspase. This and similar strategies are beneficial in gene therapy to accomplish
the removal of pathogenic cell types [225–230] or to cause the induced apoptosis that is
beneficial in preventing graft-versus-host disease [231–234].

In the CRAC channel field, CIPs have been exploited to study the mechanism of
store-dependent Ca2+ entry, and in particular, to induce oligomerization of STIM1 and
the consequences thereof [184]. The authors substituted the N-terminal Ca2+-sensing
site of STIM1, which physiologically controls the oligomeric state, with FKBP and FRB
proteins. The idea was to keep STIM1 in the resting state as long as no small molecule
was added for dimerization. Only by using the rapalog AP21967 they were capable of
inducing their oligomerization. This resulted in the ability of these STIM1 proteins to
form complexes, localizing to the cell periphery and thus activating Orai1 channels at the
cell membrane [184]. This demonstrated that the induced oligomerization of STIM1 was
sufficient for Ca2+ influx via Orai1 channels (Figure 1B).

The FRB-FKBP dimerization system has been further used to clarify whether STIM1–
lipid interactions occur in an oligomerization-dependent manner [188]. To this end, first,
FKBP was fused to a nanobody (GNb) against GFP that could bind GFP-STIM1-SOAR. Sec-
ond, a five-tandem repeat of FRB fused to CFP was used. Only the addition of rapamycin
triggered the formation of SOAR clusters, which were absent when the FKBP-GNb con-
struct was missing (Figure 1C). This system confirmed that only the rapamycin-induced
oligomerized SOAR state showed binding to phospholipids. To distinguish between bind-
ing to PI(4,5)P2 and PI4P, the so-called Pseudojanin (PJ) system [188] was used, which is
also based on the FRB-FKRB system. It consists of chimeric phospholipid phosphatase
constructs, namely INNP5E and Sac, which exhibit PM recruitment when rapamycin is
applied (Figure 1D). INNP5E depletes PIP2 through the conversion of PI(4,5)P2 into PI4P,
and Sac depletes PI4P through the conversion of PI4P into PI. While the PJ-wild-type system
contains both phosphatases, PJ-Sac only depletes PI4P, and PJ-INNP5E only degrades PIP2.
As a control, another PJ variant is available that does not degrade either phospholipid vari-
ant. Using this system, SOAR was shown to bind predominantly to PI4P. This interaction is
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due to a cluster of conserved lysine regions in SOAR [188]. This approach revealed that
STIM1 oligomerization promotes its interaction with the PM-lipids required to bring STIM1
to the ER–PM junctions.

Altogether, CIP technologies have provided new insights into the mechanisms of the
CRAC channel machinery. Although they would also have the potential to precisely control
downstream signaling pathways via small molecule-triggered dimerization, this has not
been exploited so far. A first possible experiment in this direction would be the initiation of
NFAT translocation into the nucleus through rapamycin-induced STIM1 oligomerization.

3.2. Proteolysis-Based Signaling

A variety of naturally occurring signaling pathways are regulated by proteolysis,
which involves either cleavage at a certain site or proteasome-mediated degradation of
specific proteins that trigger the exposure of a motif that is critical for degradation. Proteolyt-
ically modified effectors can irreversibly initiate signal transduction processes. Meanwhile,
proteolytic regulation has been introduced into mammalian cells to control transcription
factors and protein interactions [211,235–238] or even to develop cellular logic by cleaving
transcription factors or bound proteins [239–241]. Since response rates of transcription
factors are naturally slow, the application of proteolysis-based signaling systems to pro-
tein interactions and modifications is advantageous, as they occur within the range of
minutes [211]. To enable the construction of signaling pathways with proteolytic activity,
a toolbox of components has been developed, including orthogonal proteases that act
as signal transducers and elements that respond to proteolytic activity and trigger the
development of an output signal (Figure 2A). The latter can include binding sites, such as
coiled-coil domains, that can be restructured in response to proteolysis [211].
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composed of a target, autoinhibitory domain, and displacer peptide. After linker cleavage, an
autoinhibitory coiled-coil domain is exchanged with a displacer peptide with a higher binding
affinity to the target, triggering downstream signaling (as visualized by yellow illuminated circle).
(B) Schematic displaying the split TEVp reconstituted by ABA and the split PPVp reconstituted by
rapamycin. (C) Schematic of an engineered STIM1 fragment. The P3 and P4 peptides form coiled-coils
to function as inhibitory peptides that impede the self-activation of CAD. The protease cleaves the
protease cleavage site between the coiled-coil peptides P3 and/or P4, and CAD and allows for the
dimerization of CAD into an active form. As an alternative to adding the protease, split proteases
specifically designed for the respective cleavage sites can be used. The protease-activated CAD
activates Orai1 and consequently NFAT translocation to the nucleus and gene transcription (schemes
adapted from references [211,242]).

Common proteases with a high orthogonality include tobacco etch virus protease
(TEVp) [243,244], plum pox virus protease (PPVs) [244], soybean mosaic virus protease
(SbMVp) [245], and sunflower mild mosaic virus protease (SuMMVp) [246]. For dynamic
control of their proteolytic activity along the signaling pathway, the proteases have been
modified to be inducible by chemical input signals or protein–protein interactions. To
achieve this, the proteases have been designed as split proteases. Complementary frag-
ments of the split enzyme have been fused to FKB and FRKB or ABI and PYL1, whose
heterodimerization is inducible by rapamycin or abscisic acid, respectively. The addition of
the suitable chemical inducer triggered the proteolytic activity [211] (Figure 2B).

Protein–protein interaction modules have been designated as suitable transducer
elements responding to proteolysis. Well-understood protein–protein interaction sites
include coiled-coil domains, which have been also designed de novo [247–250]. Canonical
coiled-coil regions are distinguished by a repeat of seven residues per two helical turns,
each denoted as a heptad repeat with the amino acids assigned “abcdefg” [251]. The “a”
and “d” positions represent hydrophobic residues, while the “b”, “e”, and “g” positions
are charged residues and the “f” sites represent polar residues [252]. Typically, two or more
helices fold into a left-handed supercoiled complex [253]; for instance, for SNARE proteins
regulating vesicle fusion or the kinetochores that ensure chromosome segregation [254].
Orthogonal CC pairs possessing different affinities and orientations have been used to
develop peptides that act as target, autoinhibitory, or displacer peptides (Figure 2A). To
achieve the desired functional output, target, autoinhibitory, and displacer peptides need
to be fused to a functional split protein. Based on this principle (platform for the design of
a proteolysis-based signaling pathway), a full set of Boolean logic gates could be generated
in mammalian cells, which were responsive at a time scale of minutes [211].

To control the STIM1/Orai1 cascade via proteolysis, a genetically engineered protease-
activated Orai activator, termed PACE, was used. For this purpose, CAD (STIM1: aa
344-442) fragments were attached to coiled-coil-forming peptide pairs via a protease cleav-
age site, which locked CAD in an inactive state. The incorporated protease cleavage sites
are either those from tobacco etch virus (TEVs) or plum pox virus (PPVs). A defined
protease that can be chemically regulated was able to cleave the inhibitory coiled-coil pairs,
triggering oligomerization and activation of PACE2 (Figure 2C), as evidenced by Ca2+ imag-
ing studies. Jazbec et al. [242] developed a library of PACE constructs. They demonstrated
that direct attachment of CAD to the TEV cleavage site and then to the coiled-coil domain
leads to spontaneous activation, but it is maintained in the inactive state by the additional
insertion of a peptide with a high helical propensity. For efficient and dual regulation, they
used not only one type of protease cleavage site for a CAD pair, but also the TEV cleavage
site for one CAD and the PPV cleavage site for the second. Maximum activation was only
achieved when both were split. They also used spit proteases that can be activated by CIPs
(rapamycin, abscisic acid) to trigger cleavage (Figure 2B,C). This tool was valuable to trigger
Ca2+ entry, NFAT activation, and associated downstream signaling events. The latter was
demonstrated by protease cleavage-triggered expression of the cytokine IL-2, which is an
essential cytokine governing T cell growth, the differentiation of regulatory T cells, and
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induction of cell death, as well as TNFα, which is an essential cytokine involved in the
immune response, in Jurkat T cells [242]. Despite these valuable effects, further studies
are needed to determine how fast PACE can be activated and whether its Ca2+ currents
correspond to those of CRAC channels.

Overall, proteolytic cleavage is a valuable, albeit irreversible, tool for initiating CRAC
channel-dependent downstream signaling processes that are important in immune cells.
Nevertheless, the development of strategies for use in immunomodulation in disease is still
pending. The published PACE constructs and the PACE variant with two protease sites
show that they have the potential to be integrated into larger and more complex circuits.
With the ability to switch protease sites, PACE provides a robust framework to link not
only synthetic circuits but also any established, well-defined protease function, such as the
linkage of cell death-regulating proteases (e.g., caspases, cathepsins) to Ca2+ entry, which
could be helpful for target specifically controlled immune responses.

3.3. Photosensory Domains

As an alternative to chemical- or proteolysis-induced conformational changes, syn-
thetic biology includes optogenetic tools, such as the use of naturally occurring photosen-
sitive proteins. These provide another means for high spatiotemporal control of protein
dynamics. Two main groups of photosensitive domains originate in the plant kingdom and
are used to transfer their photosensitivity to a protein of interest. They can be divided into
those that oligomerize and those that undergo a structural change upon exposure to light
(Figure 3A,B). The chromophore, a cofactor bound to these proteins, confers photosensitiv-
ity [255].

3.3.1. Light-Induced Oligomerization

Proteins that can oligomerize upon exposure to light include cryptochromes, phy-
tochromes, and UV resistance locus 8 (UVR8). They can be used to remotely and re-
versibly switch a protein of interest between the inactive and active state. Cryptochrome 2
(AtCRY2), derived from Arabidopsis thaliana, contains the flavin adenine dinucleotide as
a chromophore and is excited by blue light. The latter leads to electron transfer, which
triggers the subsequent flavin reduction and leads to a conformational change in the N-
terminal photolyase homology region (PHR) of CRY2. It can rapidly and reversibly homo-
or hetero-oligomerize [256–259] (Figure 3A). The heteromeric complex can be formed with
the cryptochrome-interacting basic helix-loop-helix 1 (CIB1) region [260–262]. Various fac-
tors, such as location in the cell, availability of binding sites, or orientation to each other can
determine whether homo- or heteromerization of CRY2 occurs [261]. Phytochromes, unlike
cryptochromes, are sensitive to red and far-red light, with the chromophore phytocyanobilin
(PCB) conferring photosensitivity. Exposure to red light switches it between the inactive
cis- and active trans-isomerization, which triggers interactions with the phytochrome-
interacting factor (PIF). Far-red light can reverse this process [263].

In the field of CRAC channels, the optical dimerizer CRY2 has been used to control
STIM1 oligomerization, independent of ER store depletion by light. Specifically, the pho-
tolyase homology region (PHR-aa 1-498) of the optical dimerizer CRY2 was connected
with different STIM1 fragments to induce the activation of STIM1 by light. Mechanistically,
blue light stimulation triggers the oligomerization of the respective CRY2-STIM1 fusion
protein, while in the dark, the light-sensitive chimera is maintained in the resting state
(Figure 3C). This enabled the study of different CRAC channel activation steps, including
oligomerization, PM localization, and Orai1 activation [178].
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Figure 3. Schematic summarizing the principle of photosensory domains and their application to
STIM1 and Orai1. (A) Light-induced dimerization of CRY2 (ref) and CIP1 (orange) linked to target
protein (green). (B) LOV2 domain (orange) linked to a protein of interest (POI (red)) hides the
active site of the POI. After UV light irradiation, the linker between LOV2 and the POI undergoes
a conformational change and releases its active site. (C) CRY2-C-terminal STIM1-fragment (CRY2-
STIM1-C-terminus (-Ct)) enables light-triggered homomerization and subsequent coupling to Orai1
to trigger its activation. (D) LOV2-STIM1 hides the active site of SOAR in the dark state, while upon
irradiation with UV light, it is released. Light-mediated release of SOAR triggers coupling to CC1
under resting cell conditions and coupling to Orai1 in store-depleted cells. (E) Light-switchable
Orai1 containing the LOV2 domain in the loop2 region allows for light-induced activation of Orai1
(schematics adapted from reference [264]).

Initially, this concept was implemented by linking STIM1 fragments of different
lengths, containing the TM domain and a cytosolic segment, to the AtCRY2 protein, called
OptoSTIM1. This enabled light-induced CRAC influx that was activatable within a minute,
while deactivation took about 4 min. OptoSTIM1 matches the typical properties of wild-
type STIM1, including its movement alongside microtubules, the formation of punctae,
localization at ER–PM junctions, and the maintenance of Ca2+ selectivity of Orai1 upon
stimulation with blue light. Blue light-induced activation of Ca2+ entry due to the stimu-
lation of OptoSTIM1 was proven in many cell types, including HEK293, HeLa, HUVECs,
NIH3T3, astrocytes, and human embryonic stem cells (hESCs) [265].

Later, two additional light-sensitive STIM1 variants, namely Monster-OptoSTIM1
(monSTIM1) and enhanced OptoSTIM1 (eOS1) [266,267], with improved light sensitivity
were developed. monSTIM1 contains the E281A mutation in CRY2, which ameliorates
the resting state of the chimera in the dark, and an extension at the C-terminus of CRY2
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(A9-ARDPPDLDN), which enhances light-sensitivity. eOS1 is an improved variant of
OptoStim1 that contains the CRY2 mutation E490G, which increases oligomerization.

In a different strategy, STIM1 segments were tethered to CIB1, and the provision of
soluble CRY2 molecules resulted in the activation of STIM1 fragments upon exposure to
blue light.

In addition to the gained high spatial and temporal control over Ca2+ signaling,
these photosensitive STIM1 variants provided new insights into CRAC channel activation
mechanisms. For example, the CRY2-STIM1 tools proved valuable in identifying the
individual stages of the STIM1 activation cascade [178]. Thus, the interaction interface
of CC1 and SOAR/CAD that forms the inhibitory clamp was resolved by appending
STIM1 C-terminal fragments of distinct lengths to CRY2. N-terminal deletions of increasing
CC1 lengths demonstrated that the aa250–342 region is crucial for sustaining the inhibitory
clamp, in accordance with previous findings. In detail, the CRY2-STIM1 C-terminal chimera
was inactive prior to blue light irradiation, while truncation of aa up to L251–L258 in
CC1 led to constitutive activation already in the dark [178]. Precise determination of the
opposing region in the SOAR/CAD domain has not yet been performed.

CRY2-STIM1 fragments harboring luminal or C-terminal fragments of STIM1 at dis-
tinct lengths were also precious for deciphering the segments that are essential for STIM1
oligomerization. Light-induced co-clustering experiments demonstrated that the ER-
luminal SAM domain and the cytosolic SOAR region are determinants of
STIM1 oligomerization.

Additionally, the identification of new gain- and loss-of-function mutations and the
analysis of disease-related mutants was simplified by the utilization of CRY2-STIM1 C-
terminus chimeras along with a screening of mutations created by random mutagenesis.
Nevertheless, more studies are required to ascertain the cause of the functional alterations
in the detected mutants.

In addition, CRY2-STIM1 chimeras facilitated the tracking of the interplay between STIM1
and microtubules as well as the PM. In this regard, the TRIP motif (STIM1433–640) [178] in the
STIM1 C-terminus was demonstrated to couple specifically with the microtubule plus-end
tracking protein EB1, whereas the polybasic cluster at the very end of the STIM1 C-terminus
is vital in directing activated STIM1 into ER–PM junctions to instigate STIM1-triggered
Orai1 activation [178,268].

3.3.2. Light-Induced Uncaging

Photoresponsive proteins, which undergo a conformational change upon exposure
to light, lead to the release of the active site of a protein of interest. They are called
light-oxygen-voltage (LOV) domains and are phototropins, a family of blue light-sensing
photoreceptors [269]. The LOV domain is composed of a ß-sheet structure, the PAS (Period-
ARNT-Singleminded) core, that is bound to the chromophore FMN (flavin mononucleotide),
and a C-terminal Jα-helix [270,271]. The LOV2 domain, originating from the phototropin
of Avena sativa (AsLOV2), is the most popular [272,273]. Upon irradiation with blue
light, the Jα-helix is released, which can expose a signal sequence or protein binding
interface [272,273] that triggers cellular signaling cascades or enables protein–protein
interactions [274–277] (Figure 3B).

In addition, LOV domains have also been used to trigger protein multimerization.
For example, the enhanced light-induced dimer (iLID) containing a LOV2 domain from
Avena sativa and the Escherichia coli (E. coli) peptide SsrA has been used to trigger the
oligomerization domains SsrA and SsrB upon exposure to light [278]. To achieve this, SsrA
was sterically hindered to bind to SsrB in the dark, but it was released upon activation with
blue light. As an alternative to using CRY2, light-triggered oligomerization of STIM1 was
attained through heteromerization of the SsrA and SsrB regions. To this end, the enhanced
light-induced dimer, iLID, composed of LOV2-SsrA, was employed [278]. While SsrA is
hidden in the dark by the Avena sativa AsLOV2 domain, it is exposed upon illumination
with blue light. Consequently, SsrA can dimerize with SsrB.
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Regarding the application of LOV2 in the CRAC channel field, the STIM1 C-terminus
was attached to the AsLOV2 photoswitch. Under dark conditions, the Jα-helix strongly
couples to the PAS core. This strong interaction assures that STIM1 is kept in the inactive
state, while the LOV2 domain masks the active site of the fused STIM1 C-terminal fragment.
Exposure to blue light released the tight state of the Jα-helix and the PAS region through
conformational changes in the chromophore. Thus, the STIM1 C-terminus is exposed for
coupling to Orai1 [279,280] (Figure 3D). Whereas the earliest of these constructs displayed
notable dark activity that could not be ignored, truncation of CC1 diminished the dark
activity. The reason for the latter is potentially a competition between SOAR for interaction
with LOV2 and CC1 domains, hence diminishing the efficiency of caging [280]. The con-
struct Opto-CRAC that exhibited low dark activity contains LOV2404–546 and STIM1336–486.
Its response to light occurs rapidly and reversibly with an activation time of 8 s and a
deactivation time of 20 s [280].

A comparison of the kinetics of Opto-STIM1 and Opto-CRAC in different cell types
showed that Opto-CRAC leads to more rapid enhancements in Ca2+ influx, whereas Opto-
STIM1 exhibits a superior quality in driving Ca2+ influx. Furthermore, Opto-STIM1 is
widely applicable, whereas Opto-CRAC requires the additional coexpression of exoge-
nous Orai1 to enhance Ca2+ influx. Under analogue conditions, Opto-CRAC led to an
approximately six-fold increase in Ca2+ repetitions compared to Opto-STIM1 due to its
higher kinetics. Additionally, transient Ca2+ signals induced by Opto-CRAC imitated the
physiologically induced Ca2+ oscillation in mammalian cells.

LOV2-SOAR provided new insights into the mechanisms of the CRAC channel and
allowed for the characterization of the essential intramolecular interactions between CC1
and SOAR that sustain the resting state of STIM1. To this end, Ma et al. [178] took advantage
of the evidence that STIM1, including the N-terminus, TM, and CC1 domain of STIM1,
which is truncated at position 342, couples to soluble SOAR under resting conditions and
dissociates upon store depletion. In this way, an elegant assay consisting of STIM1 1-342
and LOV2-SOAR was designed, enabling the assessment of the relative strength of the
interactions between SOAR and CC1 in the ER and Orai1 in the PM. In detail, LOV2-SOAR
is located in the cytosol, both in cells containing only Orai1 or both Orai1 and STIM1 1-342.
Exposure to blue light resulted in the translocation of LOV2-SOAR to the PM because of
its coupling to Orai1. Of note, when Orai1 and STIM1 1-342 were expressed at a 1:1 ratio,
activated LOV2-SOAR was predominantly located in the ER [178]. This implies that, firstly,
SOAR itself interacts preferentially with CC1, and secondly, that further forces are involved
to achieve the coupling of SOAR and Orai1 [178]. Different ratios still need to be tested
for more accurate characterization of SOAR’s preferences for coupling to CC1 or SOAR.
In addition, this method is useful for resolving the CC1-SOAR as well as the SOAR-Orai1
coupling interfaces.

Other LOV2-STIM1 proteins with a similarly high efficiency represent the so-called
BACCS variants (blue light-activated Ca2+ channel switch). They include hBACCS1, a
fusion of LOV2 with the STIM1 C-terminal fragment (aa 347-448), BACCS2, a dimer of
BACCS1, and a corresponding Drosophila melanogaster form (dmBACCS2), all of which
exhibited similar kinetics [281].

In addition to photoresponsive STIM1 proteins, there are also Orai variants, which
respond to light. Because STIM1 and Orai1 interact directly, it seemed logical to design
a chimeric construct composed of a light-sensitive STIM1 and Orai1 channel. Indeed,
Ishii et al. [281] successfully developed fusion proteins of a BACCS variant (hBACCS1,
hBACCS2, dmBACCS2) and Orai1 (Orai1:BACCS2). Among the different BACCS forms,
the Drosophila variant dBACCS2-dOrai exhibited the best activation kinetics. The BACCS
variants could be reversibly activated by illumination with blue light and abolished by the
removal of extracellular Ca2+.

BACCS proteins act very similar to the original CRAC channel activation mechanism,
while the use of the LOV2 domain directly on Orai1 also enabled the transfer of light
sensitivity. Incorporation of the LOV2 domain into loop2, the flexible loop region between
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TM2 and TM3, of Orai1 allowed, after further rounds of optimization including N-terminal
deletion and single point mutations, for the development of a light-activated Orai1 channel,
which is independent of STIM1, termed the light-gated Ca2+ channel (LOCa; Orai1 ∆1-64
163AsLOV2164 H171D P245T) (Figure 3E). In detail, the LOCa shows low background
activity in the dark and can be reversibly stimulated by blue light [282]. Light-activated
LOCa currents display a high Ca2+ selectivity and are inhibited by the CRAC channel
blocker BTP2; however, these currents are much lower than the currents of overexpressed
STIM1/Orai1 or GoF-Orai1 mutants. Additionally, several other properties of CRAC
channels, such as rapid Ca2+-dependent inactivation, as described in Krizova et al. [205],
still need to be characterized.

To date, these photoresponsive Orai forms have been used to modulate and examine
cellular downstream processes and disease-related pathways. Still, they have not yet
been used to obtain a mechanistic understanding of Orai activation. Notably, LOCa is
a powerful tool that has been used to deepen our current comprehension of the role of
the loop2 region in Orai1 gating [201,203,283]. Intriguingly, LOV2 integration was able to
confer light-mediated Orai1 activation only in the presence of a constitutively active point
mutation (P245T). The additional single point mutation (H171Y) suggests that a proper
interplay between cytosolic segments is needed, as we recently showed for salt bridge
interactions within cytosolic triangles located in Orai1 TM domains [197,198].

3.3.3. Genetically Encoded Light-Sensitive CRAC Channel Components in the
Immune Response

Considering downstream signaling involved in immunomodulation, photo-responsive
CRAC channel components enabled precise control over downstream events such as gene
transcription. Specifically, some of the currently available arsenal of light-sensitive con-
structs allowed for light-mediated NFAT activation [265,266,279,281,282]. As the frequency
of light pulses increased, so did the extent of NFAT translocation into the nucleus [279].
Notably, optogenetic CRAC channel constructs resulted in considerable luciferase/insulin
gene expression [279]. CD4+ T cells containing Opto-CRAC produced cytokines, including
IL2 and IFN-γ. Human THP-1 macrophages containing Opto-CRAC released IL-1ß and
processed caspase-1 after irradiation with light. This supports the role of the opto-CRAC
channel in facilitating macrophage-mediated inflammatory responsiveness.

More efficient gene expression was achieved by combining the photoactivatable Ca2+

actor, Opto-CRAC, with CRISPR–Cas9 (clustered regularly interspaced short palindromic
repeats-associated-9 nuclease) tools [284–286]. This strategy allowed researchers to ob-
tain precise and reversible control over the CRISPR–Cas9 system through light-mediated
activation of Opto-CRAC and to avoid off-target effects. For this purpose, the so-called
Ca2+-responsive dCas9 fusion construct (CaRROT), comprising the N-terminal fragment
of NFAT (aa 1-460) linked to dCas9 and transcriptional coactivators (VP64/VP160), was
produced [287]. In coexpression with the Opto-CRAC construct, the NFAT fragment linked
to dCas9-VP64 translocated to the nucleus upon irradiation with blue light. dCas9 in the
nucleus was further guided to its target genes by sgRNA (single guide RNA) to trigger
gene expression [287].

Incorporation of Opto-CRAC channels into therapeutic dendritic cells in a mouse
model of melanoma enabled light-induced Ca2+ response in immune cells and fostered the
maturation and antigen presentation of dendritic cells. The latter increased priming and
activation of T cells, which promoted the decline in melanoma [279].

Bohineust et al. [266] used eOS1 to optically induce Ca2+ influx into T cells and influ-
ence migration dynamics and chemokine release of CD8+ T cells. Moreover, they used two-
photon photoactivation, which allows for deeper tissue penetration, in the popliteal lymph
nodes of mice containing eOS1 to mediate light-dependent enhancements in Ca2+ levels.

In summary, an array of photoresponsive CRAC channel tools is available to optically
and reversibly control cellular functions that are crucial in the Ca2+-dependent immune
response. They are distinguished by overcoming the restrictions of diverse traditional
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pharmacological approaches, such as the by-passing of upstream processes or the high
speed of light-induced signal transmission in biological systems. Yet, several improve-
ments in their working mechanisms are still necessary to avoid instances of nonspecific
interactions. Moreover, a set of factors should be taken into account before their application
in the biological processes, including the improvement of illumination conditions to reduce
failures within the cellular pathways or the reduction of damage to the biological probe.

3.4. Unnatural Amino Acids

Unnatural amino acids represent artificial, chemically synthesized amino acids that
do not belong to—but do expand—the pool of naturally occurring canonical amino acids.
They possess various novel biophysical or biochemical properties, including light-sensing
features, selective reactivity, or posttranslational modifications. Their incorporation into the
protein of interest at the desired position has been made possible by genetic code expansion
(GCE) technology [288–290]. The genetic encoding of UAAs entails the introduction of a
specific pair of tRNA and aminoacyl-tRNA synthetase (AARS) into the host cell. These ele-
ments are designed to detect the required UAA without interference with the endogenous
pairs, thus forming an orthogonal pair. During natural protein translation at the ribosome,
the UAA is site-specifically incorporated into the developing protein at the location of a
stop codon. This is typically the AMBER (TAG) stop codon, which has been previously
inserted into the protein of interest. It has been shown that several UAAs are appropriate
for protein incorporation in mammalian cells (Figure 4A).
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LOV2 domain linked to a protein of interest (POI) hides the active site of the POI. After UV light
irradiation, the linker between LOV2 and the POI undergoes a conformational change and releases
its active site. The CRY2-C-terminal STIM1-fragment (CRY2-STIM1-C-terminus (-Ct)) enables light-
triggered homomerization and subsequent coupling to Orai1 to trigger its activation. LOV2-STIM1
hides the active site of SOAR in the dark state, while upon irradiation with UV light, it is released.
Light-mediated release of SOAR triggers coupling to CC1 under resting cell conditions and coupling
to Orai1 in store-depleted cells. Light-switchable Orai1 containing the LOV2 domain in the loop2
region allows for light-induced activation of Orai1.

In the field of ion channels in particular, photoresponsive UAAs have been used to
transfer light-sensitivity. This group includes UAAs for optical manipulation (photocaged,
photocrosslinking, photoswitchable) and for optical monitoring (fluorescent UAAs) [291–295].
Photocaged UAAs contain a UV light-removable protecting (caging) group [288,296–299].
Photocrosslinking UAAs (e.g., p-benzophenylalanine (Bpa or BzF), azidophenylalanine
(Azi or AzF [288])) remain chemically inert under physiological conditions but transform
into highly reactive groups when exposed to UV light (365 nm). They form upon irradiation
with UV light (365 nm) covalent bonds (C-H reactions) with nearby backbones and amino
acid side chains [292–294] in the range of 3–4 Å. They are useful for the identification of
protein–protein interaction sites and have already been used to transfer light responsiveness
to ion channels or receptors [291,300–302]. Light-switchable UAAs toggle between two
conformations depending on the applied wavelengths [303–307]. Fluorescent UAAs, such
as ANAP or Tyr-Coumarin, sense their environment and thus function as suitable indicators
for conformational changes [308,309].

The use of unnatural amino acids in characterizing the function of membrane pro-
teins is currently emerging. Photo- and chemical crosslinking UAAs have been used to
study the protein–ligand interactions of G-protein coupled receptors (GPCR) [292,310–312].
Photocrosslinking UAAs enabled researchers to study the protein–ligand interactions of
a voltage-gated K+ ion channel [297,313,314] and to resolve the dynamic functional states
of neuronal receptors [307,315]. Functional reversibility of a photoswitchable UAA en-
abled rapid and reproducible photocontrol of glutamate receptors (NMDAR) [291,307].
A photocaged cysteine was used to generate a light-activatable potassium channel [297].
Among the membrane proteins, fluorescence labelling via UAAs has been achieved for
a GPCR [316]. In particular, in the field of TRP channels, fUAAs have been used to re-
solve structural alterations upon agonist stimulation [309,317–322]. Overall, UAAs offer
great opportunities to gain highly precise and selective control over protein function and
structure [288,301,303].

In the CRAC channel field, we recently demonstrated that the insertion of pho-
tocrosslinking UAAs (p-benzophenylalanine, azidophenylalanine) at single positions of
Orai1 TM domains allows us to transfer light sensitivity to the entire Orai1 channel com-
plex (Figure 4B). We discovered mutants that showed no or low activity before UV light
irradiation upon insertion of a photocrosslinking UAA, which was drastically enhanced
after UV light irradiation independent of STIM1. Vice versa, we also identified mutants
that showed constitutive activity after incorporation of the UAA, which decreased after
exposure to UV light. Detailed characterization of UV light-activatable mutants revealed
that they exhibited comparable biophysical properties to typical CRAC channels, indicating
that they mimic, at least in part, STIM1-mediated conformational changes [302]. Hence,
the insertion of a single photocrosslinking UAA at a certain position in the TM domain
revealed that UV-induced local structural rearrangements led to a global conformational
change of the entire channel complex, triggering its opening or closing. Furthermore,
we showed that UV-induced Orai1 activation is capable of triggering NFAT translocation
independently of STIM1 (Figure 4B), highlighting its potential to mediate and modulate
the immune response [302].

Photostimulation represents a great venue for researchers to selectively target proteins
that lead to pathologic responses. However, as GCE is a multi-component tool, it is still
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technically demanding to gain precise control of light-sensitive proteins in native tissue. For
that, the following steps need to be established: (i) the introduction of the genes of interest,
including a protein with the AMBER stop codon and the tRNA/aaRS synthetase pair;
(ii) the supply with the respective UAA; and (iii) the efficient delivery of light. In all three
aspects, researchers have made some progress; however, a number of hurdles still need
to be overcome [291]. The increasing use and further development of UAA incorporation
methods will provide new insights into the working mechanisms of proteins and holds
promise for the manipulation of processes in physiology and pathophysiology.

3.5. Upconversion Nanoparticles

A fundamental hindrance to the application of optogenetic methods in vivo is the
incapacity to stimulate deep within tissues without invasive fiber-optic probes. Most of
the currently available optogenetic tools respond to UV or visible light. This gives rise
to concerns of potential damage due to light stimulation and restricted penetration into
tissues, which requires the use of highly invasive implantation of optical fiber devices.
Near-infrared (NIR) lanthanide-doped upconversion nanoparticles (UCNPs) have been
proven to be suitable for overcoming these disadvantages [323–329].

UCNPs are luminous donors originating from rare-earth elements, whereas differ-
ent types have been generated. Depending on their composition, they can emit green
or blue light upon excitation with NIR light. In earlier studies (Figure 5A), UCNP stim-
ulation platforms have been engineered to efficiently transfer NIR light to the sample,
including, for instance, films with the UCNPs embedded and acting as scaffolds for cell
growth or implantable UCNP-packed transducers which convert light from NIR to the
visible wavelength range [330–332]. To circumvent the constraints of a low penetration
of excitatory light and invasiveness of light source implants, UCNPs were incorporated
together with genetically expressed light-sensitive ion channels into the cell or organism
of interest such as neurons, Caenorhabditis elegans, zebrafish, or rats to successfully acti-
vate channelrhodopsins [326,333–338]. Strategies to further reduce the distance between
UCNP and target proteins consist of the specific binding of the UCNPs to the protein
of interest, either through streptavidin-conjugated UCNPs or covalent tethering through
click-chemistry [323–325].
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Tm@NaYF4 upconversion nanoparticles (UCNPs). (B) Such UCNPs have been specifically targeted
via streptavidin conjugation (StrepTag (red cross)) to Orai1 channels in the plasma membrane. (C) This
allowed for LOV2-STIM1 and subsequent Orai1 stimulation using NIR-light irradiation (schematics
adapted from reference [279]).

In the Ca2+ signaling field, streptavidin-conjugated UCNPs were used as NIR light
transducers in close proximity to stimulate an optically sensitive CRAC channel using
light in the near-infrared range in deep tissue [279]. The UCNPs used were found to be
highly photostable, and their inherent upconversion characteristics (NIR excitation and
emission in the visible light range) render them an optimal tool for achieving remote light
stimulation of Opto-CRAC channel function [279]. To reach the absorption range of LOV2,
UCNPs (40-nm b-NaYF4: Yb, Tm@b-NaYF4 UCNPs) were chosen, which are emitted upon
excitation with 980 nm light in the blue region of 470 nm. This was assumed to be suitable
to excite recombinant LOV2 proteins with the emitted blue light, which is reversible in
the dark state. This shows that a spectral shift towards the NIR region is feasible. To
effectively exploit this possibility in living cells, streptavidin-conjugated UCNPs were
designed and bound to Orai1 channels, which included a genetically encoded streptavidin-
binding tag (StrepTag) in the second extracellular loop (mCh-ORAI1StrepTag). Indeed, it
was demonstrated that streptavidin-conjugated UCNPs could be recruited to Orai1StrepTag
(Figure 5B) and successfully trigger Ca2+ influx via LOV2-Orai1 via NIR light excitation, as
detected using various genetically encoded Ca2+ indicators [279] (Figure 5C).

This enabled the wireless light-dependent activation of Ca2+-dependent signaling
processes in a mouse model of melanoma. As a result, antigen-specific immune reactions
were stimulated, and tumor growth and metastasis were inhibited upon irradiation using
external NIR light [279].

In summary, these are promising approaches for reaching deeper tissue layers. While
this has been successfully demonstrated for tissues equipped with light-sensitive proteins,
there is still significant potential for their use in combination with unnatural amino acids.
Especially for photoswitchable UAAs, which are excitable in the blue light range, these
approaches can be well-utilized. Nevertheless, further developments are still needed to
introduce these tools into cells and tissues of interest in a targeted manner.

3.6. Photosensitive Drugs

Recently, optogenetic attempts have been used to control Ca2+ channels with a high
spatial and temporal resolution [265,279,339]. However, optogenetic methods are limited
in certain cases, as they require the introduction of exogenous genes and the expression of
non-native proteins. Conversely, photopharmacological strategies [340–343] involve the
use of photoswitchable molecules to precisely control the effects of bioactive targets such
as ion channels [344–346] or receptors [347–349] in space and time (Figure 6A).

A number of photoswitchable ligands, including photoswitchable-soluble and
photoswitchable-tethered ligands, have been designed in the Ca2+ ion channel fields.
They have not only been used to manipulate the respective channel type but also in native
tissue and organisms. This has been previously reviewed [264].

Meanwhile, research on a few photoswitchable ligands that act on CRAC channels has
been published. To achieve this, known CRAC channel inhibitors, including GSKs [350,351]
and Synta66 [352,353], have been transformed via azobenzene incorporation into various
photoswitchable derivatives, piCRACs [344]. Most notably, the so-called piCRAC-1, which
is based on the compound GSK-5498A, was capable of reversibly switching CRAC channels
on and off via light stimulation at changing wavelengths (Figure 6A,B). In particular, the
cis-state of piCRAC-1 was suitable for inhibiting CRAC currents [344]. Recently, Synta66
was reported to bind to a region near the pore [354]. Thus, it is reasonable to assume
that the GSKs and piCRAC-1 act at sites near the pore, but further evidence is required
for this. Alternatively, another study [355] found that the fusion of the CRAC channel
modulator 2-aminoethoxydiphenyl borate (2-APB) with an azobenzene moiety enabled
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the development of light-switchable CRAC channel modulators called LOCI-1 and LOCI-2
(Figure 6A,B). In particular, LOCI-1 allowed for optical control over CRAC channel function
in a highly spatiotemporal manner using alternating irradiation with UV (360 nm) and
green (520 nm) light. As it inhibits Orai1, but not Orai3, a chimeric approach was used to
show that the LOCI-1 inhibits CRAC channel activity through an extracellular site close to
the channel pore [355].
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Figure 6. Schematic summarizing the application of photosensitive drugs to the CRAC channel.
(A) Photosensitive drugs can be switched by the application of two alternating wavelengths between
two conformations. Two CRAC channel modulators, LOCI and piCRAC, contain an azobenzene
moiety to allow for reversible switching with two wavelengths. (B) LOCI and piCRAC have been
used to modulate the function of STIM1/Orai1 currents.

Both compounds, piCRAC-1 and LOCI-1, could be used in vivo in the context of
disease [344,355]. piCRAC was shown to allow for optical control of Stormorken syndrome
in a zebrafish model to relieve hemorrhage and thrombocytopenia [344]. LOCI-1 was used
to gain optical control of Ca2+-dependent gene expression in T lymphocytes as well as
metastatic cell seeding and nocifensive behavior in mice [355].

Overall, optopharmacology in CRAC channels is suitable to optically interfere with
pathological conditions linked to dysbalanced Ca2+ signaling. Its combination with UCNPs
could further extend its application fields.

3.7. Engineered Immune Cells

Engineered antigen receptors have revolutionized the treatment of hematologic ma-
lignancies, showing promising outcomes in cell-based therapies combating a variety of
cancers. The most clinically employed is the autologous chimeric antigen receptor (CAR)
T cell therapy, which has lately entered into the mainstream of certain blood cancer treat-
ments [356]. After isolating T lymphocytes from a patient, cells are genetically modified to
express CARs on their surfaces. CARs are synthetic T cell receptors consisting of a tumor-
recognizing single chain variable fragment (scFv) fused by a spacer or a transmembrane
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domain to intracellular T cell signaling domains of the CD3ζ−ITAM subunit [357–359]
(Figure 7). Upon binding to specific antigen on tumor cells CARs stimulate T cell activation
and tumor-killing function [357,358].
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Figure 7. Schematic summarizing the linkage of CRAC channels and the application of CAR-T cells.
(left) Schematic showing T cell receptors compared to (right top) engineered CAR T cell receptors
and associated downstream signaling pathways. (right bottom) Antigen binding to TCR initiates a
PLC-dependent Ca2+ signaling pathway to activate customized gene expression. (bottom) Schematic
summarizing the principle of conventional CAR T cell and UCNP-mediated wireless controllable light-
switchable CAR T cells (LiCAR-T). LiCAR-T contains two non-functional polypeptides containing
one component of a pair of optical dimerizers in each part (either LOV2-ssrA/sspB or CRY2/CIBN).
UCNP converts NIR excitation into blue emission, which subsequently initiates the assembly of
optical dimerizers and brings the two CAR parts into close proximity to enable functional CAR
reassembly (schematics adapted from reference [360]).
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T cell priming and activation determine the strength and effectiveness of Ca2+ signals
via CRAC channels and subsequent immune responses against tumors. Understanding
and manipulating Ca2+ signaling pathways in T cells can have implications for enhancing
the efficacy of CAR-T cell therapy and improving the overall function of T cells [356–359]
(Figure 7).

Although CAR T cell therapy products have been approved by the Food and Drug
Administration for clinical applications, they can cause severe side effects such as cytokine
release syndrome (CRS) due to uncontrolled release of proinflammatory cytokines and
“on-target off-tumor” toxicity. Controlling T cell activities in vivo at a high spatiotemporal
resolution can be one solution to this problem. Optogenetics provides versatile tools for
the control of cellular functions with superior spatiotemporal precision using light of
different wavelengths.

Nano-optogenetic immunotherapy has recently been shown to successfully activate
CAR T cells only within the tumor microenvironment and greatly diminish “on-target,
off-tumor” cytotoxicity and systematic CRS [360]. The activity of engineered CAR-T
cells was precisely controlled by introducing a LOV-based optogenetic device (LOV2-
SssrA/sspB) into CARs (OptoCARs). OptoCARs or LiCARs (light-inducible CARs) contain
two non-functional parts bearing photo-responsive modules in each part. Part A contains
an anti-CD19 single-chain variable fragment (scFv), a costimulatory domain (4-1BB), and
an intracellular light-inducible dimerization domain ssrA-cpLOV2, while Part B consists
of a T cell receptor-derived CD3ζ subunit and sspB domain as the binding partner of
ssrA [360]. After coexpressing the two components encoding constructs in Jurkat cells,
the assembly of functional optoCARs upon light stimulation was proven using Ca2+- and
CRAC channel-dependent NFAT-dependent expression of luciferase and interleukin-2
production readouts for T cell activation. Additionally, photostimulated optoCAR suc-
cessfully induced cytotoxicity in the co-cultured CD19+ Raji tumor cells in an ex vivo
model [360]. Furthermore, the efficacy of the opto-CAR T cells was evaluated in mouse
models of lymphoma and melanoma. To overcome limited tissue penetration problems,
upconversion nanoparticles (UPCNs) or nanoplates were applied as nanotransducers to
convert deep tissue-penetrating NIR light into blue light for photostimulation. Biotinylated
LiCAR T cells were conjugated to streptavidin-coated UCNPs, and the Stv-UCNP-LiCAR T
cells exhibited NIR light-inducible anti-tumor activity, T cell proliferation within the tumor
microenvironment, and IFNγ−production in vivo [360] (Figure 7). This nano-optogenetic
approach shows spatiotemporal, wireless, and reversible control of CAR T cells, holding
the potential for improved precision and safety in cancer immunotherapy [357–360].

Another class of synthetic antigen receptors that have been engineered is known as
synthetic Notch (syNotch) receptors [361,362]. These receptors consist of an antigen binding
domain, the Notch core protein derived from the Notch/Delta signaling pathway, and a
transcription factor. Instead of initiating T cell signaling upon binding to the target antigen,
the Notch protein is enzymatically cleaved by endogenous proteases, thus releasing the
transcription factor from the cell membrane. As a result, the subsequent translocation of
the transcription factor into the nucleus leads to transcriptional regulation of target genes.
However, these engineered immune cells are customized to recognize only one antigen.
A linkage between Notch signaling and SOCE was narrowed down from observations in
human pulmonary arterial smooth muscle cells, which demonstrated that store-operated
Ca2+ entry is enhanced upon Notch-activation by the ligand Jeg-1. However, the underlying
mechanisms are still unknown, but they could be based on a direct interplay between
intracellular Notch proteins and one of the SOCE components [363,364]. Further studies
using synNotch could help to clarify this.
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To extend the targeting capabilities of CAR and syNotch receptors, a so-called a
“universal” receptor system was developed. With this new concept, these receptors were
genetically fused with SNAPtag (O6-methylguanine-DNA methyltransferase), and there-
after, they covalently bound with benzylguanine (BG)-conjugated antibodies. Applying BG
antibodies as universal adapters, SNAP-CAR and SNAP-Notch-engineered CAR-T cells
enabled researchers to recognize various tumor antigens and consequently reduce tumor
size in vivo in a human tumor xenograft mouse model [362].

A promising and complementary approach to optogenetics is to implement designer
receptors exclusively activated by designer drugs (DREADDs) for selectively manipulating
different cell populations [365]. These chemogenetic tools, heavily applied in neuroscience,
show promising outcome for targeting GPCR-mediated downstream Ca2+ transduction
pathways. There is some evidence that GPCR-mediated Ca2+ entry also involves CRAC-
dependent signaling pathways leading to subsequent activation of gene transcription
programs [366]. However, in-depth investigations would be needed to understand how
GPCRs interplay with Orai channels and whether these pathways activate distinct down-
stream transcription factors in specific subsets of immune cells. Added to this, the employ-
ment of photosensitive drugs or optogenetic strategies would contribute to deciphering
GPCR-mediated Ca2+ signaling pathways with a high spatiotemporal resolution.

To this end, engineered immune cell therapies are now being applied in clinical
practice to fight certain blood cancers, but they still suffer from severe side-effects. As
a future direction, (nano) optogenetic-engineered immunotherapy promises better and
safer control of the immune response in patients and can pave the way for personalized
anti-cancer therapy for next-generation precision medicine.

3.8. Therapeutic Antibodies, Nanobodies, Antibody Mimetics

Therapeutic antibodies hold a myriad of advantages over small molecules and peptides
as a result of their specificity, bioavailability, half-life, and effector functions. However,
there are only a few monoclonal antibodies (mAbs) targeting ion channels, which have
recently entered into the clinical pipeline. One of these is a novel anti-human Orai1 antibody
DS-2741a, which reached clinical phase 1 study in 2020. It is a humanized Fc-silent IgG1
that targets Orai1 for the treatment of atopic dermatitis [367].

Antibody derivatives and mimetics have been developed as promising alternatives
to therapeutic antibodies, offering numerous advantages such as their small size, ease of
production, high stability, low immunogenicity, and efficient tissue penetration [368,369].
One step further is to spatiotemporally control the activity of antibody derivatives and
mimetics over target protein binding using light-controlled and chemically inducible dimer-
ization systems. In recent years, a variety of reversible and light-switchable protein binders
have been developed, such as opto-nanobodies (OptoNBs) [370] and OptoMonobodies
(OptoMB) fused with the LOV domain [371] as well as Optobodies bearing a Magnet
optical dimerization system [372]. Additionally, the reassembly of a chemically switchable
split nanobody (Chessbody) using a cpFRP-FKBP-based CID system was demonstrated
against different protein targets [373]. In another light-activatable approach, a photocaged
variant of the ultra-high affinity ALFA-tag nanobody (ALFA-tag photobody) were prepared
using GCE technology [374]. These activatable protein binders can be applied to cells
to dynamically control (endogenous) target binding with subcellular spatial precision,
thereby modulating signaling pathways. However, their application in exploring cellular
downstream processes related to CRAC channels has yet to be explored.

3.9. Conclusion and Perspectives

In summary, precise control over the proximity of signaling molecules within the
cell offers novel paths to understand protein working mechanisms and their function in
physiological and pathophysiological processes. The application of synthetic biology tools
to CRAC channels has proven to be suitable for target-specific stimulation of their func-
tion and immune cell related downstream signaling cascades. In particular, optogenetic
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tools enable fast modulation of biological processes within seconds. A key criterion for
high spatiotemporal control over protein functions and biological processes is reversible
controllability. While several photosensory tools can be controlled in a reversible manner,
chemical dimerizers, proteolytic cleavage, or photocrosslinking UAAs can only be operated
irreversibly. Among photosensory UAAs, photoswitchable ones have been synthesized and
shown to be suitable for reversible manipulation of protein function using two alternating
wavelengths [305,306,375]. This, however, has so far only been accomplished for calmod-
ulin [306,375] and glutamate receptors [307]. Nevertheless, such reversibly modulatable
optogenetic tools promise to selectively trigger different short- or long-term immune cell
responses by altering the oscillation frequency of Ca2+ signals through different exposure
times. Furthermore, these tools could help to achieve optimal Ca2+ levels suitable to achieve
cancer killing as well as reductions in cancer cell growth. Alternatively, the combination
of distinct synthetic biology tools might be beneficial for target-specific regulation of the
various facets of immune responses. For medical applications, deep tissue penetration
is mandatory, which among optical tools is only possible using infrared light. This has
been successfully achieved via a bypass solution using UCNPs [280], which are excitable
in the near-infrared light range and emit light of wavelengths that are suitable for stim-
ulation in the blue/green light range, as shown for photosensory proteins. For the latter
application, reversible manipulation between blue light and a dark state was required. For
systems to be switched using alternating wavelengths, such as photoswitchable drugs,
UCNPs are required, which can be switched between two emission wavelengths through
excitation via two wavelengths in the infrared range. Alternatively, a strategy would be to
synthesize photosensory compounds that can be switched in the near-infrared range. This,
however, requires significant substitutions, typically making molecules bigger and is thus
less suitable for modulation of protein function.

In addition to the direct targeting of CRAC channels via synthetic biology tools, Ca2+

entry pathways and downstream immune response could be addressed indirectly using
chimeric receptors. Currently, cell therapy is performed using the patient’s own cells to
avoid problems with immune rejection and is therefore not yet widely applicable. For the
latter, approaches would have to be created that make it possible to immunize every cell,
which brings safety concerns regarding the safe elimination of these cells. Kill switches
offer a new possibility for cell killing, but these are difficult to maintain in the genome
due to natural selection. Although engineered immune cells have reached the level of
clinical trials, significant research work still needs to be performed in this area to create safe
systems for their therapeutic use [208].

Overall, synthetic biology offers great opportunities for the selective modulation of
Ca2+ signaling processes in immunology and other disciplines. On the one hand, they can
provide new insights into the structure/function relationship of the respective modulated
proteins, and on the other hand, they are tools for understanding and controlling specific
downstream signaling processes.
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Abbreviations

AARS Aminoacyl-tRNA synthetase
AtCRY2 Cryptochrome 2 derived from Arabidopsis thaliana
BACCS Blue light-activated Ca2+ channel switch
BCR B cell receptor
BG Benzylguanine
Ca2+ Calcium
CAD CRAC activation domain
CAR Chimeric antigen receptor
CC coiled-coil
CIB1 Cryptochrome-interacting basic helix-loop-helix 1 region
CIP Chemical inducer
CRAC Ca2+ release-activated Ca2+

CREB cAMP response element-binding protein
CRISPR-Cas9 Clustered regularly interspaced short palindromic repeats–associated-9 nuclease
CRS Cytokine release syndrome
CRY2 Cryptochrome 2
CTL Cytotoxic T cells
CyP Prolyl isomerase
DC Dendritic cell
DAG Diacylglycerol
DREADD Designer receptor exclusively activated by designer drugs
EAE Experimental autoimmune encephalomyelitis
EF-SAM EF-sterile alpha motif
ER Endoplasmic reticulum
ER–PM Endoplasmic reticulum–plasma membrane
FcεRII Fc-receptor for IgE
FcγR Fc-receptor for IgG
FMN Flavin mononucleotide
FKBP FK506 binding protein
FRB Ser/Thr phosphatase
GCE Genetic code expansion
GNb Nanobody against GFP
GoF Gain-of-function
GPCR G protein-coupled receptor
GvHD Graft-versus-host disease
IBD Inflammatory bowel disease
IFNγ Interferon-γ
IL Interleukin
iLID Light-induced dimer
INNP5E Inositol polyphosphate-5-phosphatase E
IP3 Inositol-1,4,5-trisphosphate
LiCAR Light-inducible CAR
LOCa Light-gated Ca2+ channel
LoF Loss-of-function
LOV2 Light-oxygen-voltage-sensing 2
NFAT Nuclear factor of activated T cells
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NIR Near-infrared
NK Natural killer
OASF Orai-activating small fragment
PCB Phytocyanobilin
PACE Protease-activated Orai activator
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PAS Period-ARNT-single-minded
PI Phosphatidylinositol
PIF Phytochrome-interacting factor
PI(4,5)P2 Phosphatidylinositol-4,5-bisphosphate
PI4P Phosphatidylinositol 4-phosphate
PHR N-terminal photolyase homology region
PJ Pseudojanin
PLCγ Phospholipase Cγ

POI Protein of interest
PM Plasma membrane
PPV Plum pox virus protease
RNAi RNA interference
Sac1 Phosphatidylinositol-3-phosphatase
SCID Severe combined immunodeficiency
STIM Stromal interaction molecule
SOAR STIM1-Orai activating region
SOCE Store-operated Ca2+ entry
SbMVp Sunflower mild mosaic virus protease
TCR T cell receptor
TEV Tobacco etch virus
Th T helper
TM Transmembrane
TME Tumor microenvironment
UAA Unnatural amino acid
UCPN Upconversion nanoparticles
UV8 UV resistance locus 8
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342. Szymański, W.; Beierle, J.M.; Kistemaker, H.A.V.; Velema, W.A.; Feringa, B.L. Reversible Photocontrol of Biological Systems by the

Incorporation of Molecular Photoswitches. Chem. Rev. 2013, 113, 6114–6178. [CrossRef]
343. Velema, W.A.; Szymanski, W.; Feringa, B.L. Photopharmacology: Beyond Proof of Principle. J. Am. Chem. Soc. 2014, 136,

2178–2191. [CrossRef]
344. Yang, X.; Ma, G.; Zheng, S.; Qin, X.; Li, X.; Du, L.; Wang, Y.; Zhou, Y.; Li, M. Optical Control of CRAC Channels Using

Photoswitchable Azopyrazoles. J. Am. Chem. Soc. 2020, 142, 9460–9470. [CrossRef] [PubMed]
345. Broichhagen, J.; Schönberger, M.; Cork, S.C.; Frank, J.A.; Marchetti, P.; Bugliani, M.; Shapiro, A.M.J.; Trapp, S.; Rutter, G.A.;

Hodson, D.J.; et al. Optical Control of Insulin Release Using a Photoswitchable Sulfonylurea. Nat. Commun. 2014, 5, 5116.
[CrossRef] [PubMed]

346. Schönberger, M.; Althaus, M.; Fronius, M.; Clauss, W.; Trauner, D. Controlling Epithelial Sodium Channels with Light Using
Photoswitchable Amilorides. Nat. Chem. 2014, 6, 712–719. [CrossRef] [PubMed]

https://doi.org/10.1085/jgp.201511531
https://www.ncbi.nlm.nih.gov/pubmed/26755770
https://doi.org/10.1016/j.scib.2022.02.016
https://www.ncbi.nlm.nih.gov/pubmed/36546250
https://doi.org/10.1002/adbi.201800233
https://www.ncbi.nlm.nih.gov/pubmed/32627341
https://doi.org/10.1016/j.actbio.2021.08.035
https://doi.org/10.1016/j.cophys.2020.08.004
https://doi.org/10.1039/C4CS00175C
https://doi.org/10.1039/C4CS00177J
https://doi.org/10.1038/nature08241
https://doi.org/10.1021/nn3000737
https://doi.org/10.1038/srep16533
https://doi.org/10.1039/C5NR03411F
https://www.ncbi.nlm.nih.gov/pubmed/26415758
https://doi.org/10.1073/pnas.1802064115
https://www.ncbi.nlm.nih.gov/pubmed/29891705
https://doi.org/10.1038/s41467-019-12506-w
https://www.ncbi.nlm.nih.gov/pubmed/31594932
https://doi.org/10.1126/science.aaq1144
https://doi.org/10.1002/adhm.201700446
https://www.ncbi.nlm.nih.gov/pubmed/28795515
https://doi.org/10.1002/anie.201612142
https://doi.org/10.1016/j.ymeth.2006.04.012
https://doi.org/10.1387/ijdb.093028sl
https://doi.org/10.1002/anie.201713080
https://doi.org/10.1021/acs.accounts.5b00129
https://www.ncbi.nlm.nih.gov/pubmed/26103428
https://doi.org/10.1002/anie.201601931
https://www.ncbi.nlm.nih.gov/pubmed/27376241
https://doi.org/10.1021/cr300179f
https://doi.org/10.1021/ja413063e
https://doi.org/10.1021/jacs.0c02949
https://www.ncbi.nlm.nih.gov/pubmed/32330031
https://doi.org/10.1038/ncomms6116
https://www.ncbi.nlm.nih.gov/pubmed/25311795
https://doi.org/10.1038/nchem.2004
https://www.ncbi.nlm.nih.gov/pubmed/25054942


Cells 2024, 13, 468 37 of 38

347. Hauwert, N.J.; Mocking, T.A.M.; Da Costa Pereira, D.; Kooistra, A.J.; Wijnen, L.M.; Vreeker, G.C.M.; Verweij, E.W.E.; De Boer,
A.H.; Smit, M.J.; De Graaf, C.; et al. Synthesis and Characterization of a Bidirectional Photoswitchable Antagonist Toolbox for
Real-Time GPCR Photopharmacology. J. Am. Chem. Soc. 2018, 140, 4232–4243. [CrossRef] [PubMed]

348. Hauwert, N.J.; Mocking, T.A.M.; Da Costa Pereira, D.; Lion, K.; Huppelschoten, Y.; Vischer, H.F.; De Esch, I.J.P.; Wijtmans, M.;
Leurs, R. A Photoswitchable Agonist for the Histamine H3 Receptor, a Prototypic Family A G-Protein-Coupled Receptor. Angew.
Chem. Int. Ed. 2019, 58, 4531–4535. [CrossRef]

349. Donthamsetti, P.; Konrad, D.B.; Hetzler, B.; Fu, Z.; Trauner, D.; Isacoff, E.Y. Selective Photoswitchable Allosteric Agonist of a G
Protein-Coupled Receptor. J. Am. Chem. Soc. 2021, 143, 8951–8956. [CrossRef]

350. Ashmole, I.; Duffy, S.M.; Leyland, M.L.; Morrison, V.S.; Begg, M.; Bradding, P. CRACM/Orai Ion Channel Expression and
Function in Human Lung Mast Cells. J. Allergy Clin. Immunol. 2012, 129, 1628–1635.e2. [CrossRef]

351. Derler, I.; Schindl, R.; Fritsch, R.; Heftberger, P.; Riedl, M.C.; Begg, M.; House, D.; Romanin, C. The Action of Selective CRAC
Channel Blockers Is Affected by the Orai Pore Geometry. Cell Calcium 2013, 53, 139–151. [CrossRef] [PubMed]

352. van Kruchten, R.; Braun, A.; Feijge, M.A.H.; Kuijpers, M.J.E.; Rivera-Galdos, R.; Kraft, P.; Stoll, G.; Kleinschnitz, C.; Bevers, E.M.;
Nieswandt, B.; et al. Antithrombotic Potential of Blockers of Store-Operated Calcium Channels in Platelets. Arterioscler. Thromb.
Vasc. Biol. 2012, 32, 1717–1723. [CrossRef] [PubMed]

353. Zhang, X.; Xin, P.; Yoast, R.E.; Emrich, S.M.; Johnson, M.T.; Pathak, T.; Benson, J.C.; Azimi, I.; Gill, D.L.; Monteith, G.R.; et al.
Distinct Pharmacological Profiles of ORAI1, ORAI2, and ORAI3 Channels. Cell Calcium 2020, 91, 102281. [CrossRef]

354. Waldherr, L.; Tiffner, A.; Mishra, D.; Sallinger, M.; Schober, R.; Frischauf, I.; Schmidt, T.; Handl, V.; Sagmeister, P.; Köckinger,
M.; et al. Blockage of Store-Operated Ca2+ Influx by Synta66 Is Mediated by Direct Inhibition of the Ca2+ Selective Orai1 Pore.
Cancers 2020, 12, 2876. [CrossRef]

355. Udasin, R.; Sil, A.; Zomot, E.; Achildiev Cohen, H.; Haj, J.; Engelmayer, N.; Lev, S.; Binshtok, A.M.; Shaked, Y.; Kienzler, M.A.;
et al. Photopharmacological Modulation of Native CRAC Channels Using Azoboronate Photoswitches. Proc. Natl. Acad. Sci. USA
2022, 119, e2118160119. [CrossRef] [PubMed]

356. Han, D.; Xu, Z.; Zhuang, Y.; Ye, Z.; Qian, Q. Current Progress in CAR-T Cell Therapy for Hematological Malignancies. J. Cancer
2021, 12, 326–334. [CrossRef] [PubMed]

357. Zhang, C.; Liu, J.; Zhong, J.F.; Zhang, X. Engineering CAR-T Cells. Biomark. Res. 2017, 5, 1–6. [CrossRef] [PubMed]
358. Lindner, S.E.; Johnson, S.M.; Brown, C.E.; Wang, L.D. Chimeric Antigen Receptor Signaling: Functional Consequences and Design

Implications. Sci. Adv. 2020, 6, eaaz3223. [CrossRef]
359. Abrantes, R.; Duarte, H.O.; Gomes, C.; Wälchli, S.; Reis, C.A. CAR-Ts: New Perspectives in Cancer Therapy. FEBS Lett. 2022, 596,

403–416. [CrossRef] [PubMed]
360. Nguyen, N.T.; Huang, K.; Zeng, H.; Jing, J.; Wang, R.; Fang, S.; Chen, J.; Liu, X.; Huang, Z.; You, M.J.; et al. Nano-Optogenetic

Engineering of CAR T Cells for Precision Immunotherapy with Enhanced Safety. Nat. Nanotechnol. 2021, 16, 1424–1434. [CrossRef]
[PubMed]

361. Yang, Z.; Yu, Z.; Cai, Y.; Du, R.; Cai, L. Engineering of an Enhanced Synthetic Notch Receptor by Reducing Ligand-Independent
Activation. Commun. Biol. 2020, 3, 116. [CrossRef] [PubMed]

362. Ruffo, E.; Butchy, A.A.; Tivon, Y.; So, V.; Kvorjak, M.; Parikh, A.; Adams, E.L.; Miskov-Zivanov, N.; Finn, O.J.; Deiters, A.; et al.
Post-Translational Covalent Assembly of CAR and SynNotch Receptors for Programmable Antigen Targeting. Nat. Commun.
2023, 14, 2463. [CrossRef]

363. Yamamura, H.; Yamamura, A.; Ko, E.A.; Pohl, N.M.; Smith, K.A.; Zeifman, A.; Powell, F.L.; Thistlethwaite, P.A.; Yuan, J.X.-J.
Activation of Notch Signaling by Short-Term Treatment with Jagged-1 Enhances Store-Operated Ca 2+ Entry in Human Pulmonary
Arterial Smooth Muscle Cells. Am. J. Physiol.-Cell Physiol. 2014, 306, C871–C878. [CrossRef]

364. Song, S.; Babicheva, A.; Zhao, T.; Ayon, R.J.; Rodriguez, M.; Rahimi, S.; Balistrieri, F.; Harrington, A.; Shyy, J.Y.-J.; Thistlethwaite,
P.A.; et al. Notch Enhances Ca2+ Entry by Activating Calcium-Sensing Receptors and Inhibiting Voltage-Gated K + Channels. Am.
J. Physiol.-Cell Physiol. 2020, 318, C954–C968. [CrossRef]

365. Zhang, S.; Gumpper, R.H.; Huang, X.-P.; Liu, Y.; Krumm, B.E.; Cao, C.; Fay, J.F.; Roth, B.L. Molecular Basis for Selective Activation
of DREADD-Based Chemogenetics. Nature 2022, 612, 354–362. [CrossRef]

366. Chaki, S.; Alkanfari, I.; Roy, S.; Amponnawarat, A.; Hui, Y.; Oskeritzian, C.A.; Ali, H. Inhibition of Orai Channel Function
Regulates Mas-Related G Protein-Coupled Receptor-Mediated Responses in Mast Cells. Front. Immunol. 2022, 12, 803335.
[CrossRef]

367. Hutchings, C.J. Mini-Review: Antibody Therapeutics Targeting G Protein-Coupled Receptors and Ion Channels. Antib. Ther.
2020, 3, 257–264. [CrossRef]

368. Muyldermans, S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [CrossRef]
369. Lucchi, R.; Bentanachs, J.; Oller-Salvia, B. The Masking Game: Design of Activatable Antibodies and Mimetics for Selective

Therapeutics and Cell Control. ACS Cent. Sci. 2021, 7, 724–738. [CrossRef]
370. Gil, A.A.; Carrasco-López, C.; Zhu, L.; Zhao, E.M.; Ravindran, P.T.; Wilson, M.Z.; Goglia, A.G.; Avalos, J.L.; Toettcher, J.E.

Optogenetic Control of Protein Binding Using Light-Switchable Nanobodies. Nat. Commun. 2020, 11, 4044. [CrossRef] [PubMed]
371. Carrasco-López, C.; Zhao, E.M.; Gil, A.A.; Alam, N.; Toettcher, J.E.; Avalos, J.L. Development of Light-Responsive Protein Binding

in the Monobody Non-Immunoglobulin Scaffold. Nat. Commun. 2020, 11, 4045. [CrossRef] [PubMed]

https://doi.org/10.1021/jacs.7b11422
https://www.ncbi.nlm.nih.gov/pubmed/29470065
https://doi.org/10.1002/anie.201813110
https://doi.org/10.1021/jacs.1c02586
https://doi.org/10.1016/j.jaci.2012.01.070
https://doi.org/10.1016/j.ceca.2012.11.005
https://www.ncbi.nlm.nih.gov/pubmed/23218667
https://doi.org/10.1161/ATVBAHA.111.243907
https://www.ncbi.nlm.nih.gov/pubmed/22580895
https://doi.org/10.1016/j.ceca.2020.102281
https://doi.org/10.3390/cancers12102876
https://doi.org/10.1073/pnas.2118160119
https://www.ncbi.nlm.nih.gov/pubmed/35312368
https://doi.org/10.7150/jca.48976
https://www.ncbi.nlm.nih.gov/pubmed/33391429
https://doi.org/10.1186/s40364-017-0081-z
https://www.ncbi.nlm.nih.gov/pubmed/28127428
https://doi.org/10.1126/sciadv.aaz3223
https://doi.org/10.1002/1873-3468.14270
https://www.ncbi.nlm.nih.gov/pubmed/34978080
https://doi.org/10.1038/s41565-021-00982-5
https://www.ncbi.nlm.nih.gov/pubmed/34697491
https://doi.org/10.1038/s42003-020-0848-x
https://www.ncbi.nlm.nih.gov/pubmed/32170210
https://doi.org/10.1038/s41467-023-37863-5
https://doi.org/10.1152/ajpcell.00221.2013
https://doi.org/10.1152/ajpcell.00487.2019
https://doi.org/10.1038/s41586-022-05489-0
https://doi.org/10.3389/fimmu.2021.803335
https://doi.org/10.1093/abt/tbaa023
https://doi.org/10.1146/annurev-biochem-063011-092449
https://doi.org/10.1021/acscentsci.0c01448
https://doi.org/10.1038/s41467-020-17836-8
https://www.ncbi.nlm.nih.gov/pubmed/32792536
https://doi.org/10.1038/s41467-020-17837-7
https://www.ncbi.nlm.nih.gov/pubmed/32792484


Cells 2024, 13, 468 38 of 38

372. Yu, D.; Lee, H.; Hong, J.; Jung, H.; Jo, Y.; Oh, B.-H.; Park, B.O.; Heo, W. Do Optogenetic Activation of Intracellular Antibodies for
Direct Modulation of Endogenous Proteins. Nat. Methods 2019, 16, 1095–1100. [CrossRef]

373. Lee, Y.-T.; He, L.; Zhou, Y. Expanding the Chemogenetic Toolbox by Circular Permutation. J. Mol. Biol. 2020, 432, 3127–3136.
[CrossRef] [PubMed]

374. Jedlitzke, B.; Mootz, H.D. A Light-Activatable Photocaged Variant of the Ultra-High Affinity ALFA-Tag Nanobody. ChemBioChem
2022, 23, e202200079. [CrossRef] [PubMed]

375. Hoppmann, C.; Wang, L. Genetically Encoding Photoswitchable Click Amino Acids for General Optical Control of Conformation
and Function of Proteins. Methods Enzymol. 2019, 624, 249–264. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41592-019-0592-7
https://doi.org/10.1016/j.jmb.2020.03.033
https://www.ncbi.nlm.nih.gov/pubmed/32277990
https://doi.org/10.1002/cbic.202200079
https://www.ncbi.nlm.nih.gov/pubmed/35411584
https://doi.org/10.1016/bs.mie.2019.04.016
https://www.ncbi.nlm.nih.gov/pubmed/31370932

	Introduction—The Role of Ca2+ Release-Activated Ca2+ (CRAC) Channels in Immunology 
	CRAC Channel Working Mechanisms 
	Synthetic Biology, Application to CRAC Channels, and Impact on CRAC Channel-Dependent Downstream Signaling 
	Chemical Inducers of Proximity (CIPs) 
	Proteolysis-Based Signaling 
	Photosensory Domains 
	Light-Induced Oligomerization 
	Light-Induced Uncaging 
	Genetically Encoded Light-Sensitive CRAC Channel Components in the Immune Response 

	Unnatural Amino Acids 
	Upconversion Nanoparticles 
	Photosensitive Drugs 
	Engineered Immune Cells 
	Therapeutic Antibodies, Nanobodies, Antibody Mimetics 
	Conclusion and Perspectives 

	References

