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Abstract: Over the past decade, a group of lymphocyte-like cells called innate lymphoid cells
(ILCs) has gained considerable attention due to their crucial role in regulating immunity and tissue
homeostasis. ILCs, lacking antigen-specific receptors, are a group of functionally differentiated
effector cells that act as tissue-resident sentinels against infections. Numerous studies have elucidated
the characteristics of ILC subgroups, but the mechanisms controlling protective or pathological
responses to pathogens still need to be better understood. This review summarizes the functions of
ILCs in the immunology of infections caused by different intracellular and extracellular pathogens
and discusses their possible therapeutic potential.
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1. Introduction

Natural innate lymphoid cells (ILCs) are a newly described family of immune cells
that form part of natural immunity [1,2]. They lack antigen-specific receptors, which
allows them to act at the earliest stages of infection. According to the older nomenclature,
lymphoid cells were grouped into ILC1s, ILC2s and ILC3s, which expressed the same
functions as T helper 1 (Th1), Th2 and Th17 cells, respectively, with natural killer (NK) cells
being the equivalent of cytotoxic T cells [3]. The currently proposed nomenclature classifies
ILCs into five subgroups: NK cells, ILC1, ILC2, ILC3, and LTi (lymphoid tissue inducer)
cells (Table 1). In addition, innate lymphoid regulatory cells (ILCregs) were identified
and characterized due to the production of IL-10 and the absence of some of the markers
described for ILC1: NK1.1, NKp46, and Tbx21 (encodes T-bet); ILC2: ST2, a lectin receptor-
like killer cell subfamily G member 1 (KLRG1), and GATA-3; and ILC3: NKp46, CD4, and
RORgt. The primary function of ILCregs is to maintain tissue homeostasis and regulate
immune responses. They do this by secreting immunomodulatory cytokines, such as IL-10,
TGF-β, and IL-35, which help in suppressing inflammatory responses and promoting
tissue repair. ILCregs are found in various tissues, including the gut, lung, kidneys, and
lymphoid organs. Each tissue may contain a distinct subset of rILCs with specific functions,
tailored to the tissue microenvironment. Understanding their functions and dysregulation
in various diseases may provide valuable insights for therapeutic interventions [4,5]. ILCs
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are distinguished by three main characteristics: (1) the absence of expression of lineage (Lin)
markers, (2) the autonomy from recombination activating gene (Rag), and (3) the essential
need for the common cytokine receptor γ-chain (γc) [6]. ILCs regulate immune responses,
play a role in metabolic homeostasis, prevent tissue damage and tissue maintenance, and
mediate responses between glial cells and other immune cells [7]. All ILC subpopulations,
including NK cells, differentiate from a common lymphoid progenitor [8–10]. Different
antigens have been proposed to identify each ILC group, but these have been described in
detail elsewhere and are not the focus of this review [7,8].

2. Innate Lymphoid Cells (ILCs) Functional Diversity

ILC subpopulations vary considerably from tissue to tissue [11]. It is known that
ILCs show great flexibility in cytokine production and are even capable of reversibly
transforming into other subpopulations if necessary. ILC1s can transform into ILC3s and
vice versa, ILC2s can transform into ILC1s, while NK cells have been shown to transform
into ILC1s [12–15]. The understanding of ILCs’ function is still evolving. To date, ILCs
have been described as cells mainly reflecting Th lymphocytes, but recently, cytotoxic
subpopulations of ILC1 and ILC3 have been discovered [3,7,16–19]. ILC3s have shown
high cytotoxicity and expression of granzyme B, granulysin and Eomes, previously thought
to be expressed mainly in NK and CD8+ T cells [16,20]. ILC2 can also promote apoptosis
through the production of PD-1 [21,22]. Another role that ILCs may play is in antigen
presentation, as has been shown in specific populations of ILC3 and ILC2 expressing major
histocompatibility complex (MHC) class II molecules [22,23]. This role is further supported
by data obtained by Yang. et al., which show that the ILC2 subpopulation is capable of
phagocytosis to some extent [24]. Recently, an interesting subpopulation of ‘regulatory’
ILCs in the small intestine was discovered, expressing constitutive IL-10 production in a
mouse model, making them similar to Treg cells [25].

Table 1. Characteristics of the subgroups of human innate immune cells.

ILC Subgroup Phenotypical Markers Transcription Factors Cytokines References

NK cells CD56, NCR1, IL-12Rβ2 T-bet, Eomes IFN-γ, TNF-α

[3,5,6,8,11,12,14,15,18,22]

ILC1 CD127,CD161, IL-1R, IL-12Rβ2, ICOS T-bet, Eomes IFN-γ, TNF-α

ILC2 CD127, CD161, ICOS, CRTH2, IL-1R, ST2,
IL-17RB GATA3 IL-4, IL-5, IL-9, IL-13

ILC3 CD117, CD127, CD161, NCR2, ICOS, NCR1,
IL-1R, IL-23R RORγt IL-17, IL-22,

GM-CSF

LTi CD117, CD127, IL-1R, IL-23R TCF1 IL-2, IL-5, IL-13

Abbreviations: CRTH2—chemoattractant receptor-homologous molecule expressed on Th2 cells; Eomes—T-box
brain protein 2 (Tbr2); GATA3—GATA binding protein 3; ICOS—inducible T cell co-stimulator; IFN-γ—interferon-
gamma; IL—interleukin; ILC—innate immune cells; LTi—lymphoid tissue inducer; NCR—natural cytotoxicity
triggering receptor; NK—natural killer; RORγt—RAR-related orphan receptor γ; T-bet—T-box expressed in T
cells; TCF1—T cell factor 1; TNF-α—tumor necrosis factor-alpha.

ILCs are lymphocytes that are resident in tissues, originating first in the fetal liver
and subsequently in the bone marrow [7]. ILCs possess homing receptors such as CXCR5,
CCR6, and CCR7, allowing some subpopulations to migrate to infected tissues [26–28], but
the extent of this phenomenon is still debated. Migration rates can vary from a few percent
to more than half of the ILCs recruited from circulation. This is highly dependent on the
group and subpopulation of ILCs [28,29], and some infections may also lead to increased
migration [26,30].

Despite the association of ILCs mainly with innate immune responses, they play an
essential role in maintaining prolonged immunity to pathogens. Once activated, increased
ILCs can persist for several months [31–34]. Moreover, all subgroups either mediate long-
term memory responses [31–36] or exhibit memory-like properties. Naïve ILC2s have
demonstrated a weaker response to unrelated allergens compared to post-inflammation
persistent ILC2s [33]. This increase in the reactivity of innate immune cells is called ‘trained
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immunity’, and this phenomenon makes some standard vaccines a multipotent immune
enhancer, resulting in an overall reduced mortality rate [37,38]. Another example of long-
term immunity an ILC provides is the maintenance of CD4+ T-cell memory by LTi cells
and ILC3 cells [32,35].

3. ILCs in Immunity to Intracellular and Extracellular Pathogens

Microorganisms are classified as extracellular pathogens that do not have to enter host
cells to reproduce. They are present in their natural habitats as free-living entities, and they can
also act as intracellular pathogens by infecting and reproducing within host cells via vacuolar
or cytosolic routes. However, many intracellular bacterial pathogens can cause extracellular
infection following the intracellular stage, and conversely, several extracellular pathogens
can attack host cells in vivo prior to the extracellular infection stage [39]. Due to the wide
distribution of heterogenous subtypes of ILCs across various tissues and organs in the body,
these cells play a crucial role in the immune response against various pathogens, including
viruses, bacteria, fungi, and intracellular and extracellular parasites (Figures 1 and 2).
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Figure 1. Innate immune cells in immunity to extracellular and intracellular pathogens. Due to the
wide distribution of heterogenous subtypes of ILCs across various tissues and organs in the body,
these cells play a crucial role in the immune response against a range of pathogens, including viruses,
bacteria, fungi, and both intracellular and extracellular parasites. Upon stimulation, ILCs secrete
a variety of cytokines, with IFN-γ for ILC1, IL-5 and IL-13 for ILC2, and IL-17 and IL-22 for ILC3,
serving as their signature cytokines.
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they play an important role on in the immune response from the very beginning, while T cells,
based on their receptor specificity, must undergo a process of selection and further multiplication,
which usually takes several days. Activation of ILCs occurs via specific transcription factors which
ultimately allows the cells to participate in many immune processes. Inappropriate or prolonged
activation of ILCs can lead to excessive inflammation and tissue damage.

3.1. Mycobacterium tuberculosis (M.tb)

Due to their strategic location on the mucosal surface, ILCs can respond quickly
to pathogen invasion. Through cytokine production and reciprocal interactions with
macrophages, these cells have also been shown to be crucial in epithelial healing, tissue
homeostasis, metabolism, and immune control. Although the presence of ILC cells in the
lungs has been confirmed, their role, particularly in the course of tuberculosis, is poorly
understood [40,41]. Among the three, ILC1 cells have been attributed a vital role in immune
processes associated with infections caused by intracellular bacteria and parasites. Interest-
ingly, although ILC1 and NK cells differ in development and transcriptional processes [42],
they show some phenotypic similarities that allow them to be included in the same ILC1
group. In this context, attention is drawn to their similar reactivity to pro-inflammatory
cytokines (interleukins (IL)-15, IL-12 and IL-18) and the secretion of IFN-γ and TNF as a
manifestation of their activation [43]. The production of IFN-γ is regulated in ILC1 cells by
the transcription factor T-bet, which is also present in NK cells. However, its expression
level is lower in NK cells than in ILC1 and is not crucial for NK cell development [43].

Although the role of ILCs in M.tb infection has not been clearly defined, the data ob-
tained so far leads us to conclude that they play a protective role, expressed mainly through
the production of IL-17 and IL-22. In both mouse models and humans, it has been noted
that TB infection leads to a significant reduction in the levels of ILC1s and ILC3s within the
bloodstream, while these cell types tend to accumulate in the lungs. This process involves
the participation of the CXCL13–CXCR5 axis, which is vital for coordinating interactions
between B and T cells [44,45]. Using the murine model, Corral et al. demonstrated that
during M.tb infection, the fate of individual ILC cell types varied: the number of ILC1 and
ILC3 cells increased and became activated, while the ILC2 population shrank, and they
were functionally inhibited [46]. It was discovered that an atypical population appeared in
the lungs of infected mice that shared characteristics with ILC1s but were distinct, forming
a group called “ILC1-like” cells. The inflammatory and metabolic environment was found
to have influenced immature precursors of lung ILC cells, prompting them to differentiate
into ILC1-like cells. The phenotypic and functional differentiation of lung ILC precursors
expressing IL-18Rα into IFN-γ-producing ILC1-like cells was observed.

Moreover, using mice Rag2-/- deficient in T and B cells, the researchers showed that
adaptive immune mechanisms were not required for the conversion of IL-18Rα+ILC to
interferon-γ-producing ILC1-like population. The generation of ILC cells took place in a
specific cytokine environment, namely a type 1 inflammatory environment, the develop-
ment of which is observed during M.tb infection. The establishment of such an environment
was favored by specific cytokines, such as IL-12 and IL-18, which induced IFN production
by numerous immune cells (NK cells, T helper cells, and ILC1). Moreover, ILC1-like cells
were potentially found to protect against M.tb infection, and interestingly, intranasal ad-
ministration of the BCG vaccine provoked the production of these cells [46]. Furthermore,
Tripathi et al. (2019) provided evidence in a mouse experiment where they showed that
IL-22, produced by ILC3 cells, can enhance the survival of mice infected with M.tb and
suffering from type 2 diabetes mellitus (T2DM). This effect is achieved by diminishing the
inflammatory response, preventing the buildup of neutrophils around the alveoli, sup-
pressing the production of neutrophil elastase 2 (ELA2), and safeguarding the integrity of
epithelial cells. Thus, it is suggested that IL-22 may be a useful therapeutic tool in T2DM
patients with tuberculosis infection, especially since serum levels of this cytokine are signif-
icantly lower in such patients relative to T2DM patients uninfected with the intracellular
pathogen [47]. It was also observed that the number of ILC3s inducing Th17 response was
lower in tuberculosis patients than in controls. An increase in the number of ILC1 and ILC3
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was noted after treatment, suggesting that M.tb bacteremia affected selective ILCs accu-
mulation. Pulmonary ILC3s accumulation was also associated with alveolar macrophage
accumulation and increased M.tb control. In addition, the chemokine CXCL13, expressed
in the lungs of mice and humans after M.tb infection, decreased in the plasma of patients
with pulmonary TB after treatment. The expression of the CXCR5 receptor for CXCL13 was
also increased in patients with active TB, suggesting that the CXCL13–CXCR5 axis may
promote ILC3 activity after M.tb infection. Moreover, the addition of WT ILC3 infected
M.tb restored early M.tb clearance in Rag2-/-IL2r-γ-/- mice, suggesting that harnessing the
efficacy of ILC3s may be a novel pathway to induce TB control through Th17 immunity [26].
Reports suggest that Th17 immunity, which includes the effector cytokines IL-17, IL-22,
and IL-23, might have a protective effect in M.tb infections, as shown in several animal
studies [48–51]. However, IL-17 has also been implicated in causing tissue damage [52,53].
Pan et al. (2021) revealed that in the group of patients with active tuberculosis, the ILCs
present in the circulation were upregulated and showed increased IL-17 production com-
pared to the control group. A greater proportion of ILCs producing IL-17 (with IL-17 being
the dominant secretion phenotype in ILC1) correlated with a more severe inflammatory
state and a more unfavorable clinical condition [54]. Thus, determining the actual role of
Th17-like ILCs remains a challenging task.

3.2. Salmonella Typhimurium

Salmonella Typhimurium is the most commonly studied gastrointestinal pathogen
within Salmonella enterica subspecies I, which typically causes infections after ingesting con-
taminated water or food [55,56]. These pathogens cause self-limiting inflammatory diseases
of the gastrointestinal tract in humans, including acute inflammation of the terminal ileum
and colon [57]. The bacteria must overcome several obstacles to reach the large intestine
(the primary site of replication), including the colon. For example, they activate the acid
tolerance response (ATR) and then use flagella and chemotaxis capacity to move close
to the intestinal epithelium, consequently triggering an inflammatory response [55,58,59].
Interestingly, this process is not a typical host response leading to the elimination of the
pathogen, but it is the result of pathogen-induced changes in the transcriptional processes
of the infected cell (leading to the generation of exogenous electron acceptors), which
in turn is thought to enable and sustain Salmonella Typhimurium replication [59]. This
modification of host processes is enabled by activation of the Salmonella type III protein
secretion system (T3SS).

Increased susceptibility to Salmonella Typhimurium infection resulting from the de-
pletion of NK cells (belonging to group 1 ILC) and loss of the ability to produce IFN-γ
has been demonstrated in a mouse model, as well as using human peripheral blood-
derived macrophages [60]. A protective role of IFN-γ against this enteric pathogen has
also been confirmed in group 3 ILCs, and this antibacterial role has been linked to the
absence of the transcription factor Runx3 [61,62]. Castleman et al. demonstrated that
human colonic group 1 ILCs, when modeled in LPMCs, exhibit an elevated production of
pro-inflammatory cytokines (specifically IFN-γ and TNF-α) upon exposure to Salmonella
Typhimurium infection. Furthermore, the induction of IFN-γ production in these cells
was found to be reliant on their exposure to IL-12p70, IL-18, and IL-1β [63]. In contrast,
Kästele et al. confirmed increased levels of IFN-γ and some co-expression of GM-CSF in
Rorγt+T-bet+ ILCs during the infection [64].

3.3. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

The SARS-CoV-2 coronavirus originated in China, and the COVID-19 (coronavirus
disease of 2019) pandemic has been a significant global health concern in recent years [65].
It is known that the risk of severe COVID-19 and death is highly individual, and the course
pattern can range from asymptomatic to severe multi-organ failure. The likelihood of
experiencing severe illness resulting in hospitalization or death rises as individuals age,
particularly in men. This risk is further heightened in individuals with comorbidities
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such as obesity and diabetes [66,67]. ILCs are commonly recognized as the initial defense
mechanism against numerous infections, including viral ones [1,68,69]. To date, the role
of ILC cells in respiratory-related infections has yet to be clearly defined. Although ILC2
cells predominate in the lungs, there is increasing evidence of a significant role played by
ILC3s in the infectious processes taking place in this location [70,71]. On the one hand,
ILCs can worsen the course of the disease by driving a deregulated immune response,
resulting in chronic inflammation, and through IL-5 and IL-13, they promote inflamma-
tion by mediating airway hyperresponsiveness. On the other hand, ILC1s promote viral
clearance, and the IFN-γ they secrete hinders viral replication [72–74]. Moreover, ILC2s
contribute to lung regeneration in the course of viral infections, and the amphiregulin
(AREG) produced by ILC2s maintains the integrity of the airway and intestinal endothe-
lium, which, in mouse models, results in reduced severity of influenza virus infection and
reduced mortality [75,76]. In their study, Gomez-Cadena et al. discovered a noteworthy
decrease in the overall count of ILCs among COVID-19 patients, including both mild and
severe cases. They also observed a significant rise in the ILC2 subpopulation. However,
no significant changes were observed in other ILC subpopulations [77]. Silverstein et al.
demonstrated a significant decrease in the number of ILCs in adult patients infected with
SARS-CoV-2. Moreover, the study found an inverse correlation between the number of
ILCs and the risk of hospitalization, duration of hospital stay, and severity of inflamma-
tion, as indicated by CRP (C-reactive protein) values [68] The number of ILCs during the
SARS-CoV-2 infection was also markedly reduced in children and adolescents [68]. These
findings were supported by Garcia et al., who conducted a study that demonstrated a
decreased occurrence of ILC2s in severe cases of COVID-19. They also noted a concurrent
decline in the number of ILC precursors (ILCp) in all patients analyzed, when compared
to the control group. Furthermore, it was observed that ILCs undergo activation during
SARS-CoV-2 infection, leading to alterations in the expression of surface proteins [77].
Activated ILC2s and ILCp showed a phenotype with an increased CD69 expression and
different levels of the CXCR3 and CCR4 chemokine receptor expression [78]. In addition,
ILC2s increased the NKG2D levels in patients with severe symptoms compared to patients
with mild disease and controls, while differences in the NKG2D expression in ILC1s and
ILCP were not observed [71]. Gomez-Cadena et al. showed in their study that in the
group of ILC2 cells in patients with severe disease, the percentage of the cells expressing
the NKG2D + molecule increased compared to that in patients with mild disease and
the control group. It is worth mentioning that, until now, the presence of NKG2D, an
activating C-type lectin-like molecule, in ILC2s—a type of cytotoxic NK cell—has not been
documented. In contrast, there were no noticeable variations in the expression of NKG2D,
KLRG1, or CD25 in patients with ILC1 or ILCP [77]. The levels of other markers, such as
PD-1, NKG2A, and NKp46, were similar in ILC2 controls and patients with mild and severe
disease [77]. There was a positive correlation observed between the levels of activated
(CD69+) total ILCs and activated ILCp, as well as the levels of serum IL-6 and CXCL10
in patients with COVID-19 [71]. On the contrary, COVID-19 patients exhibited a negative
correlation between the levels of CXCL10 and CXCL11 and the percentage of CXCR3+
ILCs [71]. The concept of a reduced population of ILC2s in the blood may be consistent with
reports that the number of ILC2s decreases during infectious diseases under the influence
of IFN-γ [76,79]. In tracheal aspirates in COVID-19, there is usually a significant increase in
the levels of T cells, MAIT, and γδ, as well as ILCs (especially ILC2s) [80]. In the studies
above, the number of amphiregulin-producing ILCs in the course of SARS-CoV-2 infection
was found to be higher in women than in men, and those hospitalized with COVID-19 had
a lower percentage of amphiregulin-producing ILCs than controls [68]. On the other hand,
there are suggestions that the production of IL-17 may play a deleterious pro-inflammatory
role in severe disease [71]. More comprehensive research on the involvement of ILCs in
the COVID-19 infection may result in a better understanding of the disease and provide
opportunities for better control and treatment in the future. This area undoubtedly requires
further research.
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3.4. Respiratory Syncytial Virus (RSV)

Respiratory syncytial virus (RSV) is a highly contagious, single-stranded RNA virus
that is responsible for widespread infections across the globe. Although RSV can cause
infections throughout the year, it tends to flourish and create epidemics in temperate
regions, particularly during the winter season [81]. RSV is a significant cause of respiratory
tract infections, particularly in children, resulting in a range of diseases, including upper
respiratory tract infections (URTI) and lower respiratory tract infections (LRTI), such as
pneumonia and bronchiolitis. These infections can lead to heightened morbidity and
mortality rates. Natural infection causes incomplete immunity, resulting in recurrent
infections in childhood and infections in adults, including the elderly [82]. Those most
at risk for severe RSV-induced illness and associated hospitalization include premature
infants and infants with chronic lung disease or hemodynamically significant congenital
heart disease [83]. Although a functional correlation between RSV and obstruction/asthma
has not yet been proven, immunological studies indicate a shift in response toward Th2
cells, and an attenuation of the antiviral IFN-γ response during RSV infection underlies
airway hyperresponsiveness in a subset of susceptible children after RSV infection [84].

When airway epithelial cells are infected with RSV, they can release thymic stromal
lymphopoietin (TSLP), IL-33, HMGB1, and IL-25 upon recognition of RSV transcripts
and virus replication intermediates by bronchial epithelial cells. These alarm proteins
(“alarmins”) released from RSV-infected epithelial cells can activate ILC2 cells to produce
the type 2 cytokines IL-4, IL-5, and IL-13. IL-5 is the most critical factor in eosinophils’
growth, differentiation, and survival. IL-13 has many immunological and physiological
effects, including promoting airway reactivity and mucosal cell metaplasia [85]. When
activated, ILC2s reflect the innate Th2 cell counterparts and are potent promoters of
airway inflammation and hyperresponsiveness in RSV-induced bronchiolitis, as well as
obstruction/asthma in children. Persistent changes in the airway epithelium’s epigenetic
profile following RSV infection might contribute to a higher risk of obstructive lung disease
due to RSV in young individuals, both in the short and long term [86]. ILC2s express
receptors for cytokines such as TSLPR, ST2, and IL-25R, as well as receptors for advanced
glycation end products (RAGE) and Toll-like receptors (TLR) 2 and 4. ILC2s and the
cytokines they produce play a significant role in the development of asthma and allergic
diseases. Nasal aspirates from infants hospitalized with severe RSV infection showed the
presence of ILC2s, with higher levels compared to those with milder disease. Additionally,
the levels of IL-33 and TSLP, which are type 2 and epithelial-derived cytokines, were
significantly elevated in nasal aspirates from infants with severe disease compared to
those with moderate disease. Furthermore, studies have confirmed that infants who are
younger are at a higher risk of experiencing severe RSV infection. Additionally, infants
with elevated levels of IL-4 in nasal aspirates also face an increased risk. These findings
establish a crucial connection between ILC2 cells and the development of RSV-induced
bronchiolitis in infants [85]. ILC2s constitute the main population of ILCs in the lungs
and secrete large amounts of type 2 cytokines during inflammation the airways. Research
indicates that ILC2s play a vital function as initial responders to RSV infection and are
pivotal in coordinating the subsequent adaptive immune response. In a cohort of patients,
those with moderate RSV infection displayed elevated levels of IFN-γ, IL-12p40, and IL-
17A in comparison to infants with severe RSV infection. Conversely, the severe group
demonstrated significantly higher levels of type 2 respiratory cytokines (IL-4 and IL-13)
and IL-33 when compared to the moderate group. The frequency of ILC2s, primary type
2 immune mediators, was significantly higher in infants with severe and moderate RSV.
The comparison of ILC2 levels and total cell counts in nasal aspirates revealed similar
findings between infants with moderate RSV and severe RSV. Interestingly, infants older
than three months who were infected with RSV had significantly lower levels of IL-4 and
ILC2s in nasal aspirates compared to infants three months or younger. In contrast, the
levels of IFN-γ were significantly higher in RSV-infected infants older than three months
compared to infants three months or younger. Therefore, the study conducted by Vu et al.



Cells 2024, 13, 335 8 of 22

demonstrates that a higher frequency and absolute number of ILC2 in nasal aspirates are
associated with more severe RSV disease, suggesting that an elevated ILC2 count increases
the risk of severe RSV [87]. RSV infection induces activation of CD4+ T lymphocytes. It
has been demonstrated that RSV infection leads to an increase in the expression of MHC II
molecules on pulmonary ILC2s. This increase is believed to contribute to the expansion
and differentiation of RSV-infected CD4+ T cells. However, when the interaction between
CD4+ T cells and ILC2s was blocked using anti-MHC-II monoclonal antibodies, there was
a significant reduction in CD4+ T cell expansion. These findings suggest that pulmonary
ILC2s may serve as antigen-presenting cells, utilizing the MHC II pathway to activate CD4+
T cells during RSV infection. Additionally, reducing the number of CD4+ T lymphocytes
may help mitigate airway inflammation caused by RSV infection [88].

Recent research has focused on the concept of “trained immunity” in various immune
cells, such as macrophages, dendritic cells, NK cells, and ILCs. Specifically, the impact of
this training on ILC2s during early childhood development and its influence on immune
responses in adulthood has been explored. Studies have shown a significant increase and
activation of ILC2s shortly after birth, with lineage studies indicating that a substantial
portion (40–70%) of these cells persist into adulthood in the lungs. The activity of these
cells is heavily influenced by their exposure during the early postnatal period. Notably,
the activation of pulmonary ILC2s by IL-33 during early life appears to “train” them,
resulting in their long-term survival and a stronger response to type 2 infections later in
life. Furthermore, ILC2s have been found to play a critical role in shaping the immune
response during RSV infections. Understanding the relationship between viral load and the
severity of RSV infection is crucial for developing effective antiviral therapies, improving
the management of asthma and other respiratory diseases associated with viral infections,
and facilitating the validation of drugs and vaccines. Overall, elucidating the mechanisms
behind trained immunity in immune cells, particularly ILC2s, has significant implications
for our understanding of immune responses and the development of therapeutics for
various diseases [87].

3.5. Chlamydia sp.

Chlamydia sp., a member of the Chlamydiae phylum, is a Gram-negative, obligate
intracellular pathogen, among which Chlamydia trachomatis (C. trachomatis) and Chlamydia
pneumoniae (C. pneumoniae) are known as major human pathogens. C. trachomatis infection
is the most common sexually transmitted disease in the world. In turn, C. pneumoniae causes
respiratory tract infections, including atypical pneumonia, and promotes the development
of chronic diseases such as asthma, arthritis, and atherosclerosis [89–92].

Chlamydia strains are characterized by a common biphasic life cycle, including two
developmental forms: infectious elementary body form, which differentiates within the
pathogen-specific inclusion into replicative reticulate body form. Their strongly reduced
genome and the resulting lack of many enzymes entail developing specific interactions
with the infected host. However, their small genome (~1.04 Mbp in C. trachomatis) and the
plasmid in most chlamydia strains encode numerous virulence factors [89,93,94].

Using appropriate mouse models lacking the interleukin two receptor common gamma
chain (IL-2Rγc) and the IL-7 receptor necessary for developing ILCs, Xu et al. demonstrated
that ILCs are essential for endometrial innate immunity [9]. They also demonstrated that
inhibition of C. trachomatis development depends on IFN-γ secretion. Similarly, He et al.
confirmed the importance of IFN-γ in chlamydial infections, highlighting the role of ILC3s
in producing this cytokine [95]. Recently, it has also been suggested that genital tract
infections with Chlamydia spp. facilitate the plasticity of ILC3 to ILC1 [96,97].

3.6. Toxoplasma gondii

Toxoplasma gondii (T. gondii) is an intracellular pathogen responsible for toxoplasmosis,
a protozoan infection distributed worldwide. It is estimated that 8–22% of North Americans
and 30–90% of Europeans may be infected with this parasite [98,99]. Although the course
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of the disease is usually asymptomatic, for immunocompromised people and pregnant
women, it can pose a particular threat. T. gondii reproduces in cats’ small intestine, which
is the definitive host, after which it is excreted as oocysts with the feces. After entering
the intermediate host (birds, mammals, including humans), it multiplies in the small
intestine, from where the protozoan enters various organs and tissues via the blood and
lymphatic route, including skeletal muscles, the eyeball, lymph nodes, and even central
nervous system tissues, where it eventually forms cysts that can persist in the body for
years [100,101]. ILC1 cells are one of the keys to immunity against T. gondii infection.
Activated ILC1 cells play a vital role in initiating an immune response by producing pro-
inflammatory cytokines, such as IFN-γ and TNF-α [102]. To effectively combat intracellular
pathogens, a strong innate immune response called type I is required, which involves the
production of IFN-γ. This essential cytokine is necessary for fighting against bacterial,
viral, and parasitic infections. While the specific mechanism by which IFN-γ produced by
these innate immune cells defends against T. gondii remains unknown, López-Yglesias et al.
demonstrated that the early production of IFN-γ by ILC1s and NK cells, regulated by T-bet,
is critical for the survival of DCs during infection. Furthermore, T-bet-controlled innate
IFN-γ is crucial for inducing the transcription factor IRF8, which is vital for maintaining
inflammatory DCs. They demonstrated that IRF8+ DCs are essential for eliminating the
parasite [103]. Snyder et al. demonstrated that the absence of MyD88 in a mouse model
affects the function of ILCs, depending on the location of T. gondii infection. Furthermore,
they found that this effect is mediated by a mechanism that is dependent on MyD88. In mice
lacking MyD88 and infected orally, the frequencies of T-bet+ ILC1s producing IFN-γ in the
small intestine were lower compared to wild-type mice. When MyD88 knockout mice were
treated with antibiotics to deplete microflora, the frequencies of IFN-γ-producing ILC1s
were further reduced. During intraperitoneal (i.p.) infection in mice, the peritoneal cavity
primarily exhibited polarization of ILC towards the ILC1 subset, with enhanced expression
of IFN-γ observed throughout the infection. This response was driven by IL-12p40 and
associated with ILC proliferation. In MyD88-/- i.p. infected mice, IFN-γ expression by ILC1
was not maintained, but proliferation remained normal [104]. It has been observed that
ILC1s are the early producers of IFN-γ and TNF in response to cerebral T. gondii infection.
This activation of host defense mechanisms and the resulting neuroinflammatory response
are triggered by the ILC1s. In a mouse model, it was demonstrated that during the initial
stages of cerebral T. gondii infection, ILCs accumulate in the cerebral parenchyma, choroid
plexus, and meninges. Furthermore, when antibodies are used to deplete both NK cells
and ILC1s early on in the infection, the expression of cytokines and chemokines decreases,
while the number of parasites in the brain increases. It suggests that the absence of ILC1s
explicitly affects immune responses in the brain [105].

During T. gondii infection, NK cells and ILC1 activation are observed, manifested
by the production of IFN-γ and TNF-α. IL-12, released by dendritic cells in response to
the rapidly replicating tachyzoites of the parasite (acute inflammation), participates in
activating these cells. This is further followed by the formation of the parasite’s slow-
replicating developmental stage, bradyzoites, which are encysted in host cells (the chronic
form). It was reported that there was an expansion of the cells resembling ILC1 in the
spleens of T. gondii-infected mice, which were named ILC1-like cells, while there were
small populations of ILC1-like spleen cells in uninfected mice. Interestingly, although
T. gondii infection induces the formation of these cells, it appears that they can persist
independently of ongoing parasite replication, suggesting a permanent change [105]. There
is some evidence that although ILC1-like cells differentiate from NK cells, they are distinct
from NK cells and ILC1. It is suggested that the enduring presence of ILC1-like cells,
even after the infection has been eliminated, resembles the traditional concept of immune
memory, implying that ex-NK cells have a broader impact in T. gondii infection than what
has been previously associated with NK cells and ILC1s [106].

Very little is known about whether ILC2s play a role in T. gondii infection. These cells
are described primarily as part of the host defense response against helminths (Nippostrongy-
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lus brasiliensis [107,108], Heligmosomoides polygyrus [109], Strongyloides venezuelensis [110],
Trichinella spiralis [111], Ttichuris muris [112], Schistosoma haematobium [113]); however, they
may affect the anti-T. gondii response. In infected mice, there was a noticeable thinning of
the epidermis and an infiltration of inflammation in the skin, accompanied by a reduction
in the quantity of mast cells in comparison to mice that were not infected. The findings
correlated with the decrease in allergic responses of both Th2 and Th1 types. During the
initial 24-h period of allergic sensitization, the levels of type 2 cytokines IL-4 and IL-5 were
found to be diminished in the splenocytes and draining lymph nodes of infected mice.
Moreover, the decreased type 2 profile observed in animals with chronic infection was
associated with a decline in the ILC2 presence within the draining lymph nodes.

Little is known about the role ILC3 plays in T. gondii infection. Since T. gondii is an
orally acquired pathogen, and ILC3s are present in tissues, including the gut and mucosal
barriers, these cells may also be involved in the course of infection with this pathogen.
Special attention is paid to the two central cytokines produced by ILC3s, IL-22 and IL-17,
which determine the maintenance of homeostasis and integrity of mucosal barriers. It is
believed that, while the first one helps restore and protect the intestinal mucosal barrier, the
latter can promote inflammation and subsequent pathological changes [114]. However, the
role of IL-17 is not unequivocally protective or destructive. Many reports point to IL-17 as
a double-edged sword in host immunity to certain infections [115]. Although, in the case of
T. gondii infection, it has been shown that IL-17 can induce intestinal immunopathological
changes and promote the development of the chronic form of the infection, there are
minimal reports identifying ILC3s as the source of this cytokine [116]. On the contrary,
ILC3s can produce IL-17A and IL-17F when stimulated by IL-1β and IL-23, leading to the
production of chemokines that attract neutrophils from epithelial cells, including those
in the gut. Macrophages can also be activated by IL-17 and IFN-γ and work alongside
neutrophils to eliminate intracellular bacteria, fungi, and protozoan parasites through
phagocytosis and killing. Additionally, IL-17A, IL-17F, and IL-22 can boost the production
of antimicrobial peptides (AMPs) and enhance the functioning of the epithelial barrier [115].
Understanding the function of ILC cells during T. gondii infection is crucial, as it could
contribute to developing new treatments and vaccines. By manipulating the activity of
ILC cells, it may be possible to enhance parasite eradication and increase anti-T. gondii
therapy effectiveness.

3.7. Streptococcus pneumoniae

Streptococcus pneumoniae (S. pneumoniae) is a Gram-positive, facultative anaerobic
bacterium that colonizes the nasopharynx and causes community-acquired pneumonia [6].
The severity of the disease depends on the strength of the inflammatory response triggered
by the activation of complement pathways and the release of cytokines stimulated by
bacterial cell wall proteins, envelope polysaccharides, and DNA [117]. The polysaccharide
capsule plays a significant role in the pathogenesis of S. pneumoniae infection, which
interferes with phagocytosis by inhibiting the binding of the complement component
C3b to the cell surface. Additional factors that contribute to the virulence of the bacteria
include pneumolysin, pneumococcal surface protein A, autolysin, and pili. The significance
of ILC3s in S. pneumoniae infections was demonstrated by van Maele et al. and Gray
et al. [6,118]. Through the use of mouse lung infection models, van Maele et al. discovered
that intranasal S. pneumoniae infection resulted in an increase in the levels of IL-22, IL-17A,
and IL-17F in the lungs. ILC3s, which expressed retinoic acid-related orphan receptor γt
(RORγt) and chemoattractant cytokine (chemokine) C-C receptor 6 (CCR6), were the only
cells that co-expressed these markers, while the NK or NKT cells did not. These ILC3s
were also found to strongly upregulate the expression of chemokine (C-C motif) ligand
20 (CCL20) in lung tissues during infection. Moreover, the administration of flagellin, a
Toll-like receptor five agonist, enhanced IL-22 and IL-17 production by ILC3s and reduced
the bacterial load in mice [6]. Gray et al. revealed that 90% of IL-22-producing cells in the
lungs of newborn mice had phenotypic markers of ILC3s. The deficiency of ILC3s increased
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the susceptibility of newborn RORγtiDTR mice (with depletion of the RORγt+ T cells after
diphtheria toxin (DT) treatment) to S. pneumoniae. By adopting the transfer of ILC3s into
mice, their immunity to S. pneumoniae was successfully restored. Additionally, it was
discovered that administering IL-7 intranasally, which is a crucial factor for RORγt+ cell
function, led to an augmentation in the quantity of innate RORγt+ T cells in the lungs. This,
in turn, resulted in an enhancement of IL-17A expression and a reduction in the bacterial
burden following S. pneumoniae infection [119]. A study by Saluzzo et al. showed that lung-
resident ILC2s significantly contribute to the phenotype and function of resident alveolar
macrophages. IL-33 derived from ILC2s, which predominate in the lung environment in the
early postnatal period, may be detrimental in S. pneumoniae infection due to the induction
of the development of M2-type alveolar macrophages [120].

3.8. Klebsiella pneumoniae

Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative, aerobic, rod-shaped bac-
terium that can cause urinary, respiratory, gastrointestinal, and skin infections [121]. A wide
range of virulence factors, together with its common highly antibiotic-resistant phenotype,
makes the pathogen a serious health threat to neonates, the elderly, and immunocompro-
mised patients. Innate immune defense against K. pneumoniae has been shown to depend on
the cooperation between ILCs and inflammatory monocytes [122]. Xiong et al. conducted a
study that showed how inflammation-causing monocytes recruited to the lungs of K. pneu-
moniae-infected mice produced TNF. This led to a notable increase in the occurrence of ILCs
that produced IL-17A. This cytokine played a role in enhancing the ability of monocytes to
take up and eliminate bacteria, suggesting that there is a reciprocal relationship between
innate lymphocytes and monocytes that aids in the resolution of lung inflammation [122].
Other studies have also proven the importance of IL-17 in the pulmonary host defense
against K. pneumoniae [123]. Using a mouse model of K. pneumoniae infection, Chen et al.
found that, 24 h after infection, IL-17R knockout mice had a significantly higher bacterial
load compared to the wild-type animals [123]. All IL-17R knockout mice became infected
within 48 h, whereas only 20% of the wild-type mice became infected within the same
period. Additionally, it was shown that the production of IL-17A, which is dependent on
IL-23, is crucial for the survival of adult mice when challenged with K. pneumoniae [124].
In mice deficient in T and B cells (Rag2-/- mice), the main source of IL-17 is ILC3s [122].
When these cells were depleted using anti-CD90 antibodies, the expression of IL-17 was
eliminated, and the pulmonary infection caused by K. pneumoniae worsened. Through
single-cell RNA sequencing, Iwanaga et al. discovered that ILC3 cells expressing IL-17,
IL-22, and inducible T cell costimulatory molecule (ICOS) were necessary for protection
against carbapenem-resistant K. pneumoniae [125].

3.9. Pseudomonas aeruginosa

Pseudomonas aeruginosa (P. aeruginosa) is a rod-shaped bacterium that is Gram-negative
and heterotrophic. It is known for causing chronic infections in patients who are severely
ill or have compromised immune systems [126,127]. The main risk groups are patients
with cystic fibrosis, cancer, acquired immunodeficiency syndrome (AIDS), burns, and non-
healing diabetic wounds, as well as those on mechanical ventilation [126]. The pathogen
uses various virulence factors for its adhesion and colonization, including suppression
of host immunity and escape from immune system mechanisms. P. aeruginosa cells are
equipped with lipopolysaccharide, flagella, pili, numerous secretion systems, proteases,
and toxins and have the ability for quorum-sensing and biofilm formation [128]. P. aerugi-
nosa also exploits several drug-resistance mechanisms that make the infection difficult to
eradicate [128]. Using two knockout (KO) mouse strains, the RAG KO (lacking the ‘classical’
T cells αβ and γδ TCR) and the double RAG γC KO (lacking T cells, NK cells, and ILCs),
Villeret et al. found that both ILCs and TCR-bearing T cells were necessary for protection
against P. aeruginosa [127]. Compared to the wild-type animals, reduced production of
IL-17 and IL-22 was observed in the lungs of P. aeruginosa-infected RAG KO and double



Cells 2024, 13, 335 12 of 22

RAG γc chain KO mice. There was also a noticeable increase in the P. aeruginosa burden in
the lungs of double RAG γC KO mice, indicating a potential role of ILCs in controlling the
infection [127].. The importance of IL-17 in clearing P. aeruginosa-induced lung infections
was confirmed in a mouse model of lung infection using agar beads loaded with P. aerug-
inosa [129]. The study results indicated that mice with a knockout of IL-17R exhibited a
higher bacterial load and experienced weight loss 14 days post-infection when compared to
the control group. Furthermore, the production of IL-17 seemed to be dependent on ILC3s,
as approximately 90% of CD3+ cells in the lungs that produced IL-17 displayed phenotypic
markers associated with ILC3s [129].

3.10. Bordetella pertussis

Bordetella pertussis (B. pertussis) is a Gram-negative aerobic bacterium that is the
causative agent of a severe respiratory disease called whooping cough [130,131]. The
set of B. pertussis virulence factors enabling the bacteria to invade and persist within the
host includes adhesins that facilitate attachment to target host cells and toxins that allow the
pathogens to evade the host immune system. These factors primarily include filamentous
haemagglutinin (FHA), serotype-specific fimbriae, pertactin, pertussis toxin (PT), adenylate
cyclase toxin, dermonecrotic toxin, tracheal cytotoxin, lipopolysaccharide (LPS), and tra-
cheal colonization factor (Tcf) [132]. In a mouse model of B. pertussis infection, Byrne et al.
showed that NK cells contribute to antibacterial immunity by activating IL-12-mediated
IFN-γ production, which increases macrophage activity and promotes Th1 cell differentia-
tion [133]. Furthermore, the study revealed that the activation of NK cells by B. pertussis
was dependent on the activation of the NLRP3 inflammasome in macrophages. This ac-
tivation triggered the release of IL-18 and IL-1β through caspase-mediated mechanisms,
leading to an intensified proinflammatory response against the pathogen [134]. Another
study in a mouse model of B. pertussis infection showed inhibition of IL-22-secreting ILC3s
activity by IL-23-secreting dendritic cells, hypothesizing that the pathogen could disrupt
the IL-23/IL-22 axis pathway due to PTX production [130].

3.11. Clostridium difficile

Clostridium difficile (C. difficile) is a Gram-positive spore-forming, toxin-producing
anaerobe [135]. The pathogen causes infection following disruption of the local microflora,
usually due to previous antibiotic treatment [135]. Antibiotic treatment of C. difficile in-
fection is often ineffective, and complications associated with recurrent C. difficile infec-
tions in hospitalized patients interfere with medical therapies until the infection is con-
trolled [136,137]. The virulence of C. difficile is due to the presence of toxin A (TcdA) and
toxin B (TcdB), both of which contribute to the glucosylation of small GTPases, including
Rho, Rac, and Cdc42. As a result, the severity of the disease ranges from mild diarrhea to
severe inflammatory complications, such as pseudomembranous colitis, sepsis, and even
death [138]. Some experimental studies revealed that ILCs were essential to the recovery
from C. difficile infection [139,140]. A study by Abt et al. using the C57BL/6, Rag1-/- mice
lacking T- and B-cells showed upregulation of ILC1 and ILC3-related proteins, such as those
derived from ILC1s IFN-γ, TNF-α, and nitric oxide synthase 2 (NOS2), as well as proteins
derived from ILC3s IL-22, IL-17a, and regenerating islet-derived protein three gamma
(RegIIIγ), following C. difficile infection. In contrast, ILC-deficient Ragγc-/- mice showed
an increased susceptibility to C. difficile infection, which could be restored by adoptive ILCs
transfer. The loss of ILC1s expressing IFN-γ or T-bet in Rag1-/- mice was observed to be
linked to enhanced vulnerability to infection, highlighting the protective function of ILC1s
in the immune response against C. difficile [139].

3.12. Helicobacter pylori

Helicobacter pylori (H. pylori) is a Gram-negative, microaerophilic bacterium that can
change its form from a spiral to a coccoid, colonizing the human gastric mucosa [141].
Chronic H. pylori infection is linked to the development of gastric cancer and ulcers. While
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urease, outer membrane proteins, and flagella are among the virulence factors of H. pylori
that contribute to bacterial colonization, the development of disease and immune escape
are primarily mediated by cytotoxin-associated gene A (CagA), cytotoxin-associated gene
pathogenicity island (cagPAI), and vacuolating cytotoxin type A (VacA) [142]. Many
studies have shown that ILCs activity contributes to maintaining intestinal homeostasis and
resistance to gastrointestinal pathogens [141,143–145]. Li et al. and Satoh-Takayama et al.
demonstrated that ILC2 is the predominant innate immune cell subset in the stomach of H.
pylori-infected humans and mice, whose activation can be stimulated by local commensal
microflora [144,145]. Triggered by functional IL-5-producing ILC2, IgA production by B
cells inhibited H. pylori growth and provided protection against infection [145,146]. A recent
study of asymptomatic patients infected with H. pylori, using single-cell RNA sequencing
(scRNA-Seq) and flow cytometry, showed increased numbers of NKp44+ ILC3s, as well as
CD11c+ myeloid cells and activated CD4+ T cells and B cells in the gastric mucosa [147].

3.13. Candida albicans

The fungus Candida albicans (C. albicans) is a common cause of candidiasis, an infection of
the skin, mouth, esophagus, gastrointestinal tract, vagina, and vascular system, particularly
in immunocompromised individuals. The infection can cause mucocutaneous disorders or
a potentially fatal invasive disease that affects several organs and systems [148–151]. The
pathogenicity of C. albicans is based on the production of proteins necessary for adhesion
and invasion, including adhesins that recognize fibrinogen or fibronectin, e.g., agglutinin-
like sequence 3 (Als3) or hyphal wall protein 1 (Hwp1), and hydrolytic enzymes that
facilitate invasion of host tissues, such as secreted aspartyl protease (SAP), phospholipase
and hemolysin [149]. C. albicans’ pathogenic properties include biofilm formation and
phenotypic switching [149]. Evidence that C. albicans infection and colonization is under
control of IL-17-secreting ILCs comes from a mouse model of oropharyngeal candidia-
sis [152,153]. Gladiator et al. discovered that mice lacking expression of recombination
activating gene 1 (RAG1), which results in ILCs, were incapable of controlling mucosal C.
albicans infection. Additionally, they observed a similar outcome in mice with a deficiency
in retinoic acid-related orphan receptor (Rorc-/-), which also leads to ILC deficiency [152].
It was also shown that IL-17A and IL-17F, which are crucial for pathogen clearance, were
produced immediately after infection in an IL-23-dependent manner by the ILCs present
in the oral mucosa [152]. However, another study by Conti et al. reported that IL-17 was
mainly expressed by natural T helper 17 (nTh17) and γδ T cells, but not by ILCs [154].
Subsequently, Sparber et al. showed that tongues infected with C. albicans had three distinct
IL-17-producing cell types: nTh17s, γδ T cells, and ILC3s [153]. While deletion of all three
subsets is reminiscent of the high vulnerability of IL-17RA or IL-17RC-deficient mice to C.
albicans, the lack of nTh17 or γδ T cells does not affect fungal control [150,153].

4. Therapeutic Potential of ILCs in the Battle against Infections

With increasing data on the biology of ILCs and their involvement in the host
immune response, they have been widely proposed as therapeutic targets in various
diseases [13,151,155,156]. Currently, available therapeutic strategies targeting ILCs include
cytokine delivery, adoptive transfer, anti-cytokine antibodies, antibody deprivation of ILCs,
modulation of ILC plasticity and/or function, inhibition of ILC migration and function,
modulation of immune checkpoints, as well as the use of lipid mediators, glucocorticoids,
or beta-2 adrenergic receptor (β2AR) agonists [157].

The plasticity of ILCs and their ability to reversibly differentiate from one type to
another may offer an opportunity to restore tissue homeostasis disrupted by infection.
Bernink et al. found that CD14+ dendritic cells, observed in higher percentages in patients
with Crohn’s disease, promoted the polarization of IL-22-producing ILC3 cells into IFN-
γ-producing CD127+ ILC1 cells. On the contrary, CD14-dendritic cells promoted the
differentiation of CD127+ ILC1 towards ILC3, providing hope for therapeutic modification
of the composition, function, and phenotype of ILCs in the gut [13]. Buonocore et al. showed
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that neutralizing IL-17 and IFN-γ, the effector cytokines of ILC3s, could be therapeutically
effective in bacteria-induced colitis [158]. Additional data have provided stronger evidence
supporting the notion that targeting cytokines like IL-12 or IL-23, which activate ILCs
to produce IL-17 and IFN-γ, could be a superior approach in the treatment of Crohn’s
disease [159]. In particular, ustekinumab, a monoclonal antibody that inhibits IL-12/23 p40,
has demonstrated the ability to modulate the composition of ILC subsets in the intestines
of patients with Crohn’s disease, thereby leading to improved treatment outcomes [160]. In
addition, Chevalier et al. noted that blockage of bacterial type 1 fimbrin D-mannose specific
adhesin (FimH) with TAK-018 inhibited the adhesion of bacteria to the intestinal epithelium,
preventing the mucosal inflammation associated with Crohn’s disease [161]. Currently,
Sibofimloc, a gut-restricted small molecule FimH-blocker designed to treat the underlying
cause of Crohn’s disease and maintain patients in a non-inflammatory disease state, is
undergoing phase 2 clinical trials and is being developed under a global license [162].

Janus kinase inhibitors affecting intracellular signaling are also considered promising
candidates for targeting ILCs. A monoclonal antibody against the natural killer group
2D (NKG2D) receptor, a molecule that is constitutively expressed on human NK cells,
induced clinical remission of Crohn’s disease, most likely as a result of blocking lymphocyte
cytotoxicity and production of cytokines [163]. The use of fingolimod (FTY720) or SEW2871,
the antagonists of sphingosine-1 phosphate receptor 1 (S1PR1), which modulates ILC
migration from secondary lymphoid organs, was also found to regulate the production of
cytokines (GM-CSF, IL-22, IL-17, and IFN-γ) by ILC1s and ILC3s, thereby reducing tissue
inflammation [164].

Several studies have revealed that mutations in some genes regulating the functions
of ILCs, such as those encoding Janus kinase 3 (JAK3), interleukin two receptor gamma
(IL2RG), or integrin subunit beta 2 (ITGB2), can lead to reduced numbers of ILCs or their
impaired activity [165]. Patients with such genetic mutations have been shown to suffer
from a profound defect in NK cell development and exhibit an increased susceptibility to
various infections [166]. In vitro and in vivo studies have revealed that NK cells are active
against a wide range of viral, bacterial, and fungal pathogens, suggesting that they may be
a promising tool for antimicrobial treatment. Most current research focuses on the adoptive
transfers of NK cells to a host suffering from infectious complications and genetic modifi-
cations of NK cells and their receptors [151]. Parker et al. demonstrated that transferring
activated NK cells into Aspergillus fumigatus-infected mice led to improved elimination of
the pathogen from the lungs of both IFN-γ-deficient and wild-type animals [167]. The use
of antibodies or inhibitors of CD27 signaling might represent another potential therapeutic
intervention. Induced overproduction of IFN-γ by CD27+ NK cells was observed in mice
infected with Listeria monocytogenes, resulting in decreased levels of CXCR2 on granulocytes
and inhibition of granulocyte recruitment at the site of infection [168]. However, mice can
be rescued from lethal Listeria monocytogenes infection by depleting IFN-γ or blocking
CD27 signaling with specific antibodies [168]. Similarly, a reduction in the number of NK
cells during Pseudomonas aeruginosa infection was accompanied by faster clearance of the
bacteria and better prognostic parameters [169]. Hence, additional research is required to
comprehensively determine the various factors through which the adoptive transfer of NK
cells can either benefit or harm the host.

5. Concluding Remarks

Over the past ten years, ILCs have been recognized as an essential immune response
component for maintaining barrier resistance against infectious agents. Due to their ability
to rapidly secrete immunoregulatory cytokines, they are central to the innate immune re-
sponse, playing an essential role in shaping the adaptive response through interaction with
other immune cells. The microenvironment of the tissue in which they reside determines
their functional diversity, enabling them to act in multiple effector functions. However,
many unanswered questions still make it difficult to fully understand the complex function
these cells can play in both health and disease. Future studies should further investigate the
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modulation of ILC activity by various infectious agents in animal and human models to in-
crease the translation of basic research findings into developing new effective antimicrobial
therapies targeting ILCs.
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