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Abstract: The involvement of central and peripheral inflammation in the pathogenesis and prognosis
of major depressive disorder (MDD) has been demonstrated. The increase of pro-inflammatory
cytokines (interleukin (IL)-1β, IL-6, IL-18, and TNF-α) in individuals with depression may elicit
neuroinflammatory processes and peripheral inflammation, mechanisms that, in turn, can contribute
to gut microbiota dysbiosis. Together, neuroinflammation and gut dysbiosis induce alterations in
tryptophan metabolism, culminating in decreased serotonin synthesis, impairments in neuroplasticity-
related mechanisms, and glutamate-mediated excitotoxicity. This review aims to highlight the inflam-
matory mechanisms (neuroinflammation, peripheral inflammation, and gut dysbiosis) involved in
the pathophysiology of MDD and to explore novel anti-inflammatory therapeutic approaches for this
psychiatric disturbance. Several lines of evidence have indicated that in addition to antidepressants,
physical exercise, probiotics, and nutraceuticals (agmatine, ascorbic acid, and vitamin D) possess
anti-inflammatory effects that may contribute to their antidepressant properties. Further studies are
necessary to explore the therapeutic benefits of these alternative therapies for MDD.

Keywords: anti-inflammatory approaches; gut dysbiosis; inflammation; major depressive disorder

1. Introduction

Major depressive disorder (MDD) is characterized by depressed mood and/or loss of
interest or pleasure, together with changes in appetite and sleep, pessimism associated with
feelings of guilt and/or worthlessness, impaired concentration, decreased energy or fatigue,
along with other symptoms [1]. It is one of the most frequent and disabling psychiatric
disorders, affecting all aspects of life. Estimates indicate that 3.8% of the population suffers
from MDD worldwide, with a prevalence of 5% in adults and 5.7% in the elderly, being
50% more common in women than in men. In severe cases, it can lead to suicide, which is
the cause of death of more than 700,000 people every year [2].

Although the pathophysiology of MDD is not yet fully elucidated, this complex
and multifactorial disorder is thought to involve multiple genetic, environmental, and
neurobiological factors [3]. Indeed, approximately 50% of patients present with MDD that
is refractory to classic antidepressant drugs, thus disputing the monoaminergic hypothesis
of depression and suggesting that other monoamine-independent mechanisms are also
involved in the neurobiology of MDD [4,5].

Several lines of evidence have pointed towards a strong relationship between inflam-
matory processes and the pathophysiology of MDD. Peripheral proinflammatory cytokines
can reach the brain and activate glial cells, leading to neuroinflammation and affecting
behavior and emotions [6,7]. Increased proinflammatory cytokines are also associated with
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other mechanisms involved in MDD, including hyperactivity of the hypothalamic-pituitary-
adrenal (HPA) axis, dysfunction of the glutamatergic system, impairment of neuroplasticity,
dysbiosis of the gut microbiota, and alterations in tryptophan (TRP) metabolism [3,8,9].

Indeed, evidence has shown that systemic inflammatory markers, mainly interleukin
(IL)-6, tumor necrosis factor-α (TNF-α), and C reactive protein (CRP) are commonly ele-
vated in MDD-affected individuals as compared to controls, suggesting the presence of
chronic low-grade inflammation in MDD [10–12]. Importantly, immune system activation
is observed in both clinical studies and in animal models of MDD, since the relationship
between the peripheral immune system and neuroimmunological mechanisms is associated
with the onset and maintenance of depressive symptoms [6,7]. In particular, animal studies
have demonstrated that peripheral cytokines can affect brain circuits, behaviors, and mood
directly and indirectly [13,14]. Moreover, patients treated with cytokines such as IL-2 and
interferon-γ (IFN-γ) for viral infections or cancer may develop depressive symptoms [15].
Additionally, individuals with autoimmune and chronic inflammatory diseases, including
rheumatoid arthritis, multiple sclerosis, fibromyalgia, and inflammatory bowel disease are
likely to experience depressive symptoms [16,17]. On the other hand, managing exacer-
bated inflammation can alleviate depressive symptoms and slow down the progression of
both MDD and its comorbidities [18–20].

Several clinical and preclinical studies have investigated how the immune system and
inflammatory pathways are involved in the neurobiology of MDD and have suggested that
MDD can be viewed as a systemic disorder [6,7]. In line with this idea, the modulation
of inflammatory mechanisms and promotion of homeostasis have been associated with
the beneficial effects of traditional antidepressants. This review aims to highlight the
main inflammatory mechanisms involved in the pathophysiology of MDD, including
the roles of glial cells, the peripheral immune system, and gut dysbiosis. Additionally,
new therapeutic approaches for this psychiatric disorder, including physical exercise,
probiotics, and some nutraceuticals that have anti-inflammatory properties will also be
discussed. Such alternative therapeutic strategies are particularly promising, considering
the limitations of the currently available antidepressants and the fact that poor responses
to classic antidepressants have been associated with aberrant inflammatory processes [21].

2. Neurobiology of Major Depressive Disorder

Stress is a well-characterized environmental risk factor for MDD, leading to the activa-
tion of the HPA axis [22,23]. This results in the secretion of glucocorticoids by the adrenal
cortex, which can then activate glucocorticoid receptors (GRs) expressed throughout the
body. In turn, glucocorticoids can elicit several genomic and non-genomic physiological
processes that affect several metabolic, immunological, and cognitive functions [24].

Several clinical and pre-clinical studies have demonstrated that HPA axis abnormali-
ties, including glucocorticoid hypersecretion, GR resistance, and loss of negative feedback,
are found in MDD [25]. In fact, a high percentage of MDD individuals have higher plasma
and salivary cortisol levels when compared with healthy controls [26]. Furthermore, a
meta-analysis showed a predictive effect of cortisol levels on the onset of MDD [27], while
Cattaneo et al. [28] demonstrated that treatment-resistant and non-treated MDD patients
had glucocorticoid resistance along with increased levels of pro-inflammatory cytokines, as
demonstrated using whole-blood mRNA expression analysis. In addition, using binomial
logistics models, a signature of GR, P2X purinoceptor 7 (P2RX7), IL-1β, IL-6, TNF-α, and
CXC motif chemokine ligand 12 (CXCL12) mRNAs was shown to discriminate treatment-
resistant patients from responsive patients.

In pre-clinical studies, stress exposure or chronic administration of corticosterone (ana-
log of cortisol) in rodents is known to induce depressive-like behaviors, whereas pharma-
cological inhibition of corticosterone synthesis can prevent stress-induced depressive-like
behaviors, further emphasizing the involvement of the HPA axis in MDD [29,30]. A dys-
functional HPA axis is associated with an abnormal pro-inflammatory cytokine profile [31].
In addition, chronic mild stress was shown to result in depressive-like behaviors, along
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with an increase in the brain levels of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6),
and a decrease in the brain levels of anti-inflammatory cytokines (transforming growth
factor-β (TGF-β) and IL-10 in the brain) [32–34]. Furthermore, IL-6 has been associated with
increased activity of the HPA axis by increasing cortisol levels and coordinating biological
pathways underlying stress and stress-induced depression [35].

Another mechanism that has been widely investigated is the dysfunction of the gluta-
matergic system and its relationship with impairments in neurogenesis and synaptogenesis,
all of which have been implicated in MDD [36]. The involvement of the glutamater-
gic system in MDD is supported by the rapid antidepressant effect of ketamine, an N-
methyl-D-aspartate (NMDA) receptor antagonist [37]. Mechanistically, the blockage of
NMDA receptors by ketamine favors the activation of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors in pyramidal neurons, culminating in a calcium
influx through voltage-dependent calcium channel with the consequent release of the
brain-derived neurotrophic factor (BDNF), which in turn activates pathways related to
neurogenesis and synaptogenesis, thus improving depressive symptoms [38]. Research
has shown that immuno-inflammatory pathways, including neuroinflammation, with
microglial activation, astrocyte atrophy, and the release of inflammatory cytokines, are
involved in the dysfunction of the glutamatergic system found in MDD [7,39,40].

Peripheral inflammatory pathways can also reach the central nervous system through
several mechanisms, including the gut-microbiota-brain axis, which plays an important
role in psychiatric disorders, including MDD [41]. Recent studies have evaluated the
correlation between altered gut microbiota and MDD. Indeed, it is often hypothesized that
normalizing gut microbiota can improve depressive symptoms [42]. Importantly, inflam-
mation resulting from alterations of the gut-microbiota-brain axis has a significant adverse
impact on neurotrophin levels, which are critical in overcoming depressive symptoms by
maintaining synaptic plasticity [43]. Also, the dysregulation of the HPA axis found in MDD
is commonly influenced by neuroinflammation, which is often caused by an imbalance in
the gut-microbiota-brain axis [44]. Importantly, many studies have also demonstrated that
changes in the gut microbiota trigger inflammatory cytokines, such as IL-6, IL-1β, IL-2, and
IFN-γ. These cytokines can reach the brain through neuroanatomical and neuroendocrine
pathways, thus affecting mental health and behavior [14–17,45].

Tryptophan metabolism and the kynurenine (KYN) pathway (which can be influ-
enced by increases in inflammatory cytokines triggered by changes in gut microbiota and
neuroinflammation) are also thought to be involved in the onset of MDD [46–48]. The
KYN pathway may be either neuroprotective through the production of kynurenic acid
(KYNA, an NMDA receptor antagonist), or neurotoxic through the generation of quinolinic
acid (QA, an NMDA receptor agonist), which can lead to glutamatergic excitotoxicity
and ultimately neuronal damage [49–51]. Importantly, serotonin is synthesized through
TRP catabolism [52], and evidence shows that inflammation triggers a shift from the TRP
catabolism pathway to the neurotoxic kynurenine pathway, resulting in decreased serotonin
production [53–55]. The enzyme kynurenine monooxygenase (KMO) is responsible for con-
verting KYN into 3-hydroxy-kynurenine (3-HK), which is then further converted into QA.
This enzyme is mostly expressed in macrophages, monocytes, and microglial cells [56,57].
On the other hand, the enzyme kynurenine aminotransferase (KAT) is mainly expressed
by astrocytes, and is responsible for converting KYN to KYNA [49]. Therefore, the loss of
astrocytes observed in MDD may compromise the synthesis of KYNA [58,59]. Moreover,
QA-mediated excitotoxicity further result is astrocytic death in the MDD brain [51,60].
Indeed, an imbalance in the KYNA/QA ratio, with a reduction of KYNA and an excessive
production of QA, has been observed in MDD patients [61–63].

3. Neuroinflammation: Function of Glial Cells

Neuroinflammation can be caused by numerous factors including stress, infections, au-
toimmune diseases, and gut dysbiosis. These factors induce morphological and functional
alterations in glial cells, including microglia and astrocytes, and these are thought to play a
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fundamental role in the pathophysiology of MDD [64–66]. The main events underlying
microglial and astrocytic activation during the neuroinflammatory process are shown in
Figure 1.
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Figure 1. Mechanisms underlying microglial and astrocytic activation during neuroinflammation.
(A) The neuroinflammatory process is mainly characterized by the activation of glial cells, such as
astrocytes and microglia. Activation of these cells involves alterations in gene expression, which
induce morphological and functional changes, characterized mainly by the synthesis and release
of pro-inflammatory mediators. (B) Microglia activation can occur through pathogen-associated
molecular patterns (PAMPs) as well as damage-associated molecular patterns (DAMPs). These
factors activate Toll-like receptors (TLR) present on the microglial membrane. Once activated, these
receptors activate the adaptor protein myeloid differentiation factor 88 (MyD88), which in turn
modulates downstream pathways that promote the activation and translocation of nuclear factor
kappa-B (subunits p50/p65) and the transcription factor activator protein-1 (AP-1). Together, these
transcription factors induce the expression of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6,
pro-IL-1β, inducible nitric oxide synthase (iNOS), as well as components of the NLRP3 inflammasome
(ASC, pro-caspase-1, NLRP3). Subsequently, the NLRP3 inflammasome can be activated via reactive
oxygen species (ROS), P2X7 purinergic receptors, and TLRs that are activated by DAMPs and PAMPs,
respectively. NLRP3 activation promotes caspase activation, which cleave pro-IL-1β and pro-IL-18
into IL-1β and IL-18, respectively. In addition, during microglial activation, mediators such as TNF-α,
IL-1α, and complement component 1q (C1q) are synthesized and released. These mediators, in turn,
activate astrocytes (reactive astrocytes). (C) Reactive astrocytes lose their ability to maintain glutamate
homeostasis. They also tend to facilitate the release of glutamate. Consequently, a substantial increase
in glutamate in the extracellular medium induces an intense influx of calcium ions (Ca2+) mainly via
N-methyl D-aspartate (NMDA) receptors. This ionic influx favors an impairment in the ionic gradient
of the mitochondrial membrane and the endoplasmic reticulum. The rupture of these organelles,
in turn, induces the release of calcium from these intracellular stores. The resulting increase in
intracellular calcium concentration results in the activation of enzymes that degrade proteins, lipids,
and DNA. These mechanisms also favor apoptotic neuronal death.
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3.1. Microglia

Microglia are the main immune cells present in the Central Nervous System (CNS).
These cells are considered plastic, since they have different morphological and functional
states that vary according to the conditions of the environment (homeostatic or pathologi-
cal) [67]. Transcriptome analyses have revealed that during physiological conditions, mi-
croglia have a “resting” transcriptomic profile, which is characterized by greater expression
of genes that contribute to CNS maintenance. In contrast, in models of neurodegeneration,
inflammation, and ageing, microglia are thought to favor the expression of inflammatory
markers, thus triggering a gradient of microglial activation [68–70]. For example, in a
study using mice treated with lipopolysaccharide (LPS) in early life, it was possible to
observe a series of alterations in microglial gene expression that favored the development
of depressive-like behaviors in adolescence [71]. Furthermore, a sustained activation of
microglia associated with an increase in the levels of pro-inflammatory mediators has been
repeatedly observed in different models of depression induced by stress, inflammation or
gut dysbiosis [72–76]. Moreover, alterations in microglia have been detected in the pre-
frontal cortex, anterior cingulate cortex, hippocampus and amygdala of MDD patients [77].
In addition, there appears to be a correlation between microglial activation and the severity
of the depressive episode in humans [78,79].

Microglial cells express pattern recognition receptors (PRRs), such as Toll-like receptors
(TLRs). TLRs mediate microglial activation in response to damage-associated molecular
patterns (DAMPs) including ATP, heat shock proteins, high mobility group box 1 (HMGB1),
RNA, and DNA, as well as pathogen-associated molecular patterns (PAMPs) such as
bacterial lipoproteins, peptidoglycans, and endotoxins such as LPS [80,81]. Activation
of these receptors through DAMPs and/or PAMPs induces morphological and genetic
changes in microglia [82]. Morphologically, these changes are related to an increase in the
size of the soma, retraction of processes, and reduced branching of the distal branches,
resulting in an ameboid morphology [77,83].

During activation of TLRs, a pro-inflammatory signaling cascade is initiated [84].
For example, once activated by LPS, the TLR4 receptor associates with the adaptor pro-
tein myeloid differentiation factor 88 (MyD88) and induces the autophosphorylation
of interleukin-1 receptor-associated kinase (IRAK). Phosphorylated IRAK1 and IRAK4
subsequently dissociate from MyD88, allowing it to interact with tumor necrosis factor
receptor-associated factor 6 (TRAF6). This factor activates the transforming growth factor-β-
activated kinase-1 (TAK1) complex, which promotes two inflammatory pathways involving
mitogen-activated protein kinases (MAPK) and nuclear factor kappa-B (NF-kB) signal-
ing [85–87]. In the NF-kB pathway, activated TAK1 complex induces the phosphorylation
of the protein inhibitor of nuclear factor kappa B (IkB), which is then polyubiquitinated
and degraded. This event allows NF-kB p50/p65 to move to the nucleus [88]. On the
other hand, the activation of MAPK via TAK1 results in the phosphorylation and activation
of the transcription factor activator protein-1 (AP-1) [85,87]. Both transcription factors
bind to promoter regions that express pro-inflammatory genes such as TNF-α, inducible
nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), IL-6,
pro-IL-1β and components of the NLR family pyrin domain containing 3 (NLRP3) in-
flammasome [84,87,89]. In particular, the NLRP3 inflammasome as well as iNOS have
been explored as potential therapeutic targets for the management of MDD [64,90], since
inhibition and/or reduced expression of these proteins is related to improvements in
depressive-like behaviors in animal models [91,92].

iNOS is an enzyme that catalyzes the synthesis of nitric oxide (NO) by converting
L-arginine into L-citrulline and NO. Once synthesized, NO can be converted into nitrous
anhydride and/or the reactive species peroxynitrite. In high concentrations, peroxynitrite
may induce protein and lipid modifications, and the nitrosative deamination of DNA bases
such as guanine and cytosine, thus impairing gene expression [93,94]. In addition to iNOS,
the activation of neuronal nitric oxide synthase (nNOS) also may lead to deleterious effects
eithin the CNS. Of note, an increase in the expression of nNOS has been shown to impair



Cells 2024, 13, 423 6 of 34

neuroplasticity [95,96]. Given this, overexpression or dysregulation of NOS is thought to
contribute to MDD pathophysiology [90].

The continuous stimulation of microglia has been shown to promote the activation
of the NLRP3 inflammasome, leading to autoproteolytic cleavage of pro-caspase-1 into
active caspase-1. This can in turn cleave pro-IL-18 and pro-IL-1β into IL-18 and IL-1β,
respectively [84,97]. In addition, NLRP3 activation can lead to gasdermin D-mediated
membrane pore formation (GSDMD) and pyroptosis, characterized by intense cytokine
efflux, swelling, and membrane disruption, which culminates in glial death and the release
of DAMPs into the extracellular medium [84]. DAMPs released in this process can further
contribute to the maintenance of microglial activation. For example, ATP and/or ADP
can activate P2X7 purinergic receptors, which release TNF-α, thus contributing to the
neuroinflammatory process in MDD [98,99].

It is important to note that under neuroinflammatory conditions, microglia tend to
express fewer neuroprotective genes, which under normal circumstances provide trophic
support to neurons. These genes include BDNF, nerve growth factor (NGF), glial cell-
derived neurotrophic factor (GDNF), and neurotrophins (NT) 4/5. A decrease in trophic
support can in turn impair synaptic plasticity-related mechanisms, including neurogen-
esis [100]. Further to this, it has also been shown that activation of microglia CX3CR1
receptors via CX3CL1 (a CX3C class chemokine originating from neurons) also contributes
to neuronal survival [101]. However, under neurotoxicity conditions, there is a decrease
in CX3CL1 levels, further favoring an inflammatory state [102,103]. For example, a study
with mice subjected to a model of LPS-induced depressive behavior reported a decrease in
CX3CL1 levels and microglial activation and an associated increase in pro-inflammatory
cytokines [104]. Considering that mice deficient in CX3CR1 have impaired neurogene-
sis and synaptic plasticity, reduced expression of this chemokine could negatively affect
neuroplasticity pathways [105]. Interestingly, the neuronal glycoprotein cluster of differen-
tiation 200 (CD200) acts in a similar way to CX3CL1 by activating the microglial CD200R1
receptor [106,107]. In a chronic stress model induced by social defeat, the induction of
depressive-like behaviors was related to microglial activation and a decrease in CD200 in
the hippocampal dentate gyrus. In contrast, exogenous CD200 treatment alleviated the
neuroinflammatory response and increased BDNF expression, which in turn improved
hippocampal neurogenesis in this model [107]. These findings suggest that microglial
activation is one of the possible mechanisms underlying the impaired neuroplasticity seen
in MDD [77].

3.2. Astrocytes

In addition to microglia, astrocytes are also glial cells that can undergo morphological,
molecular, and functional changes in response to inflammation, turning into “reactive”
astrocytes. These changes alter the ability of astrocytes to maintain CNS homeostasis,
compromising neuronal survival [108]. In addition, the phagocytic activity and the abil-
ity to modulate excitatory synapses also appear to be compromised in reactive astro-
cytes [109]. Over the last few years, several studies have linked astrocytic activation and
MDD [110–112]. In line with this hypothesis, an increase in plasma levels of markers of
astrocytic activation, such as glial fibrillary acidic protein (GFAP) and S100β, are here
shown to be significantly increased in patients with treatment-resistant depression when
compared to healthy individuals [113].

Transcriptome studies have revealed that during adverse conditions, such as aging and
inflammation, there is a change in astrocytic gene expression. Under these circumstances,
the expression of homeostatic markers is decreased, while the expression of genes related
to pro-inflammatory mechanisms is enhanced. Interestingly, these changes appear to
be dependent on the brain region where these cells are located [70,114]. Interestingly,
transcriptome analysis indicated that the induction of inflammatory gene expression in
astrocytes is dependent on the Orai1 calcium channel, since genetic inhibition of this channel
prevented this induction. In addition, the knockout of Orai1 prevented an increase in the
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levels of inflammatory mediators in the hippocampus and the occurrence of depressive-like
behavior in LPS-treated mice [112].

Of note, rodent astrocytes do not express TLR4, which is necessary for LPS recognition.
In humans, although astrocytes express this receptor, they lack its downstream pathways,
including MYD88 [108]. As such, astrocytic activation seems to be partly dependent on mi-
croglial activation. Indeed, activated microglia have been shown to secrete mediators such
as IL-1α, TNF-α, and complement component 1q (C1q), which can induce the activation of
astrocytes and consequently promote the synthesis and release of a neurotoxin that favors
caspase 2/3-mediated apoptosis in oligodendrocytes and mature neurons. A recent study
reinforced these findings by demonstrating that activation of astrocytes in a stress-induced
depression model is only dependent on the activation of the NLRP3 inflammasome present
in microglia since the specific knockout of astrocytic NLRP3 was unable to mitigate the
activation of these glial cells [115]. Another mechanism by which microglia can induce
astrocytic activation is through stromal cell-derived factor (SDF)-1a, which interacts with
and activates CXC chemokine receptor type 4 (CXCR4). The activation of these receptors
results in a series of events, which favor a substantial increase in the release of glutamate
by astrocytes, inducing glutamatergic excitotoxicity [116,117].

It is well known that neuroinflammation induces glutamatergic dysfunction in astro-
cytes, and glutamatergic excitotoxicity has been associated with MDD [118,119]. Several
mechanisms can result in an increase in excitotoxicity, including dysfunction of glutamate
transporters, malfunction of glutamatergic receptors (particularly NMDA receptors), and
alterations in glutamate and calcium metabolism. In addition, factors such as mitochon-
drial dysfunction, neuronal damage, and oxidative stress can all favor excitotoxicity. These
mechanisms promote a substantial increase in glutamate in the synaptic cleft, leading
to intense activation of glutamatergic receptors [120]. Initially, ionotropic receptors such
as AMPA receptors, kainate receptors (KAR), and NMDA receptors are hyperactivated,
culminating in an intense influx of sodium (and calcium). Subsequently, metabotropic
glutamate receptors (mGluRs) are activated and synthesize second messengers such as
diacylglycerol and inositol 1,4,5-triphosphate, which can then activate downstream signal-
ing pathways [120,121]. The activation of glutamate ionotropic receptors favors neuronal
swelling, mainly due to the influx of sodium, and disrupts the ionic gradients present
across mitochondrial membranes and the endoplasmic reticulum, culminating in the re-
lease of calcium from these intracellular organelles [122]. The resulting significant increase
in intracellular calcium can then activate enzymes that degrade proteins, lipids, and nucleic
acids. Other enzymes can also be activated, such as phospholipase A2, cyclooxygenase-2,
and lipoxygenases involved in the synthesis of arachidonic acid, as well as its conversion
into prostaglandins, leukotrienes, and thromboxanes, a process that leads to the concomi-
tant production of reactive oxygen species (ROS). In addition, it has been shown that
calcium-induced activation of phospholipase A2 is capable of preventing neuronal hyper-
polarization by inhibiting gamma-aminobutyric acid (GABA) receptors (GABARs), further
contributing to glutamatergic excitotoxicity [120,123,124].

Notably, an increase in intracellular calcium concentration also promotes hyperacti-
vation of sodium/potassium and calcium ATPases as a measure to neutralize ion influx.
However, this results in excessive ATP consumption, resulting in neuronal energy deple-
tion. This state is further exacerbated by mitochondrial dysfunction, which is also caused
by excess calcium. Indeed, excessive mitochondrial calcium uptake through a specific
mitochondrial calcium transporter leads to mitochondrial depolarization, impairing ATP
synthesis as well as mitochondrial antioxidant defenses, further exacerbating energy deple-
tion and resulting in ROS formation. Together, these mechanisms eventually culminate in
apoptotic neuronal death through the activation of caspases and calpains [120]. In addi-
tion, excess extracellular glutamate can also inhibit the xc- system (a cystine/glutamate
antiporter that captures cystine inside the neurons and releases glutamate into the extracel-
lular environment), resulting in ferroptosis, another form of cell death [125,126].
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Furthermore, some enzymes associated with the cytosolic tail of the NMDA receptor,
such as calpains, death-associated protein kinase 1 (DAPK1), and nNOS are directly acti-
vated after the stimulation of this glutamate receptor [122]. In contrast, cAMP Response
Element-Binding Protein (CREB) signaling, which is known to promote neuroplasticity
mechanisms, is negatively regulated by this receptor [127].

3.3. Changes in the Blood–Brain Barrier Due to Glial Activation

Neuroinflammation has been associated with alterations in the permeability of the
blood–brain barrier (BBB) [128]. Indeed, microglial and astrocytic activation results in
the synthesis and release of numerous chemokines and cytokines, including monocyte
chemoattractant protein-1 (MCP-1), macrophage inflammatory protein1α (MIP-1α), IL-
6, TNF-α, and IL-1β, which impair the integrity of the BBB [129]. In addition to pro-
inflammatory mediators, activated glial cells significantly lead to the production of ROS
and reactive nitrogen species (RNS), which can in turn contribute to an increase in barrier
permeability [130]. Particularly, ROS synthesized by microglia can activate signaling
pathways that induce the activation of matrix metallopeptidase (MMP)-9, MMP-3, and
MMP-2, which remodel the cytoskeleton and negatively regulate the expression of tight
junctions, claudins, occludin, and zona occludin (ZO) [129].

In particular, IL-1β synthesized by microglia and activated astrocytes is known to
contribute to increased BBB permeability by interacting directly with IL-1 receptor type 1,
which is expressed by BBB cells, including brain microvascular endothelial cells, perivas-
cular astrocytes, and microglia [131]. In addition, IL-1β activation induces an increase in
the transcription of various adhesion molecules in brain microvascular endothelial cells,
and these help activated leukocytes adhering to the surface of these cells [129,132,133].
Particularly in astrocytes, the expression of vascular cell adhesion molecule-1 (VCAM-1)
dependent on TNF receptor 1 (TNFR1) has been associated with the traffic of T cells from
the perivascular spaces to the parenchyma [134]. In addition to IL-1β, other mediators such
as IL-6, CXCL10, and chemokine ligand 2 (CC motif) (CCL-2), as well as chemokine recep-
tors 7 and 8 (CCR7 and CCR8), are also able to recruit dendritic and peripheral immune
cells, contributing to the impairment of BBB integrity [135–138].

Of particular interest, it has been shown that patients with MDD have an impaired
BBB [139]. For example, a decrease in the expression of claudin-5 (a protein that maintains
the integrity of a paracellular aqueous channel present in brain endothelial cells, thus
regulating flow of ions and peripheral cytokines) has been reported in the hippocampus of
individuals afflicted with MDD [140]. Moreover, several markers of endothelial dysfunction,
including intercellular adhesion molecule-1, VCAM-1, E-selectin, and von Willebrand factor,
have also been detected in individuals that developed MDD later in life [141].

4. Role of the Peripheral Immune System in MDD

Several lines of evidence have also proposed a relationship between the peripheral
immune system and the neuroinflammatory process [142–144]. The immune system is
composed of innate and adaptive systems. The innate immune system consists of myeloid
cells including macrophages, monocytes, dendritic cells, and lymphoid cells such as natural
killer (NK) cells, which act as first defense by rapidly responding to pathogens, for example.
The adaptive immune system is formed by T and B lymphocytes, which act more slowly, as
they require prior activation and differentiation steps to be able to carry out their functions.
Specifically, B cells proliferate and differentiate into plasma cells, which then produce
specific antibodies. On the other hand, activated T cells can differentiate into cytotoxic,
helper, and regulatory T cells. Cytotoxic T cells (CD8+ cells) kill infected cells, whereas
helper T cells (Th) modulate the activity of other immune cells, and regulatory T cells
(Tregs) suppress the activity of other lymphocytes to prevent autoimmunity [145]. These
cells can contribute to neuroinflammation by entering the CNS via fenestrations in the BBB
and/or through the circumventricular sensory organs located in the walls of the third and
fourth ventricles. These regions are composed of fenestrated capillary loops surrounded by
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large perivascular spaces, which facilitate the flow of cytokines and immune cells from the
periphery to the brain [146].

In certain MDD patients, it is possible to observe an altered peripheral immune system
profile, with an increase in the levels of pro-inflammatory cytokines, including IL-1, IL-6,
TNF-α, and IL-1β [147]. Peripheral or local administration of cytokines and endotoxins in
animals, as well as animal models based on exposure to stress, also reinforce the finding
that prolonged peripheral immune activation can trigger a neuroinflammatory process
and result in depressive-like behaviors [148–150]. In particular, chronic exposure to stress
was shown to result in the dysfunction of the HPA axis, which in turn can induce various
pathophysiological changes. Furthermore, an impairment in the function of glucocorticoid
receptors has also been associated with MDD [151]. Among their several functions, these
receptors have an immunosuppressive effect by inhibiting the translocation of NF-kB
to the nucleus [152,153]. Moreover, chronic stress favors an increase in norepinephrine
(noradrenaline), which acts on adrenergic receptors present in immune cells, thus positively
regulating the transcription of several pro-inflammatory genes, including IL-1, IL-6, and
TNF-α [154,155]. Changes in immune cell functions are also observed after exposure to
chronic stress, including impaired migration of cells to the inflammatory site, decreased
cytotoxic activity of NK cells, and decreased levels of total T lymphocytes and circulating
Th lymphocytes [154]. Furthermore, MDD has also been associated with reductions in the
levels and function of both T and NK cells [156].

Of note, IL-6 can enhance Th17 cell differentiation, thereby causing an imbalance
between Th17 and Treg cells [34]. In line with this, a greater propensity for Th17 differen-
tiation has been observed in individuals with MDD [157]. Likewise, in animal models of
depression, an increase in brain levels of Th17 has also been reported [158,159]. Th17 cells
are CD4+ Th lymphocytes that secrete large amounts of IL-17A [160], with IL-17A being
able to induce cytokine secretion and glial cell stimulation, thus enhancing neuroinflamma-
tory responses [160,161]. Furthermore, decreased levels of Treg and its regulatory cytokine
IL-2 have also been associated with MDD [162–164]. Indeed, treatment with low doses of
IL-2 is able to attenuate depressive-like behavior by restoring Treg levels and reducing the
neuroinflammation state in a stress model [34]. Indeed, several classic antidepressants, as
well as ketamine, have been shown to restore Treg levels and decrease Th17 levels [165–167],
which may contribute to their antidepressive properties. As such, compounds that decrease
Th17 and/or increase Treg levels may be of potential therapeutic value for the treatment
of MDD.

The role of the peripheral immune system in MDD is further reinforced by studies
showing an association between several autoimmune diseases with this psychiatric dis-
order [168,169]. Indeed, individuals with MDD appear to have higher levels of reactive
antibodies, which suggests that this disorder may be a risk factor for various immune
system-related diseases [170]. In agreement with this hypothesis, a prospective population-
based study found that patients with MDD were at higher risk of developing rheumatoid
arthritis, psoriasis vulgaris, systemic lupus erythematosus, multiple sclerosis, Crohn’s
disease, and type 1 diabetes [171]. It is noteworthy that higher levels of inflammatory
markers are also related with decreased responsiveness to antidepressant treatment [172].

While several studies have highlighted the importance of inflammatory mechanisms
in adults with depression [7,173], discrepant results have been reported in youth. During
adolescence and young adulthood, the immune system undergoes various alterations,
including a reduction in lymphatic tissue size and changes in sex hormones, which can
in turn affect cytokine release [174]. These physiological changes seen during this period
may account for the inconsistent findings that have been reported in the literature, and
further research is warranted in order to ascertain how inflammation contributes to MDD
in youths.

A few systematic reviews have attempted to examine the relationship between in-
flammation and depression in youths [12,175,176]. In a systematic review conducted by
D’Acunto et al. [176], only a trend for significantly higher levels of peripheral TNF-α
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was observed in youths with depression, when compared to healthy controls. Toenders
et al. [175] identified 109 studies examining the association between inflammation and
depression in youths, and determined that adolescents with depression showed higher
level of IL-1β when compared to healthy controls [175]. However, no significant differences
in the levels of other cytokines were observed [175]. In longitudinal studies, it is possible to
show that higher baseline IL-6 levels and changes in TNF-α levels were predictive of an
increase in depressive symptoms in youths at follow-up [175]. Similarly, the most recent
systematic review conducted in 2020 by Colasanto et al. [12] included twenty-two studies
(20,791 participants) and showed a significant association between concurrent depression
and CRP and IL-6 levels. In addition, longitudinal analyses revealed that depression is a
significant predictor of IL-6 and, conversely, inflammatory markers (CRP or IL-6) predict
future depression [12].

It is also important to note that differences in inflammation between sexes may also
be related with the fact that the incidence of depression is higher in females than males.
Differences in sex hormones between males and females, and changes in hormone levels
during puberty, menstruation, pregnancy, and menopause may account, at least in part,
for the different incidence of this mood disorder between females and males [177]. Male
sex hormones have mainly anti-inflammatory activity, while female sex hormones have
both pro- and anti-inflammatory activities. Moreover, females have more innate and
adaptive immune cells, higher inflammatory marker levels, and higher risk of developing
autoimmune disorders in comparison with males [177,178]. In agreement, several studies
have demonstrated that females with MDD appear to have an increase in serum levels of
IL-1β, IL-6, IL-8, TNF-α, IFN-γ, and CRP [179–183]. Conversely, males with MDD appear
to have an increase in serum levels of TNF receptor 2 and IL-17 [183].

Overall, the evidence suggests that an activated inflammatory response system (IRS)
contributes to the pathophysiology of MDD. This IRS is characterized by microglial, mono-
cytic, and lymphocytic activation, which culminates in the synthesis of inflammatory
mediators, including TNF-α, IL-1β, IL-6, soluble IL-6 receptor (sIL-6R), IFN-γ, IL-2, and
IL-17 [184,185]. However, some studies have also shown that some patients with de-
pression exhibit increased Th2 and Treg activity, suggesting the presence of a compen-
satory immune response system (CIRS), which is characterized by increased levels of
anti-inflammatory cytokines such as IL-4 and IL-10, as well as increased levels of soluble
cytokine receptors (sIL-2R, sTNF-R1, sTNF-R2) and of the soluble IL-1 receptor antagonist
(sIL-1RA) [185–188]. Indeed, some patients with depression have increased levels of both
pro- and anti-inflammatory cytokines [188,189]. Therefore, components of CIRS probably
counteract the effects of IRS in the context of MDD. The CIRS/IRS imbalance, in turn,
could be a key factor in the development of a chronic inflammatory response observed in
some MDD patients, particularly those who are resistant to treatment with conventional
antidepressants [184]. In view of this, several studies have assessed the levels of these
mediators, so as to better understand the relationship between CIRS/IRS in MDD. For
example, studies included in a meta-analysis found an association between increased levels
of IL-1RA, IL-6, IL-10, IL-12, sIL-2R, sIL-6R, and TNF-α, and decreased levels of IFN-γ and
IL-4, in adult patients with depression [190]. However, the levels of these markers seem
to vary between studies, especially considering variables such as age and sex. In a recent
study conducted with adolescents with depression, it was possible to see a significant
increase in some markers such as IL-4 and Treg + Th2, which have not been observed in
most studies conducted with adults. Furthermore, when the analyses considered potential
sex differences, it was found that female adolescents with MDD only had increased levels
of IL-10 and TNF-α, while male adolescents with MDD had increased levels of IL-4, IL-10,
sIL-6R, Treg + Th2, and TNF-α/TNF-R1 [191]. Finally, a study conducted by Sowa-Kućma
et al. [192] reported that the severity of MDD, measured with the Hamilton Depression
Rating Scale, was correlated with an increase in IRS and CIRS markers, including sIL-6R,
tumor necrosis factor receptor 80kDa (sTNFR80), and zCytR (z-unit weighted indices
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reflecting the 5 cytokine receptor levels). This study also showed that previous suicide
attempts are associated with increased sIL-1RA and IL-1α levels [192].

5. Gut Microbiota

Gut microbiota has been recognized as being crucial for mental health. This comprises
a variety of microorganisms that include bacteria, archaea, protozoa, fungi, and algae, which
play an important role in gut physiology and homeostasis [193]. Recently, the bidirectional
connections between the gut microbiota and the brain, known as the microbiota-gut-brain
axis, has gained greater interest, especially in the context of psychiatric illnesses, including
MDD [194]. This connection between gut and brain occurs through the autonomic nervous,
enteric nervous, neuroendocrine, and immune systems, and involves microbial-derived
metabolites, chemical molecules, and neuronal pathways [185].

In a state of eubiosis, in the presence of a healthy gut microbiota, these microorganisms
produce several secondary metabolites. Bacteria can ferment indigestible dietary fibers to
produce short-chain fatty acids (SCFAs), mainly acetate, propionate, and butyrate, which
help to maintain the integrity of the gut barrier, mucous production, and control inflam-
mation [195,196]. Notably, SCFAs can enter the bloodstream, cross the BBB, and reach the
brain, where they can exerce anti-inflammatory and pro-neurogenic effects, modulate neu-
rotransmitter systems including the glutamatergic, GABAergic, serotonergic, dopaminergic,
adrenergic, and noradrenergic systems, and maintain BBB integrity [195–198]. Gut micro-
biota is also capable of producing various neurotransmitters (GABA, serotonin, dopamine,
and norepinephrine) and polyamines, which can then act both in the periphery and within
the CNS [199,200].

Gut microbiota are thought to play important roles in the regulation of innate and
adaptative immune responses at the level of mucosal surfaces, protecting them against in-
flammation, infection, and autoimmunity [201]. Gut microbiota also contribute to priming
and activating immune mediators, regulating their development and function in various
organs, including the brain [201,202]. In addition, together the gut microbiota, gut epithe-
lium, and gut immune system can regulate systemic inflammation, preventing commensal
bacteria and pro-inflammatory molecules from crossing the gut barrier and reaching the
bloodstream and the brain [201,203,204].

The vagus nerve, which transmits parasympathetic information from the brain to the
gut and vice versa, constitutes the quickest and most direct link between these two organs.
As such, this peripheral nerve provides the fastest way for gut microbiota and the immune
system to directly influence the CNS [205]. In line with this hypothesis, a recent study
conducted by Siopi et al. [206] has shown that the vagus nerve can indeed mediate the
effects of gut microbiota on brain function and behavior. In this study, healthy mice re-
ceived gut microbiota from mice submitted to chronic unpredictable mild stress (CUMS)
and were shown to have vagus nerve-mediated changes in serotonin and dopamine path-
ways, which were associated with concomitant and persistent deficits in hippocampal
neurogenesis and neuroinflammation. On the other hand, subdiaphragmatic vagotomy
abolished the occurrence of depressive-like behaviors, neuroinflammation, and the deficits
in hippocampal neurogenesis in these mice [206], providing further evidence to support the
role of the vagus nerve as a primary communication pathway for gut microbiota-mediated
neuroinflammation [207]. It is noteworthy that stimulation of the vagus nerve has been re-
ported to attenuate neuroinflammation and reduce the release of pro-inflammatory factors,
suggesting that vagal stimulation may have antidepressant effects [208].

Imbalances in gut microbiota homeostasis, including alterations in microbiota com-
position and specific taxa, can lead to gut dysbiosis, resulting not only in peripheral
inflammation, but also in neuroinflammation, reduced BBB integrity, neuronal death, mi-
croglia dysfunction, and depressive symptoms [194,204,209]. Accordingly, recent studies
have shown differences in the gut microbiota of MDD-afflicted individuals as compared to
healthy controls [210–218].
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A disruption in the gut barrier and a consequent increase in its permeability, commonly
referred to as a “leaky gut”, may be caused by several stressors, including environmental
factors, immune factors such as pro-inflammatory cytokines, and gut-microbiota-related
factors including microbiota dysbiosis [81]. Chronic intestinal inflammation leads to a
“leaky gut”, allowing pro-inflammatory cytokines, bacterial endotoxins (such as LPS),
metabolic bacterial components, and immunoglobulins to overflow from the intestine and
into the bloodstream, eventually reaching and compromising BBB integrity, and entering
the brain, where they can promote neuroinflammation [219]. In line with this, BBB integrity
appears to be affected in individuals with MDD, as illustrated by a clinical study showing
increased serum levels of S100B (a marker associated with BBB damage) in individuals with
MDD when compared with healthy controls [220]. A relationship between gut microbiota
and BBB integrity and permeability has also been illustrated through preclinical studies.
For example, mice that were germ-free since fetal development were shown to display
increased BBB permeability when compared to pathogen-free mice with an healthy gut
microbiota [221]. Rhesus monkeys that received antibiotic treatment presented an altered
microbiome and showed an increase in BBB permeability [222]. Furthermore, exposure to
a low dose of penicillin during the late prenatal period and early postnatal life resulted
in changes in gut microbiota, an increase in cytokine expression in the pre-frontal cortex,
altered BBB integrity, and behavioral changes [223].

Indeed, there is a noticeable connection between persistent gut inflammation and
MDD. The prevalence of MDD symptoms in individuals with inflammatory bowel disease
(IBD) is estimated to be approximately 21% to 25.2%, and the prevalence of clinically diag-
nosed MDD within this population is approximately 15.2% [224]. In addition, a “leaky gut”
and increased LPS translocation have also been reported in individuals with MDD [225].
Data from animal models of colitis have also supported the close relationship between
gut inflammation and mood [226–228]. For example, Yoo et al. [227] showed that fecal
microbiota transplantation (FMT) from patients with IBD (Crohn’s disease and ulcerative
colits) plus MDD caused depressive-like behaviors in mice, while also increasing periph-
eral, colonic, and hippocampal levels of corticosterone, IL-1 β, IL6, LPS, and decreasing
IL-10 levels. Conversely, FMT from healthy donors or sulfasalazine treatment alleviated
the depressive-like behaviors induced by FMT from IBD plus MDD patients, while also
reducing pro-inflammatory markers in the serum and colon of these mice [227]. In addition,
administration of Lactobacillus plantarum NK151, Bifidobacterium longum NK173, and Bifi-
dobacterium bifidum NK175 alleviated depression-like behaviors induced by FMT from IBD
plus depression patients, while also normalizing hippocampal NF-κB+Iba1+ cell numbers,
IL-1β and IL-6 expression, serum levels of LPS, IL-6, and creatinine, as well as colonic
NF-κB+CD11c+ cell numbers and IL-1β and IL-6 expression in these mice [218]. Other pre-
clinical studies have also evaluated colitis and the occurrence of depressive-like behaviors
in dextran sulfate sodium (DSS)-treated mice [226,228]. Takashi et al. [226] show that DSS-
treated mice presented higher TNF-α and IL-6 expression in the rectum and hippocampus,
activated caspase-3 in the hippocampus, as well as decreasing hippocampal neurogenesis,
and these changes were reversed by administration of Enterococcus faecalis 2001, which also
prevented the occurrence of DSS-induced depressive-like behaviors. In a more recent study,
Wadie et al. [228] showed that niacin ameliorated DSS–induced behavioral deficits, allevi-
ated macroscopic and microscopic colonic inflammatory changes, restored BBB integrity
through enhancement of ZO-1, occludin, and claudin-5 protein levels in the hippocampus,
while also decreasing IL-1β and NF-kB levels and increasing glutathione (GSH), sirtuin-1
(Sirt-1), nuclear factor erythroid 2–related factor 2 (Nrf2), and heme oxygenase-1 (HO-
1) concentrations in the hippocampus. Furthermore, 2,4,6-trinitrobenzenesulfonic acid
(TNBS)-induced colitis was shown to activate NF-kB, increase gut permeability, fecal and
blood levels of LPS, and the number of Enterobacteriaceae (particularly Escherichia coli) in
the gut microbiota in mice. Of note, these changes were accompanied by memory impair-
ments. On the other hand, administration of E. coli isolated from the feces of mice with
TNBS-induced colitis caused memory impairment and colitis in mice [229]. Importantly, in



Cells 2024, 13, 423 13 of 34

both cases (colitis induced with either TNBS or E. coli) an increase in NF-kB activation and
TNF-α expression, as well as suppression of bdnf expression, were observed in the in the
hippocampus of mice [229].

In conclusion, gut microbiota appears to play a fundamental role in homeostasis and
the control of both peripheral and central inflammation, and may constitute a relevant
therapeutic target for psychiatric diseases, including MDD.

6. Anti-Inflammatory Properties of Antidepressants

The anti-inflammatory effects of antidepressant drugs have been robustly demon-
strated in numerous studies. For example, tricyclic antidepressants, including citalopram,
clomipramine, and imipramine were shown to inhibit the release of IL-6, IL-1β, and TNF-
α in human monocytes [230]. The anti-inflammatory effect of clomipramine has been
corroborated in LPS-treated C57BL/6 mice. In this model, clomipramine (20 mg/kg for
1 week, i.p.) was able to decrease the expression of IL-1β, IL-6, and TNF-α. However,
although cytokine synthesis, particularly IL-1β, is known to be related with the NLRP3
inflammasome, no changes were observed with regard to the expression of proteins that
make up this inflammasome in this model [231]. In agreement, a different study in which
the same dose of clomipramine (20 mg/kg for 1 week, i.p.) was administered to C57BL/6J
male mice treated with LPS also failed to detect any changes in the immunocontent of
NLRP3 and caspase-1 [232]. In contrast, in BV2 cells, clomipramine was effective in atten-
uating NLRP3 expression induced by LPS [231]. Other tricyclic antidepressants, such as
amitriptyline and doxepin (both administered at a dose of 10 ng/mL for 2 h) were able
to inhibit microglial activation in vitro [233]. However, in a different study, amitriptyline
(20 or 50 µM for 1 h) was unable to mitigate caspase-1 activation after stimulation of mouse
glial cells with LPS/ATP or LPS/nigericin [234]. Given these discrepancies found in the
literature, the exact anti-inflammatory mechanisms activated by tricyclic antidepressants
warrant further exploration.

Anti-inflammatory mechanisms also underlie the effects of fluoxetine, the most widely
prescribed antidepressant in the clinical setting. Indeed, it has been shown that treatment
with fluoxetine significantly reduces the levels of IFN-γ, TNF-α, and the IFN-γ/IL-10 ratio
in the blood of normal volunteers [235]. Several pre-clinical studies have also reinforced
the anti-inflammatory properties of this antidepressant. In male Wistar rats exposed
to a stress model, treatment with fluoxetine (10 mg/kg for 6 weeks, i.p.) was able to
inhibit the activation of the NF-kB pathway, compromising the expression of proteins that
constitute the NLRP3 inflammasome, and, consequently, the levels of IL-1β in the prefrontal
cortex [236]. One of the mechanisms that may be related to the inhibition of the NF-kB
pathway by fluoxetine is the increase in the levels of the NF-kB inhibitor, IkB-α. Indeed, this
drug was shown to interact directly with IkB-α, preventing its ubiquitination in an in vitro
model of cerebral ischemia/reperfusion [237]. Furthermore, fluoxetine treatment (10 mg/kg
for 4 weeks) also suppressed the activation of the NLRP3 inflammasome and the subsequent
cleavage of caspase-1 and secretion of IL-1β in hippocampal microglia from male C57BL/6
mice subjected to stress [238]. In a model of LPS-induced depression, fluoxetine (20 mg/kg,
i.g.) inhibited glial activation, decreasing levels of pro-inflammatory cytokines such as
TNF-α, IL-1β, and IL-6, and increasing levels of the anti-inflammatory cytokine IL-10
in the hippocampus of male C57BL/6J mice [239]. In agreement with these findings,
the role of fluoxetine in inhibiting astroglial and microglial activation has been further
reinforced by other studies [75,240]. Fang et al. [240] showed that fluoxetine can inhibit
astrocytic activation via the 5-HT2BR/β-arrestin2 pathway in both in vivo and in vitro
models of depression. More recently, fluoxetine was also shown to positively regulate the
expression of nuclear receptor-related protein 1 (Nurr1) and FosB (FosB Proto-Oncogene,
AP-1 Transcription Factor Subunit), inhibiting inflammation-induced morphological and
functional alterations in microglia in the anterior cingulate cortex [75].

Anti-inflammatory properties have also been associated with the antidepressant effect
of ketamine. For example, a subanesthetic dose of ketamine (10 mg/kg, i.p.) was able
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to attenuate the expression of IL-1β and NLRP3 in the hippocampus of male C57BL/6
mice treated with LPS [241]. Similar effects were also observed with pre-treatment of
this drug. Indeed, a single dose of ketamine (5 mg/kg, i.p.) administered 1 week before
treatment with TNF-α and LPS had a protective effect in mice, preventing an increase in
the components of the NLRP3 inflammasome complex [149]. Although a few discrepancies
can be found in clinical studies, some have described supported the anti-inflammatory
action of ketamine [242]. For example, ketamine infusion (0.5 mg/kg, i.v., single dose)
was able to decrease serum TNF-α levels in patients with treatment-resistant MDD [243].
In another study, the same dose of ketamine was also able to reduce serum IL-6 levels
in MDD-afflicted individuals [244]. Together, these data suggest that anti-inflammatory
mechanisms may indeed contribute to the effects of antidepressant drugs.

7. Antidepressant Effects of Anti-Inflammatory Drugs

Given the strong relationship between MDD and inflammation, a series of studies has
evaluated whether anti-inflammatory drugs could exert antidepressant effects. Notably,
the inflammatory cascade triggered in the brain can culminate in the induction of COX.
Therefore, it has been suggested that inhibiting this enzyme could be beneficial in depres-
sion [245]. In agreement, preclinical studies have shown beneficial effects of selective COX-2
inhibitors such as celecoxib in models of depression [246,247]. For example, treatment with
celecoxib (16 mg/kg for 21 days) was effective in alleviating the depressive-like behavior of
rats submitted to a chronic stress model [246]. A similar effect was also observed in another
model of depression. In mice subjected to chronic inflammation induced by Complete
Freund’s Adjuvant, co-treatment of celecoxib and bupropion (3 mg/kg) inhibited the occur-
rence of depressive-like behaviors. It is noteworthy that a higher dose of celecoxib per se
(30 mg/kg) was also effective [248]. In a recent study, celecoxib (10 or 20 or 30 mg/kg) and
cannabidiol (30 mg/kg) also showed a synergistic effect in models of depression induced by
LPS or chronic social defeat stress. Interestingly, when each compound was administered
per se, only partial effects were detected [249].

Of note, recent systematic reviews have also concluded that celecoxib may have a
beneficial effect on MDD in humans [250,251]. A systematic review based on 44 studies
found that a dose of 400 mg/day used for 6 weeks is effective as a complementary treatment
for MDD [251]. Although these results are promising, clinical studies have not yet been able
to associate the antidepressant effects of celecoxib with the attenuation of inflammatory
mediators. Therefore, future studies are necessary, especially to assess possible long-term
adverse effects [251].

Studies conducted with non-COX selective drugs, such as ibuprofen, have provided
mixed results [252,253]. For example, treatment with ibuprofen alone (40 mg/kg) or in
combination with escitalopram (10 mg/kg) was reported to reverse the depressive-like
behavior induced by chronic stress in rats [252]. On the other hand, it has been shown that
ibuprofen (1 mg/mL) can attenuate the effects of antidepressants including citalopram,
fluoxetine, and imipramine in behavioral tests such as the tail suspension test and the forced
swim test [254]. In addition, ibuprofen (40 mg/kg) was unable to prevent the development
of depressive-like behaviors in mice treated with LPS [253]. Divergent results have also
been reported for acetylsalicylic acid. Some studies have shown that co-administration of
acetylsalicylic acid (45 mg/kg) and fluoxetine (5 mg/kg) reversed the escape deficit seen in
a chronic escape deficit model of depression [255,256]. In contrast, this drug (3 mg/mL)
has been shown to attenuate the effects of citalopram [254]. A recent systematic review
of preclinical and clinical studies found evidence indicating the safety and efficacy of
low-dose acetylsalicylic acid in the treatment of mood disorders [257]. However, more
long-term clinical trials are still needed to assess the efficacy and safety of these drugs in
recurrent depression.
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8. Alternative MDD Therapeutic Approaches with Anti-Inflammatory Properties
8.1. Physical Exercise

Physical exercise has been extensively studied for its role in the treatment and pro-
phylaxis of MDD due to its ability to modulate several pro-neurogenic and synaptogenic
pathways as well as regulating peripheral and systemic inflammation [258]. Preclinical and
clinical studies have shown that one of the mechanisms underlying the effects of physical
exercise on neuroinflammation is related to the modulation of the NLRP3 inflammasome
pathway [259].

In a study conducted by Tang et al. [260], treadmill exercise alleviated post-stroke
depression-related hippocampal damage through inhibition of NF-kB/NLRP3 inflam-
masome in mice. Similarly, Li et al. [261] showed that treadmill exercise mitigated the
increase in TLR4, NLRP3, and NF-kB levels caused by post-stroke depression. Treadmill
exercise was also shown to regulate hippocampal inflammation by reducing the number
of NLRP3-, TLR4-, IL-1β-, and IL-10-positive neurons in the hippocampal CA1 region of
mice subjected to CMUS as a model of depression [262], improve depression-like behaviors
and decreasing levels of IL-1β, IL-18, NLRP3, cleaved caspase-1 P10, and CD11b in the
hippocampus of ovariectomized mice [263], preventing the hippocampal increase of Iba-1,
TXNIP, and activation of the NLRP3 inflammasome pathway induced by Aβ1−40 [264],
and increasing the expression of SIRT3, while reducing levels of ROS, NLRP3, IL-1β, and
IL-18 in the hippocampus of mice subjected to CUMS [265]. Furthermore, in a model of
high-fat-diet-induced-obesity, treadmill exercise was able to reduce the content of IL-1β
and NLRP3, promote the Nrf2/HO-1 pathway, increase BDNF content in the rat hip-
pocampus [266], while also reducing the protein content of NF-kB, and upregulating the
PI3K/AKT pathway in the rat prefrontal cortex [267]. In addition, treadmill exercise
was activated in the PI3K/Akt/mTOR and AMPK/Sirt1 signaling pathways, while in-
hibiting the NF-kB/NLRP3/IL-1β signaling pathway in the hippocampus of rats with
streptozotocin-induced type 2 diabetes mellitus [268].

Some clinical studies have also shown the ability of physical exercise to reduce inflam-
mation by modulating the NLRP3 inflammasome pathway. A systematic review conducted
by Ding and Xu [269] observed that regular exercise could significantly decrease IL-1β
and IL-18 (i.e., the end products of the inflammasome pathway) in older adults. The same
study also showed that aerobic exercise is the most effective training modality, and that
low-to-moderate intensity and mixed intensity exercise elicited better effects in reducing
IL-1β and IL-18 when compared to high-intensity exercise [269]. A reduction in P2X7 recep-
tor activation (involved in NLRP3 inflammasome activation), NLRP3, and NF-kB mRNA
expression was also seen in lymphomonocytes of athletes who performed physical activity
at least 5 times/week and for more than 10h/week [270]. Similarly, chronic exposure to
moderate intensity physical exercise was shown to reduce the NLRP3 gene expression
as well as serum levels of IL-1β and IL-18 cytokines [271]. On the other hand, chronic
exposure to high intensity physical exercise was associated with an increase in NLRP3 gene
expression, as well as serum levels of IL-1β and IL-18 [271]. Thus, while low to moderate
physical exercise appears to have anti-inflammatory effects, high intensity physical exercise
has been associated with the induction of inflammation through an increase in circulating
pro-inflammatory cytokines [272,273].

8.2. Agmatine

Agmatine is a member of the polyamine family, produced through the decarboxylation
of L-arginine by the enzyme arginine decarboxylase [274]. A large number of preclinical
studies have reported an antidepressant-like effect of agmatine in various animal models,
including models of chronic corticosterone administration [275,276], stress [277–281], and
inflammation [282,283].

In addition, agmatine has also been shown to exert anti-inflammatory effects and to
modulate the NLRP3 inflammasome pathway. For example, agmatine was able to atten-
uate NLRP3 protein expression as well as caspase-1 and IL-1β mRNA and protein levels
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in the prefrontal cortex of rats exposed to CUMS [281]. In another study conducted by
Sahin et al. [284], agmatine was shown to down-regulate the expression of NLRP3 inflam-
masome components (NLRP3, NF-kB, PYCARD, caspase-1, IL-1β, and IL-18) while also
reducing levels of pro-inflammatory cytokine in the hippocampus, prefrontal cortex, and
serum of rats submitted to an acute restraint stress protocol. Furthermore, agmatine also
attenuated the increase in NLRP3, ASC, caspase-1, and IL-1β expression and immuno-
content in the hippocampus, while reducing IL-1β serum levels in mice submitted to a
pentylenetetrazol (PTZ) model of epilepsy [285].

Agmatine also appears to be able to attenuate inflammation by modulating other
inflammatory pathways. For example, agmatine was able to mitigate the effects of a high-
fat diet by increasing BDNF protein levels while reducing TNF-α and IL-6 protein levels in
the rat hippocampus [286]. Similarly, agmatine was able to reduce TNF-α, IL-1β, IL-6, and
IL-10 protein levels in the prefrontal cortex and hippocampus of mice with streptozotocin-
induced diabetes [287]. In a rotenone-induced experimental model of Parkinson’s disease
(PD), agmatine also reduced the levels of HMGB1, the receptor for advanced glycation
end products (RAGE), TLR4, and of the proinflammatory cytokines TNF-α and IL-1β
in the substantia nigra pars compacta (SNpc) of rats [288]. These results were further
corroborated in a separate study, showing that the neuroprotective properties of agmatine
in this rotenone model of PD are not only associated with a decrease in TNF-α and IL-1β,
but also with a reduction in the levels of malondialdehyde (a marker of lipid peroxidation)
and glial fibrillary acidic protein (GFAP, a marker of astrocytic activation) [289]. The
anti-inflammatory properties of agmatine have also been demonstrated through in vitro
studies, where this compound was able to suppress protein expression of TLR4, MYD88,
phospho-IkBα, phospho-NF-kB, and the NLRP3 inflammasome [285], while inducing an
anti-inflammatory phenotype in BV-2 microglial cells treated with LPS [290]. Similarly,
agmatine was shown to suppress nitrosative and oxidative stress and NF-kB expression,
while stimulating the antioxidant Nrf2 pathway, thus resulting in decreased TNF, IL-1β, and
IL-6 release, as well as reduced iNOS and COX-2 levels in LPS-stimulated BV-2 microglial
cells [291]. Finally, agmatine was also shown to attenuate cell death and the expression of
IL-6, TNF-α, and CCL2 in Neuro2A cells under high glucose conditions [292].

8.3. Probiotics

Considering the important role of the gut microbiota in maintaining homeostasis and
the pathophysiology of MDD, probiotics have been proposed as a promising therapeutic
approach for the treatment of MDD and other psychiatric disorders [293]. Probiotics are
living microorganisms known for their beneficial modulatory effect on gut microbiota
when ingested in adequate quantities [294]. Of note, modulation of the immune system
has been proposed as one of the main mechanisms responsible for the beneficial effects
of probiotics [295]. In agreement with this hypothesis, prolonged 21-day intake of the
probiotic Bifidobacterium adolescentis was shown to prevent depressive-like behaviors and to
decrease the expression of IL-1β, TNF-α, NF-kB, and Iba1 while increasing the expression
of BDNF in the hippocampus of mice submitted to chronic restraint stress [296]. In a
different study, pretreatment with Clostridium butyricum strain Miyairi 588 was shown to
decrease IL-6 and IL-1β levels in the colon and hippocampus of mice submitted to chronic
social defeat stress. In addition, this probiotic also reduced microglial activation, improved
depressive-like behaviors, and enhanced gut levels of the Firmicutes phylum [297].

The antidepressant effects of probiotics have also been demonstrated in clinical trials.
A randomized, double-blinded, placebo-controlled trial conducted in Iran with MDD
patients showed that treatment with the probiotics Lactobacillus acidophilus, Lactobacillus
casein, and Bifidobacterium bifidum improved depressive symptoms’ total scores, while
also reducing inflammation by decreasing insulin resistance and serum CRP levels when
compared to placebo [298]. Another randomized controlled trial found that eight weeks of
treatment with Lactobacillus helveticus and Bifidobacterium longum resulted in a significant
decrease in depressive symptoms, which was accompanied by a reduction in the serum
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KYN/TRP ratio [299], suggesting an effect of probiotics on TRP metabolism, which, as
mentioned above, is closely related to inflammatory mechanisms and is implicated in the
neurobiology of MDD.

8.4. Vitamin C (Ascorbic Acid)

Ascorbic acid, also known as vitamin C, is a water-soluble micronutrient required
for multiple biological functions, acting mainly as a potent antioxidant [300]. It is also
present in high concentrations in the brain (2–10 mM), where it exerts neuroprotective and
neuromodulatory properties [301–303]. Ascorbic acid can pass from the bloodstream to
the cerebrospinal fluid through the choroid plexus in the form of an ascorbate anion. In
addition, it can also cross the BBB in the form of dehydroascorbate, being subsequently
taken by neurons and glial cells [304].

Severe ascorbic acid deficiency has been linked to psychiatric disorders including
MDD, and, in some patients, depressive symptoms precede the physical symptoms of
scurvy [305,306]. Indeed, low levels of ascorbic acid have been associated with the increased
incidence of depressive symptoms in humans [307], and several studies have shown that
ascorbic acid can elicit antidepressant-like effects in animal models [308–312]. Although
the exact mechanisms underlying its antidepressant effect are not yet well established, they
appear to depend on its pleiotropic and anti-inflammatory activity. In agreement, ascorbic
acid was able to prevent TNF-α-induced depressive-like behaviors in an inflammatory
mouse model of depression, and this effect seemed to be associated with a reduction of
p38MAPK phosphorylation, modulation of monoaminergic and glutamatergic systems, and
nitric oxide synthesis [313]. Furthermore, ascorbic acid was also able to improve depressive-
like behaviors, hyperglycemia, and hypoinsulinemia, while also increasing the levels of
monoamines, decreasing oxidative stress, and reducing the levels of TNF-α and IL-6 in the
prefrontal cortex of a rat model of type 2 diabetes and comorbid depression [314]. While
further studies are still warranted so as to better understand the mechanisms involved in
the antidepressant effects of ascorbic acid, the data discussed above suggest that, at least in
part, these effects are dependent on its anti-inflammatory properties.

8.5. Vitamin D

In the context of MDD, the antidepressant-like properties of vitamin D have been
shown in several pre-clinical animal studies [315–318]. However, only a limited number
of studies has explored the anti-inflammatory mechanisms underlying its antidepressant
action. For example, treatment with vitamin D3 (2.5 µg/kg, p.o., for 7 days) has been
shown to induce an antidepressant-like effect by decreasing the immunocontent of proteins
that constitute the NLRP3 inflammasome, including ASC, caspase-1, and thioredoxin
interacting protein (TXNIP) in the hippocampus of Swiss male mice submitted to a stress
model [319]. In another study, treatment of ovariectomized female Sprague Dawley rats
with calcitriol (100 ng/kg, p.o., for 10 weeks) was shown to have an antidepressant-like
effect, while inhibiting the NF-kB pathway and reducing the expression of iNOS, COX-2,
and pro-inflammatory cytokines [320].

Vitamin D is a well-established immunomodulator [321,322]. Calcitriol (1,25(OH)2D3),
the active form of this vitamin, is able to inhibit the adaptive immune system and pos-
itively modulate the innate immune system, thus improving the phagocytic activity of
immune cells and decreasing the expression and release of inflammatory cytokines [323].
Particularly in the CNS, calcitriol is capable of inhibiting the activation of the NF-kB path-
way, compromising the expression of iNOS, pro-inflammatory TLRs, components of the
NLRP3 inflammasome, and pro-inflammatory cytokines, thus preventing microglial and
astrocytic activation and neuroinflammation [324–327]. In addition to these mechanisms,
calcitriol can also influence gut microbiota composition and promote the physical barrier
established by gut endothelial cells by reinforcing intercellular junctions, thus reducing
intestinal permeability [328–330].
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9. Conclusions

In this review, we discussed how the dysregulation of the central and peripheral
immune systems, as well as gut dysbiosis, can contribute to the pathophysiology of MDD
(Figure 2). Preclinical and clinical studies have shown that factors such as stress, peripheral
inflammation, and alterations in the gut microbiota may induce depressive symptoms.
However, the mechanisms by which these factors initiate the neuroinflammatory process
and induce MDD are not yet well understood. Therefore, it remains to be established
whether specific immunological alterations can induce MDD, or whether different alter-
ations in the immune system, which may be specific to each individual, contribute to the
etiology of this disorder, making it difficult to establish a biomarker for MDD. Indeed,
although it has been reported that individuals with depression have increased serum levels
of inflammatory cytokines when compared to healthy individuals [10,204,331], the use
of these cytokines as biomarkers for MDD presents various limitations, such as their low
detection limit. Tables 1 and 2 summarize several potential inflammatory biomarkers for
MDD based on evidence from preclinical (Table 1) and clinical (Table 2) studies.
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Figure 2. Inflammatory Pathways in MDD. Peripheral inflammation caused by stress, gut inflamma-
tion, and lipopolysaccharide (LPS) leakage activates the immune system and leads to increased levels
of proinflammatory cytokines. This can cause blood–brain barrier (BBB) disruption, allowing these
inflammatory molecules to reach the central nervous system (CNS). In the brain, these molecules con-
tribute to neuroinflammation with the activation of glial cells and further release of proinflammatory
cytokines, leading to activation of the hypothalamus-pituitary-adrenal (HPA) axis and cortisol release.
This vicious cycle between peripheral inflammation and central neuroinflammation appears to be
related to the onset of depressive symptoms and other comorbidities seen in MDD. Thus, molecules
capable of controlling these inflammatory processes, such as agmatine, vitamin D, ascorbic acid
(vitamin C), and probiotics, as well as non-pharmacological approaches such as physical exercise, are
promising therapeutic strategies for the supplementary treatment and management of MDD.
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Table 1. Potential biomarkers of MDD: evidence from preclinical studies.

Biomarker Animal Model Sample Studies

↑ IL-1β

Mice submitted to chronic stress

Hippocampus [33]
Hippocampus [45]

Serum [238]
Hippocampus [262]
Hippocampus [265]
Hippocampus [296]

Rats submitted to chronic stress
Cortex [32]

Prefrontal cortex [236]
Prefrontal cortex [281]

Mice submitted to chronic social defeat stress Hippocampus and colon [297]

LPS in mice

Hippocampus [45]
Hippocampus [231]

Serum and hippocampus [239]
Hippocampus [241]

Fecal microbiota transplantation from
inflammatory bowel disease patients, to mice Blood and colon [227]

Ovariectomized mice Hippocampus [263]

Rats submitted to an acute restraint stress Serum, hippocampus, and prefrontal cortex [284]

Mice submitted to streptozotocin-induced
type-II diabetes mellitus Prefrontal cortex and hippocampus [287]

↑ IL-18

Mice submitted to chronic stress Hippocampus [265]

Ovariectomized mice Hippocampus [263]

Rats submitted to an acute restraint stress Serum, hippocampus, and prefrontal cortex [284]

↑ IL-6

Mice submitted to chronic stress
Hippocampus [34]
Hippocampus [33]
Hippocampus [45]

Rats submitted to chronic stress Hypothalamus and spleen [32]

Mice submitted to chronic social defeat stress Hippocampus and colon [237]

LPS in mice
Hippocampus [45]
Hippocampus [231]

Serum and hippocampus [239]

Fecal microbiota transplantation from
inflammatory bowel disease patients, to mice Blood and colon [227]

Mice with inflammatory bowel disease
induced by dextran sulfate sodium (DSS) Rectum and hippocampus [226]

Rats submitted to high-fat diet and
streptozotocin-induced type-II diabetes

mellitus
Hippocampus [286]

Mice submitted to streptozotocin-induced
type-II diabetes mellitus Prefrontal cortex and hippocampus [287]

Rat model of type 2 diabetes mellitus and
comorbid depression Prefrontal cortex [314]

↑ TNF-α

Mice submitted to chronic stress
Hippocampus [33]
Hippocampus [45]
Hippocampus [278]

Rats submitted to chronic stress Hippocampus, cortex and spleen [32]

LPS in mice
Hippocampus [45]
Hippocampus [222]

Serum and hippocampus [230]
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Table 1. Cont.

Biomarker Animal Model Sample Studies

Mice with inflammatory bowel disease
induced by dextran sulfate sodium (DSS) Rectum and hippocampus [217]

Rats submitted to high-fat diet and
streptozotocin-induced type-II

diabetes mellitus
Hippocampus [277]

Mice submitted to streptozotocin-induced
type-II diabetes mellitus Prefrontal cortex and hippocampus [287]

Rat model of type 2 diabetes mellitus and
comorbid depression Prefrontal cortex [314]

Table 2. Potential biomarkers of MDD: evidence from clinical studies.

Biomarker Study Design Subjects Sample Studies

↑ IL-1β
Cross-sectional Adults, 130 MDD and 40 HC Blood [28]

Longitudinal Young adults, 50 MDD
treatment-naïve and 50 HC Plasma [183]

↑ IL-6
Longitudinal Young adults, 50 MDD

treatment-naïve and 50 HC Plasma [183]

Longitudinal Adolescents, 201 volunteered Plasma [182]
Case-Control Adolescent, 77 MDD and 54 HC Serum [180]

↑ CRP
Longitudinal Young adults, 50 MDD

treatment-naïve and 50 HC Plasma [183]

Cross-sectional Adults, 811 MDD Serum [181]
Longitudinal Adolescents, 201 volunteered Plasma [182]

↑ IFN-γ Cross-sectional Adults, 103 MDD and 97 HC Blood [179]

HC = healthy control; ↑ = increased level.

Nevertheless, several diseases that are related to a dysregulation of the immune system,
including colitis, type-2 diabetes mellitus, autoimmune diseases, and COVID-19, have been
repeatedly shown to be associated with an increased risk of developing MDD [3,224,332].
As such, modulation of the inflammatory process may have therapeutic benefits for patients
with MDD. In agreement, several studies have demonstrated the anti-inflammatory effects
of conventional antidepressants, as well as ketamine, although some discrepancies can
be found in the literature with regard to the exact anti-inflammatory pathways related to
the mechanisms of action of these antidepressants. As such, additional studies are still
warranted so as to ascertain the exact therapeutic targets that can be modulated for the
effective management of MDD. Finally, alternate therapeutic approaches, including physical
exercise, probiotics, and nutraceuticals, have been shown to possess anti-inflammatory
effects and to modulate gut microbiota, making them attractive for the treatment and
management of MDD, particularly since inflammation has been associated with non-
responsiveness to conventional antidepressant treatment [21]. As such, future research to
explore their true therapeutic potential in MDD is a recognized priority.
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