
Citation: Liu, P.; Li, J.; Chang, J.; Hu,

P.; Sun, Y.; Jiang, Y.; Zhang, F.; Shao, H.

Software Tools for 2D Cell

Segmentation. Cells 2024, 13, 352.

https://doi.org/10.3390/

cells13040352

Academic Editor: J. Bernard

Heymann

Received: 9 December 2023

Revised: 29 January 2024

Accepted: 4 February 2024

Published: 17 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Software Tools for 2D Cell Segmentation
Ping Liu 1,†, Jun Li 1,2,†, Jiaxing Chang 1,2, Pinli Hu 2, Yue Sun 2, Yanan Jiang 2, Fan Zhang 2 and Haojing Shao 2,*

1 College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology,
Jinzhong 030600, China; liuping01@tyut.edu.cn (P.L.); lijun0418@link.tyut.edu.cn (J.L.);
changjiaxing@caas.cn (J.C.)

2 Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of
the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy
of Agricultural Sciences, No 7, Pengfei Road, Dapeng District, Shenzhen 518120, China;
hupinli@caas.cn (P.H.); sunyue@caas.cn (Y.S.); jiangyanan@caas.cn (Y.J.); griffanzhang2013@gmail.com (F.Z.)

* Correspondence: shaohaojing@caas.cn
† These authors contributed equally to this work.

Abstract: Cell segmentation is an important task in the field of image processing, widely used in the
life sciences and medical fields. Traditional methods are mainly based on pixel intensity and spatial
relationships, but have limitations. In recent years, machine learning and deep learning methods have
been widely used, providing more-accurate and efficient solutions for cell segmentation. The effort to
develop efficient and accurate segmentation software tools has been one of the major focal points in
the field of cell segmentation for years. However, each software tool has unique characteristics and
adaptations, and no universal cell-segmentation software can achieve perfect results. In this review,
we used three publicly available datasets containing multiple 2D cell-imaging modalities. Common
segmentation metrics were used to evaluate the performance of eight segmentation tools to compare
their generality and, thus, find the best-performing tool.

Keywords: cell segmentation; image processing; 2D cell; performance

1. Introduction

Cell segmentation is an important step for imaging studies and is widely used in the
life sciences, bioinformatics, and biomedical fields such as oncology, immunology, and
histopathology, including the emerging field of spatial transcriptomics. Scientists apply
cell segmentation and prior knowledge of cell-type-specific gene expression to analyze the
morphology and location of individual cells, obtain single-cell gene counts, and detect fine
intracellular variations [1–3].

Differences in biological tissue, intercellular heterogeneity, and high cell densities
need to be resolved before analyzing cell imaging data. Further, differences in illumi-
nation gradients, imaging modalities, and imaging parameters have to be accounted for
while considering segmentation solutions [4,5]. In addition, microscopic techniques for
cell imaging have improved, resulting in higher resolution, broader visualization, and
noninvasive cell images. Common microscopic techniques include bright field microscopy,
fluorescent microscopy, confocal microscopy, and phase contrast microscopy [6–9]. The
more-recent imaging methods, such as cell staining combined with immunohistochem-
istry (IHC), multiplex immunofluorescence (mIF) [10], and CO-Detection by IndEXing
(CODEX) [11] can co-detect and co-locate multiple transcriptomes and proteins, resulting
in the precise annotation of individual cell types and the resolution of biological functions.
In general, cell images obtained using such techniques have different channel types. The
main image channels include three-channel RGB, three-channel HSV, single-channel GRAY,
and fluorescently labeled specific channels, which are more commonly used by researchers.

Most of the traditional segmentation methods are based on the intensity and spatial
relationship of pixels, and the constraint model is found by manual optimization, requiring
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expertise in basic techniques including code adaptation [12]. Code adaptation is highly
subjective, and its development has reached a bottleneck. For example, the threshold only
considers the grayscale information of the image and is sensitive to noise, which can easily
cause uneven segmentation results; the region algorithm has low adaptability and performs
poorly when used alone; the watershed algorithm is susceptible to over-segmentation
due to noise; the graph theory algorithm is complex, computationally intensive, and
not easy to operate. Therefore, using a sequential combination of these algorithms can
effectively avoid these deficiencies and further separate touching or overlapping cells [13].
In addition, threshold processing and watershed algorithm are often used as preprocessing
or postprocessing methods for Machine Learning (ML) and Deep Learning (DL).

ML and DL have similar workflows: the selection of the training data, data processing,
model training, and model evaluation. These steps in the workflow may be iterative
until the model is appropriate and accurate. HK-means [14], Random Forests [15], and
EM [16] are trainable ML methods that include part of the knowledge in the segmentation
process and improve the Accuracy of the segmentation. DL algorithms are better suited
to addressing the challenges of cell segmentation, including multiple object morphologies
and imaging techniques. DL network structures provide a generalized framework that can
be applied to various tasks in different domains. They learn from data, adapt to different
problem settings, and leverage the capabilities of pre-trained models, making them a
convenient and effective strategy in many research and application fields. Further, manual
tuning is not needed; however, retraining with annotated data is required [12].

The core algorithms in 2D segmentation tools are gradually shifting to more-complex
deep learning networks. At the beginning, the earlier 2D segmentation tools CellPro-
filer [17] and Icy [14] used built-in traditional segmentation algorithms, such as watershed
algorithms. Later, the classic U-net [18] structural deep learning model was wildly used and
improved. StarDist added a polygon distance output layer [19,20]. Cellpose replaced the
standard building blocks with residual blocks [21,22]. Notably, many 2D segmentation tools
keep adoptingthe best segmentation models and update their software. For instance, Cell-
Profiler and Icy update their deep learning model plugins (ClassifyPixels-U-net, DoGNet,
etc.) for cell segmentation.

For this study, we used three publicly accessible datasets with annotations from several
cell-imaging modalities to compare the generality of the tools.

2. Selected Software for Performance Comparison

As shown in Table 1, the selection of the segmentation software for the quantitative
comparison was determined by three factors: (1) the ability to analyze cell images from
various cell types; (2) those most-commonly used by scientists, especially for biological
cell image segmentation; and (3) the feasibility of the installation, training, or use. The
summary of the user-friendliness of the software is given in Table 2.
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Table 1. Basic information of the evaluated software tools .

Tool
First

Release
Time

Version
Programming
Language

Dependent
Library

Architecture Pre-Trained Model GUI Plugins for
Other Tools

Function Paper
Average
Yearly

Citations *

CellProfiler 2006 4.2.6 Python Scikit-image NA NA 1 NA Cell count, size, protein
levels cell or organelle
shape, and subcellular
patterns of DNA or pro-
tein staining

[17] 311.6

Icy 2011 2.4.3.0 Java Vtk, TensorFlow NA NA 1 NA Visualize, annotate, and
quantify bioimaging data

[14] 121.2

StarDist 2018 0.8.5 Python TensorFlow U-net 2D_paper_DSB2018 0 ImageJ/Fiji, Icy, KN-
IME, QuPath, Napari

Object detection, multi-
class prediction

[19,20] 165.2

DeepCell 2018 0.12.9 Python TensorFlow DCNN NuclearSegmentation 0 ImageJ/Fiji Cell division, counting,
classification, tracking,
natural language process-
ing, speech recognition

[23–26] 75.3

Cellpose 2020 2.2.3 Python Pytorch U-net cyto 1 CellProfiler, Napari Cell and nucleus segmen-
tation

[21,22] 432

Omnipose 2022 1.0.6 Python Pytorch U-net cyto2_omni 1 Napari Bacterial cell segmenta-
tion

[27] 79.0

Plantseg 2020 1.6.0 Python Pytorch U-net confocal_PNAS_2d 1 Napari, Ilastik Cell boundary predic-
tions, graph partitioning

[28] 51.3

Ilastik 2011 1.4.0.post1 Python Scikit-image NA NA 1 ImageJ/Fiji Pixel classification, auto-
context, object classifica-
tion, carving, multicut,
counting, tracking

[29,30] 110.1

* The analysis was performed on 5 December 2023 using Google Scholar. NA stands for not available or too diverse to be described individually.
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Table 2. The user-friendliness of the software. Group A: documentation. Group B: usability. Group
C: segmentation mode. Group D: output.

Group CellProfiler Icy StarDist DeepCell Cellpose Omnipose Plantseg Ilastik

A User guide/handbook ✓ ✓ ✓ ✓ ✓ ✓ ✓
website ✓ ✓ ✓ ✓ ✓ ✓
Video tutorial ✓ ✓ ✓ ✓ ✓ ✓
Community support ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Test dataset/demo ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Open-source ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B No programming experience is required ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Intuitive visualization settings ✓ ✓ ✓ ✓ ✓ ✓ ✓
Portability on Win/Linux/Mac ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C Manual ✓ ✓ ✓ ✓ ✓ ✓
Interactive ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Automated ✓ ✓ ✓ ✓ ✓ ✓ ✓

D 2D rendering ✓ ✓ ✓ ✓ ✓ ✓ ✓
2D binary mask ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Feature statistics ✓ ✓ ✓ ✓ ✓

2.1. CellProfiler

CellProfiler (version 4.2.6) is a modular, high-throughput, and open-source software
that provides a user-friendly interface, supports automatic cell identification and segmen-
tation, and enables various feature extractions and data analyses, such as morphological
measurements and cell counting. CellProfiler supports a variety of cell segmentation algo-
rithms such as threshold algorithms, morphology algorithms, watershed algorithms, etc. It
is convenient for users to choose the most-suitable algorithm or combination of algorithms
according to different needs and adjust the parameters to improve the segmentation Accu-
racy and reduce errors. The software also supports segmentation using mainstream DL
models via plugins. Scientists run CellProfiler headless or with a pipeline that supports
batch processing to analyze multiple image datasets simultaneously and improve the Ac-
curacy and consistency of large-scale data analyses. In general, a segmentation pipeline
consists of four steps. First, it applies morphological operations to remove image noise.
Second, it utilizes the gradient intensity of the image to obtain edge information. Third, the
IdentifyPrimaryObjects module performs binarization to automatically detect and segment
cells in the image and label them and further removes signal noise or fills gaps using certain
morphological operations. Finally, it converts the cell masks to uint16 TIFF format images
for preservation. The software, user manuals, video tutorials, and pipeline examples are
available at: https://cellprofiler.org/ (accessed on 8 February 2024).

2.2. Icy

Icy (version 2.4.3.0) is a free, user-friendly, open-source image-analysis software suit-
able for high-throughput cells. It provides advanced analysis features: cell localization,
segmentation, tracking, morphological measurements, etc. Among the plugins or mod-
ules for segmentation are Thresholding, Active Contour Line, Parametric Snake, Potts
Segmentation, Texture Segmentation, Watershed3D, Spot Detector, and HK-Means [31].
Icy provides a Graphical User Interface (GUI) based on visual programming that allows
users to select protocols from existing site libraries or manually configure their workflows
for subsequent batch reuse. Java-based and Python-based scripts may be used instead of
the plugin modules. For this study, we used a protocol and selected the commonly used
HK-Means segmentation, which carries out N-class threshold processing based on the
K-Means classification of the image histogram. The threshold processing uses a method
based on similarity measurement to assign different brightness values to the cell images
and their backgrounds. The object was then extracted from the bottom up using a user-
defined minimum and maximum object sizes (pixels) to eliminate groups that are too
small or too large. Finally, Gaussian pre-filtering was applied to improve the segmenta-

https://cellprofiler.org/
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tion of noisy images. Icy is developed in Java. Its source code, standalone versions for
Windows and Mac, documentation, user manuals, and video tutorials are distributed at:
https://icy.bioimageanalysis.org/ (accessed on 8 February 2024).

2.3. StarDist

StarDist (version 0.8.5) is a DL method for 2D and 3D object detection and segmenta-
tion, which can handle complex shapes and structures with high Accuracy and robustness
and is applied to the life science and medical image processing. It uses a Convolutional
Neural Network (CNN) to predict the distance of each pixel to the object boundary and
determines the probability of it belonging to the target object. The program generates a
star-shaped convex polygon or convex polyhedron to represent the detected object. StarDist
supports the detection of irregularly shaped objects against complex backgrounds. An
adaptive model of the dataset is obtained through the application of a training on the
original image and corresponding annotated data. The model is then used to test new data
for prediction and evaluation. For 2D data, the pre-trained model can be used directly.
It has no GUI, but provides a Python-based toolkit that can be used as a plugin for com-
mon open-source platforms such as ImageJ/Fiji [32], CellProfiler, Icy, KNIME, QuPath,
etc. The source code is available at: https://github.com/stardist/stardist (accessed on 8
February 2024).

2.4. DeepCell

DeepCell [23–26] (version 0.12.9) is an open-source Python package for automated
analysis and segmentation of high-throughput biological images. The software uses Deep
Convolutional Neural Networks (DCNNs) to perform cell segmentation on various types
of microscopy images and predict cell types. It includes several functions, including cell
segmentation, nucleus segmentation, cell tracking, and phenotype measurement. DeepCell
supports high customizability and migratory learning, and users can train their Neural
Network architectures using pre-trained models or the provided design rules for image
normalization, data enhancement, hyperparameter tuning, and post-segmentation process-
ing to improve Accuracy. DeepCell also provides visualization tools to help researchers
better understand the output data. It has no GUI, but offers alternative ways to interface
with it, including a web portal, ImageJ plugins, and command-line interfaces. Its documen-
tation, user manuals, and tutorials are distributed at: https://deepcell.com/ (accessed on 8
February 2024).

2.5. Cellpose

Cellpose (version 2.2.3) is an open-source general-purpose cell-image-segmentation
software that can be applied to a wide range of biological imaging modalities and is
suitable for identifying microorganisms and plant and animal cell types. Cellpose uses
a modified Neural Network architecture based on U-net. Unlike classical segmentation,
which uses image grayscale values to create topological maps, Cellpose uses intermediate
image representations to form smoother topological maps to better segment multiple types
of non-clumped cells. In addition, Cellpose 2.0 provides a large dataset of trained “model
zoos” containing several pre-trained models where users can choose the appropriate pre-
trained model and evaluate their data. Pre-training scripts are also provided so that users
can efficiently train custom models. Cellpose inputs the approximate average cell diameter
in pixels or takes the model’s default values for single-channel images. Image resolution is
limited to a maximum of 512 × 512 px, effectively reducing the computation time while
bringing fewer segmentation errors. It is provided with a web portal, and a GUI can be
found at https://www.cellpose.org/ (accessed on 8 February 2024).

2.6. Omnipose

Omnipose [27] (version 1.0.6) is a user-friendly cell segmentation tool based on DL,
using the U-net architecture. Omnipose is based on Cellpose and comes with significant

https://icy.bioimageanalysis.org/
https://github.com/stardist/stardist
https://deepcell.com/
https://www.cellpose.org/
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upgrades, such as a new postprocessing step that removes noise and fine-tunes segmenta-
tion contours. In addition, it handles images with uneven lighting or blurred backgrounds
and is optimized for fast processing while maintaining high Accuracy. Omnipose has
been used to segment bacteria in large bacterial image databases. Omnipose can robustly
segment bacteria with different morphologies, outperforms Cellpose on bacterial phase
contrast images, and provides convincing results even for highly eccentric or elongated
cells. In addition, Omnipose can accept images of any size, improving training efficiency
and allowing more cell detection. The output of Omnipose is an instance segmentation. By
integrating Omnipose with other tools, scientists can determine the average pixel diameter
of bacterial cells from real surface masks. Omnipose offers a GUI, command-line interface,
and Jupyter notebook at https://omnipose.readthedocs.io (accessed on 8 February 2024).

2.7. Plantseg

Plantseg [28] (version 1.6.0) is a comprehensive software for the 2D or 3D cell seg-
mentation of plant cells. Plantseg utilizes a pipeline that involves a CNN to predict cell
contour boundaries and various graph-partitioning algorithms to segment cells based on
the previous step. The software was designed to work with confocal microscope and light-
sheet microscope images. Users have the option of using a pre-trained network or training
a 2D U-net or 3D U-net [33] architecture for the first step. The segmentation algorithms
available in Plantseg include GASP [34] (default), Mutex watershed, MultiCut, SimpleTK,
and DtWatershed. Plantseg also uses distance-transformation-based watershed and region
adjacency graphs to create superpixels for image segmentation. These techniques differ
from traditional grayscale segmentation methods, such as extracting DAPI-stained cell
nuclei. Plantseg is a free, open-source software that comes equipped with both a command-
line and a GUI, making it accessible to a wide range of users. The source code is available
at https://github.com/hci-unihd/plant-seg (accessed on 8 February 2024).

2.8. Ilastik

Ilastik [29,30] (version 1.4.0.post1) is a user-friendly, free, open-source software tool
for interactive ML-based image analysis in a wide range of applications including neuro-
science and cell biology. It enables researchers to perform complex image segmentation,
classification, tracking, and counting of cells. Scientists can download the BioImage.IO
library (DL models for the bioimaging community) in Ilastik. An interactive ML based on a
Random Forest classifier with a GUI that does not require specific ML knowledge adjusts
parameters with minimal manual annotation and human intervention, enabling users to
implement their image analysis through a supervised ML workflow. Manual annotation
is used to predict the class of each unannotated pixel and object, thus classifying pixels
and objects and correcting them precisely at the locations where the classifier is wrong.
Once the classifier has been trained, the new data can be processed in batch mode. We only
successfully tested Ilastik on the Cellpose_cyto dataset without preprocessing operations.
First, we used the pixel classification workflow to obtain initial semantic segmentations
(two classes: cell and background). Then, we used boundary-based segmentation with
the multicut workflow to produce the final cell instance segmentation. Ilastik runs on
Windows, macOS, and Linux. User documentation and video tutorials are available at:
https://www.ilastik.org/ (accessed on 8 February 2024).

3. Experimental Configuration and Analysis
3.1. Datasets and Preprocessing

As shown in Table 3, three public datasets were selected to evaluate eight cell-
segmentation software tools. The first dataset was extrapolated from the 2018 Data Science
Bowl [35]; the second was obtained from Cellpose [21]; the third was obtained from the Cell
Tracking Challenge of ISBI [36]. The general H5 format image files are easy to process and
effectively reduce memory consumption. However, since Icy does not support the input of
H5 format files yet, we did not choose the H5 format. Instead, we took another commonly

https://omnipose.readthedocs.io
https://github.com/hci-unihd/plant-seg
https://www.ilastik.org/
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used TIFF image format for conversion. Because CellProfiler and DeepCell require the
same-size input dataset for batch processing, we unified the different sizes of the dataset
to 512 × 512 px and converted them to a single channel (y,x,c) for grayscale processing.
Specifically, the input dimensions of Plantseg were z, y, and x, and those of DeepCell were
b, y, x, and c, where “bzxyc” denotes the number of images, depth, height–width, and
color channel, respectively. Finally, we normalized the minimum and maximum values of
each image in the dataset after removing the upper and lower 1% extremes. We were, thus,
able to minimize the impact of these differences in the image brightness and contrast and
to ensure the stability and Accuracy of the software cell segmentation. For examples, see
Figure 1.

raw preprocessing
raw

preprocessing raw preprocessing

Figure 1. An example of raw images and preprocessing result of DSB2018 datasets (left), Cell-
pose_cyto datasets (center), and PhC-C2DL-PSC datasets (right).

Table 3. The details of the three publicly available datasets.

Dataset Description Train Test RAM (MB) Channels (n) Url

DSB2018 one challenging dataset of diverse
fluorescence microscopy images

447 50 384.48 1 https://www.kaggle.com/
competitions/data-science-
bowl-2018/data (accessed on 8
February 2024)

Cellpose_cyto one dataset consists of fluorescent
cytoplasmic markers, confocal imag-
ing, brightfield microscopy, and non-
microscopy images

540 68 161.30 3 https://www.cellpose.org/
dataset (accessed on 8 Febru-
ary 2024)

PhC-C2DL-PSC pancreatic stem cells on a
polystyrene substrate

600 600 230 1 http://celltrackingchallenge.
net/2d-datasets (accessed on 8
February 2024)

3.2. Hardware Environment

The software was tested using two different hardware environments, as described below:

1. GPU:

• System: Ubuntu 20.04.2 LTS;
• GPU: NVIDIA GeForce RTX 3090 24 GB 2 GPUs;
• RAM: 1 TB;
• CPU: AMD EPYC 7H12 64-Core Processor;
• CUDA: version 11.1.

2. CPU:

• System: Windows 10;
• CPU: Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz;
• RAM: 2 × 4 GB 1867 MHz/s.

3.3. Segmentation Metrics

As in Table 1, we chose eight software tools to compare, selecting pre-trained models
and the existing pipelines of the corresponding software, which use default parameters
for cell image segmentation in both the models and pipelines. There are several metrics
related to image segmentation in the field of computer imaging and ML/DL. In this paper,
we chose some generic segmentation metrics [7]: Accuracy, Recall, Precision, and F1. As

https://www.kaggle.com/competitions/data-science-bowl-2018/data
https://www.kaggle.com/competitions/data-science-bowl-2018/data
https://www.kaggle.com/competitions/data-science-bowl-2018/data
https://www.cellpose.org/dataset
https://www.cellpose.org/dataset
http://celltrackingchallenge.net/2d-datasets
http://celltrackingchallenge.net/2d-datasets
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shown in Table 3, the DSB2018 dataset uses 50 images and the Cellpose_cyto dataset uses
68 images for the average metrics comparison.

Accuracy =
TP + TN

TP + TN + FN + FP

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 =
2 ∗ Recall ∗ Precision

Recall + Precision
=

2 ∗ TP
2 ∗ TP + TN + FN

4. Results

The default pre-trained model was selected for segmentation comparison. As shown in
Tables 4–7, we compared the segmentation results and conducted a quantitative comparison.
Among these tables, N_true represents the number of cells in the Ground Truth (GT).
N_pred represents the number of cells predicted by each software. Accuracy, Recall,
Precision, and F1 are some segmentation metrics. F1-based Rank was used to compare the
software performance based on the F1 score.

Table 4. Quantitative comparison of the performance of open-source software tools selected for the
study on DSB2018 datasets.

Software N_true N_pred Precision Recall Accuracy F1 F1-Based Rank

No Preprocessing

Cellpose 49 42 0.9387 0.8227 0.7948 0.8725 2
Omnipose 49 29 0.7825 0.4421 0.4058 0.5387 3
StarDist 49 49 0.9314 0.9278 0.8723 0.9283 1
Plantseg 49 3 0.0050 0.0014 0.0011 0.0022 5
Icy 49 35 0.5224 0.4302 0.3317 0.4640 4

Preprocessing

Cellpose 49 48 0.9197 0.8959 0.8408 0.9066 1
Omnipose 49 29 0.7608 0.5150 0.4919 0.5945 5
StarDist 49 50 0.8727 0.9117 0.8177 0.8894 2
DeepCell 49 49 0.7641 0.8025 0.6625 0.7802 4
Plantseg 49 3 0.0007 0.0003 0.0002 0.0005 7
Icy 49 38 0.5300 0.4937 0.3770 0.5042 6
CellProfiler 49 47 0.8087 0.8215 0.7058 0.8089 3

Table 5. Quantitative comparison of the performance of selected open-source software tools on the
Cellpose_cyto datasets.

Software N_true N_pred Precision Recall Accuracy F1 F1-Based Rank

No Preprocessing

Cellpose 106 65 0.8596 0.6456 0.6102 0.7138 1
Omnipose 106 87 0.7666 0.6579 0.5593 0.6941 2
StarDist 106 116 0.5299 0.5609 0.3844 0.5142 3
Plantseg 106 90 0.1421 0.1855 0.1059 0.1534 5
Icy 106 63 0.1973 0.1427 0.1034 0.1584 4
Ilastik 106 60 0.0420 0.0474 0.0230 0.0370 6

Preprocessing

Cellpose 106 89 0.7552 0.6637 0.5798 0.6929 1
Omnipose 106 5 0.1800 0.0448 0.0384 0.0639 7
StarDist 106 108 0.3037 0.3575 0.2035 0.3072 3
DeepCell 106 129 0.3550 0.4596 0.2674 0.3847 2
Plantseg 106 110 0.1175 0.1476 0.0830 0.1251 6
Icy 106 87 0.2103 0.1831 0.1260 0.1903 5
CellProfiler 106 186 0.1776 0.2443 0.1267 0.1914 4
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Without preprocessing, the top-three F1 scores of the software were for StarDist, Cell-
pose, and Omnipose. After the preprocessing operations, the F1 scores of the remaining
five software tools, except for StarDist and Plantseg, improved, verifying the feasibility of
the preprocessing operations. CellProfiler leverages the strengths of traditional algorithms,
ranking first with an F1 score of 0.6394. StarDist was second with an F1 score of 0.5912, and
Cellpose was third with an F1 score of 0.5763. The performance of the other software tools
was comparatively low. The cell segmentation results using DeepCell expanded the bound-
ary and, hence, it is more susceptible to noise, which makes the cells with obvious gaps
appear adhesive and dense, resulting in over-segmentation. Icy is most affected by noise:
the segmentation results contained holes and showed under-segmentation phenomena
(Figure 2).

(A)

Raw GT Cellpose

Omnipose StarDist DeepCell

Plantseg CellProfiler Icy

(B)

Raw GT Cellpose

Omnipose StarDist DeepCell
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Raw GT Cellpose

Omnipose StarDist DeepCell

Plantseg CellProfiler Icy
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Figure 2. Some representative sections of the segmentation masks obtained after preprocessing the
DSB2018 dataset as shown in (A–D). (E) shows the average cell numbers, and the suffix “*” indicates
that the software had only successfully made segmentation predictions on preprocessed images.
(F) shows FP/TP/FN values, and the prefix “un_” indicates that the software operates on non-
preprocess images.

Without preprocessing, the top-three F1 scores of the software were for Cellpose,
Omnipose, and StarDist. The same preprocessing operation did not give good results on
the Cellpose_cyto dataset, the input of was a three-channel image, which may also be a
result of the diversity of its image types. After processing, Cellpose demonstrated the best
performance with an F1 score of 0.6929 for the Cellpose_cyto dataset. DeepCell ranked
second with an F1 score of 0.3847, followed by StarDist in third place with an F1 score of
0.3072. The performance of the other software tools was notably lower, with Precision,
Recall, Accuracy, and F1 scores all falling behind the top-three performers. The poorer
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results of Omnipose compared to Cellpose, which was highly affected by preprocessing,
may be related to its suitability for regular (round or oval) small cells and bacterial cells.
Plantseg had the worst results for both datasets, which may be because it is a plant-cell-
segmentation software, which is more adapted to the segmentation of tightly arranged cells.
For neuron cells, apart from Omnipose, Plantseg and StarDist were among the software
tools with poor segmentation results, which are more sensitive to differences in cell shape
and more adapted to round or oval conventional cells. However, Icy and CellProfiler are
more adaptable for such cells, with finer segmentation (Figure 3).

Table 6. Quantitative performance comparison of two software tools (Cellpose and StarDist) on
2D datasets.

Dataset Software N_true N_pred Precision Recall Accuracy F1

DSB2018
StarDist 49 51 0.5707 0.6183 0.4566 0.5912

Cellpose (untrained) 49 47 0.5900 0.5647 0.4623 0.5763
Cellpose (trained) 49 45 0.7316 0.6791 0.5776 0.7026

Cellpose_cyto
Cellpose 106 89 0.7552 0.6637 0.5798 0.6929

StarDist (untrained) 106 108 0.3037 0.3575 0.2035 0.3072
StarDist (trained) 106 93 0.7050 0.6708 0.5426 0.6739

In addition, we selected two software tools with the best F1 scores (Cellpose and
StarDist) to compare the training adaptability of their models with the default parameters
and methods using two preprocessing datasets. After model training, the segmentation
metrics of the two software tools significantly increased, as shown in Table 6. The F1 score
of Cellpose rose from 0.5763 to 0.7026, surpassing the F1 score of StarDist (0.5912) on the
DSB2018 dataset. The F1 score of StarDist rose from 0.3072 to 0.6739, lower than the F1
score of Cellpose (0.6929) on the Cellpose_cyto dataset.

Table 7. Quantitative comparison of the performance of selected open-source software tools on the
PhC-C2DL-PSC datasets.

Software N_true N_pred Precision Recall Accuracy F1 F1-Based Rank

No Preprocessing

Cellpose 237 118 0.5919 0.4410 0.3504 0.4857 2
StarDist 237 241 0.5025 0.5935 0.3668 0.5353 1
DeepCell 237 112 0.0887 0.0503 0.0330 0.0634 5
Icy 237 142 0.5427 0.3894 0.2992 0.4481 3
CellProfiler 237 349 0.2179 0.3580 0.1537 0.2643 4

Preprocessing

Cellpose 237 75 0.4069 0.2312 0.1832 0.2847 3
StarDist 237 175 0.5787 0.5327 0.3728 0.5383 1
DeepCell 237 61 0.0596 0.0206 0.0154 0.0301 5
Icy 237 103 0.4279 0.2607 0.2015 0.3171 2
CellProfiler 237 242 0.2238 0.2804 0.1386 0.2424 4

We tested an additional 2D dataset (PhC-C2DL-PSC) for cell segmentation with and
without preprocessing operations. This dataset was phase contrast images from pancreatic
stem cells on a polystyrene substrate. We chose 300 images from its training dataset (folder
01) and the corresponding masks in folder 01_ERR_SEG. Since this dataset has a uniform
size, DeepCell and CellProfiler could also perform segmentation without preprocessing.
Omnipose and Plantseg among the selected software were ignored as there was no output
in this dataset. The results are as shown in Table 7 and Figure 4. Without preprocessing, the
top-three F1 scores of the software were StarDist, Cellpose, and Icy. The same preprocessing
operation did not give good results on this dataset, except for StarDist.
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Figure 3. Some representative sections of the segmentation masks obtained after preprocessing the
Cellpose_cyto dataset as shown in (A–F). (G) shows the cell numbers, and the suffix “*” indicates
that the software had only successfully made segmentation predictions on preprocessed images.
And (H) shows FP/TP/FN values, and the prefix “un_” indicates that the software operates on
non-preprocess images.
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Figure 4. Some representative sections of the segmentation masks obtained after preprocessing the
PhC-C2DL-PSC dataset as shown in (A,B). (C) shows the cell numbers, and (D) shows FP/TP/FN val-
ues, and the prefix “un_ ” indicates that the software operates on non-preprocess images.

Finally, we quantitatively compared the computer resources used to obtain the seg-
mentation results for the DSB2018 and the Cellpose_cyto datasets with preprocessing for
each of the selected segmentation software, as shown in Table 8. In a GPU hardware
environment, Cellpose ran fastest on the DSB2018 dataset and second fastest to Omnipose
on the Cellpose_cyto dataset. The maximum memory occupied during StarDist processing
was the lowest on both datasets, except for Plantseg. Plantseg took up the least memory,
but ran the slowest on both datasets.

Table 8. Quantitative comparison of computer resource consumption of the selected cell-segmentation
software.

Software on GPU or CPU
DSB2018 Cellpose_cyto

Time (s) Memory (MB) Time (s) Memory (MB)

Cellpose GPU 32.89 5383.89 48.85 5423.26
Omnipose GPU 57.87 6320.05 45.17 6315.86
StarDist GPU 85.43 4533.08 178.99 4628.75
DeepCell GPU 110.43 6922.44 112.24 7254.32
Plantseg GPU 293.6 4234.08 375.17 4274.43

Icy CPU 132.85 840.15 221.01 851.24
CellProfiler CPU 660.02 625.86 900.34 699.18

5. Discussion

This study examined the performance of different cell-image-segmentation software
tools on the DSB2018, the Cellpose_cyto, and the PhC-C2DL-PSC datasets. The DSB2018
dataset is generic, and the overall shape of the cells in the dataset is relatively uniform with
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differences in the gap densities and cell sizes. The Cellpose_cyto dataset comprises cells
with various characteristics. The PhC-C2DL-PSC dataset is consistent on cellular features
as it is a 2D time-lapse sequence of cell images. The final results showed performance
differences across the software tools, with no one tool performing better than the others
across all the measures and datasets evaluated. CellProfiler and StarDist performed well
on the DSB2018 dataset, while Cellpose performed well on the Cellpose_cyto dataset, and
Cellpose and StarDist performed well on the PhC-C2DL-PSC dataset. After systematic
model training and learning, Cellpose and StarDist were trained on their respective datasets
and showed similar performance on the two datasets. The segmentation result of Cellpose
was slightly better than that of StarDist, indicating that Cellpose has better adaptability to
different types of cells. Cellpose and StarDist use distance-transformed gradients to predict
the final result, process faster during segmentation, and consume less memory resource,
which can satisfy the researchers’ need for the batch processing of cells. Meanwhile, a
more-complete process can be constructed using deep learning model extension plug-
ins such as Cellpose and StarDist in CellProfiler and the Icy software to achieve further
statistical analysis of the segmented cells. Plantseg, Omnipose, and Icy showed limitations
in working with specific types of cells. In addition, the adaptability of different software to
preprocessing operations varies considerably, and it is not yet possible to choose a uniform
preprocessing method to evaluate the performance of software under different datasets.
Therefore, the specific requirements of the dataset and application scenarios should be
considered when selecting the right software.

This study highlights the need for continuous development and improvement of cell-
image-segmentation software. As technology continues to advance, further enhancements
in algorithmic methods and optimization techniques may improve the performance of
different datasets. In the future, it is expected that general cell-segmentation software with
good segmentation results and advanced functions will be developed. These software
tools can be used interactively with other software, such as the CellProfiler platform using
Cellpose, StarDist, and other DL models for cell segmentation through plug-ins. The
segmentation output generated by Icy can be imported into ImageJ for further statistical
analysis and processing. It can also be controlled as a process script, which can analyze the
cell structure more accurately and effectively and better serve the related biological research.
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