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Abstract: CAR-T therapy has revolutionized the field of oncology, offering a promising treatment
option for cancer patients. However, the significant morbidity associated with therapy-related toxicity
presents a major challenge to its widespread use. Despite extensive research into the underlying
mechanisms of CAR-T therapy-related toxicity, there are still many unknowns. Furthermore, the
lack of adequate in vitro models for assessing immunotoxicity and neurotoxicity further complicates
the development of safer cellular therapies. Previously in our laboratory, we developed cancer-
stroma spheres (CSS) composed of prostate adenocarcinoma PC3 cells and mesenchymal stem cells
(MSC). Herein we present evidence that multicellular CSS could serve as a valuable in vitro model
for toxicity studies related to CAR-T therapy. CSS containing CD19-overexpressing PC3M cells
exhibited increased secretion of CAR-T cell toxicity-associated IL-8, MCP-1, and IP-10 in the presence
of anti-CD19 CAR-T cells, compared to spheres derived from single cell types.

Keywords: CAR-T therapy; cytokine release syndrome; immune effector cell-associated neurotoxicity
syndrome; cancer-stroma spheres; mesenchymal stem cell; IL-8; MCP-1; IP-10

1. Introduction

Chimeric antigen receptor (CAR)-T cell therapy is one of the most actively developing
areas of immuno-oncology. The high efficiency of CAR-T therapy has been shown for the
treatment of B-cell acute lymphoblastic leukemia (B-cell ALL), lymphoma, and multiple
myeloma, which resulted in FDA approval of six cellular therapies [1,2]. However, the ef-
fectiveness of this therapy is countered by a significant risk of systemic and life-threatening
side effects. Common CAR-T-mediated toxicities include cytokine release syndrome (CRS)
and neurotoxicity, referred to as immune effector cell-associated neurotoxicity syndrome
(ICANS) [1,3].

Incidences of CRS and ICANS reported in pivotal clinical trials range from 42% to 95%
and 4% to 64%, respectively (Table 1). Severe-grade toxicity can provoke the development
of multiple organ dysfunction syndromes that can lead to death. The review of data on
more than 1000 patients with B-cell lymphoma indicated that 7–10% of deaths occurring
within 30 days after CAR-T infusion were unrelated to disease relapse [4].

1.1. CRS

CRS is associated with an inflammatory response induced by CAR-T cells. Clinical
manifestation of CRS includes fever, organ dysfunction, and hypotension [5]. Severe CRS
(grade 3 and worse) occurred in 24–46% of patients with B-cell ALL [6] and in 3–23% of
patients with B-cell lymphoma [7,8] in phase 2 CD19-CART clinical trials (Table 1).
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The serum levels of the main inflammatory cytokines including interleukin-6 (IL-6),
tumor necrosis factor α (TNFα), interferon gamma (IFN-γ), monocyte chemoattractant pro-
tein 1 (MCP-1), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1
(IL-1), and interleukin-8 (IL-8) have been found elevated in patients with hematological
malignancies after CAR-T infusion [9,10]. Furthermore, cytokine levels correlate with the
severity of CRS [11]. The study of Teachey et al. was focused on predicting severe CRS
development upon CD19-CAR-T stimulation in patients with relapsed/refractory ALL.
The highest grade of CRS in a cohort of 51 patients was most accurately predicted by the
combination of IFNγ, soluble gp130, and soluble receptor antagonist IL1 (sIL1RA) with a
sensitivity of 86% and a specificity of 89% in the logistic regression model [12].

Table 1. FDA-approved CAR-T therapies and the frequency of side effects.

CAR-T Target Trial Condition Number of
Patients

Cytokine Release
Syndrome Neurotoxicity (ICANS)

References
Any

Grade,%
≥3 Grade,

%
Any

Grade,%
≥3 Grade,

%

KIMRYAH CD19

JULIET Adult r/r
DLBCL 111 58 22 21 12 [8]

ELIANA Pediatric r/r
B-ALL 79 77 46 40 13 [6]

ELARA r/r FL 97 49 0 37(4) 3 (1) [13]

YESCARTA CD19 ZUMA-1 r/r LBCL 101 93 13 64 28 [7]

TECARTUS CD19
ZUMA-2 r/r MCL 68 91 15 63 31 [14]

ZUMA-3 r/r B-ALL 55 89 24 60 25 [15]

BREYANZI CD19

TRANSCEND
NHL 001 r/r LBCL 269 42 2 30 10 [16]

TRANSCEND FL r/r FL 101 58 1 15 2 [17]

TRANSCEND
CLL 004 r/r CLL 96 85 9 45 19 [18]

ABECMA BCMA KarMMa-3 r/r MM 225 88 5 15 3 [19]

CARVYKTI BCMA CARTITUDE-1 r/r MM 97 95 5 22 12 [20]

More in-depth studies show that cytokine dynamics depend on the timing and inten-
sity of inflammation. For example, research by Wei and colleagues categorized post-CAR-T
inflammation into three stages: local inflammation, systemic inflammation, and inflam-
mation associated with organ dysfunction [21]. Local inflammation has been linked to
elevated levels of TNF-a, IFNg, CD40L, and GM-CSF, which are related to the interaction
of CAR-T cells with target cells. First-stage cytokines, for example GM-CSF and CD40L,
further activate macrophages [22,23]. Macrophage-derived IL-6 and partially TNFa affect
endothelial cells, inducing vascular permeability which results in the initiation of the sec-
ond stage of CRS. Systemic inflammation has been associated with increased levels of IL-1
and IL-6. And organ dysfunction stage is characterized by a rise in serum amyloid P (SAP),
C-reactive protein (CRP), further increase in serum IL1 and IL6.

1.2. ICANS

ICANS often occurs after CRS and rarely appear independent from CRS, suggesting
that the driver factors of these two syndromes overlap [24]. In a study by Santomasso
et al., the first neurological symptoms were detected at a median of 5 days post-CAR-T
infusion, with the median time to the first severe neurotoxicity being 9 days in patients
with B-ALL [3].

ICANS was characterized by delirium, decreased level of consciousness, and language
impairment. Seizures, motor weakness, cerebral oedema, and coma have been correlated
with severe cases of ICANS [25]. Most studies report increased serum levels of IL-6, IFN-y,
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TNF-a, IL-2, IL-15, IL-4, and HGF [25,26]. In a study involving 133 adults, of whom 40%
developed neurotoxicity after treatment with anti-CD19 CAR-T cells, a correlation was
found between toxicity grades and endothelial activation: severe ICANS was accompanied
by increased levels of angiopoietin and von Willebrand factor. Moreover, the increase in
concentrations of systemic cytokines IL-6, IFNγ, and TNFα has been found in spinal fluid,
which was found to be related to disruption of the blood–brain barrier. In turn, IFNγ and
TNFα induced secretion of systemic and endothelium-activating cytokines by pericytes [25].
The emerging high levels of IL-6, IL-8, MCP1, and IP-10 have been observed in the spinal
fluid of patients with B-ALL, which were disproportionate to white blood cell or CAR-T cell
counts. The authors concluded on the evidence of the production of cytokines by central
nervous system cells [27].

1.3. Test Systems for CAR-T Toxicity Screening

To date, there is a lack of in vitro models capable of assessing the initial toxicity of
CAR-T therapy. Most preclinical studies have used tumor cell cultures as target cells for
CAR-T and performed cytokine analysis in cell culture supernatants [28]. Considering that
toxicity is a result of interactions between CAR-T cells and endogenous cells of the body, in
particular immune cells, multicellular systems have shown to be more successful models
for toxicity assessment.

For example, co-culture of tumor cell lines with autologous monocytes resulted in
a significant elevation of IL-6 level in two out of the three tested CAR-T therapeutics
compared to tumor cell culture alone [29]. At the same time, IL-2 and IL-1Ra levels were
not affected by monocyte presence in a culture.

Another study compared a combination of monocytes and two types of CAR-T cells:
conventional and those obtained by a rapid protocol [30]. Rapid CAR-T cells then cultured
with monocytes show a significant increase in IL-6, IFN-γ, TNF-α, GM-CSF, IL-2, and IL-10
levels, as compared to conventional CAR-T—monocyte culture. CRS prediction results
were confirmed in in vivo experiments where rapid CAR-T cells, but not conventional
ones, induced hypothermia, weight loss, and elevation of murine MCP-1, IL-6, and G-CSF.
Elevation of human IFN-γ, TNF-α, IL-2, and IL-10 cytokines in mice serum indicated the
direct role of CAR-T cells in their hyperproduction.

Among in vivo models, humanized mouse models are the most suitable for immuno-
logical studies [31,32]. In a study involving 120 NSG mice, the authors illustrate how the
levels of key humanized cytokines such as IL-2, IL-4, IL-6, IL-10, IFN-γ, and TNF can
vary throughout the therapeutic process, providing valuable insights into the dynamics of
CAR-T cell activity [32]. Additionally, humanized mice with patient-derived xenografts
from acute lymphoblastic leukemia (ALL) were used to highlight the critical roles of GM-
CSF, IL-18, MIP-1α, and IP-10 in the CAR-T response [33]. However, the use of animal
models can be costly and requires specific maintenance conditions. Tumor spheres are
three-dimensional cellular in vitro models that provide better reproducibility of results
from in vivo studies. Tumor spheres and solid tumors exhibit comparable histological
patterns when sectioned, as well as internal gradients of signaling factors and nutrients [34].
Previously, we designed a complex cancer-stroma sphere (CSS) model using prostate cancer
cells and MSCs as the stromal component of the tumor [35]. The conducted study aimed
to test whether the CSS model has benefits compared with single-cell type sphere models
in assessing CAR-T treatment efficacy and toxicity and whether CSS can be applied to
elucidate the role of MSC in CAR-T-associated toxicity.

2. Materials and Methods
2.1. Cell Cultures

Immortalized MSC (hereafter MSC-GFP or MSC) were previously produced in our
laboratory through the overexpression of the hTERT gene and the knockdown of TP53 [36].
Additionally, prostate cancer cell line 3 overexpressing CD19 antigen (hereafter PC3M-
CD19-Katushka or PC3M) was early generated in our laboratory by lentiviral transduc-
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tion [37]. CAR-T cells (hereafter anti-CD19 CAR-T cells) were generated using lentiviral
transduction of second-generation CAR (FMC63-28Z) according to previously reported pro-
tocol [37]. The generation of CAR-T cells was conducted in accordance with the Declaration
of Helsinki and approved by the local ethics committees of the Kazan Federal University,
Kazan, Russia (Approval Code: No. 28, Date 25 March 2021).

All cell types (PC3M, MSC, anti-CD19 CAR-T) were cultured in full RPMI-1640
medium (PanEco, Moscow, Russia) in the presence of 10% fetal bovine serum (FBS)
(Hyclone, Logan, UT, USA), 2 mM L-glutamine, 50 U/mL penicillin, and 50 µg/mL strep-
tomycin (PanEco, Moscow, Russia) at 37 ◦C, and 5% CO2.

2.2. Sphere-Formation Assay

DMEM/F-12 media (PanEco, Moscow, Russia) were mixed with B-27 neuronal culture
supplement (2×) (PanEco, Moscow, Russia), 40 ng/mL EGF (Sci-store, Moscow, Russia),
and 40 ng/mL FGF2 (Sci-store, Moscow, Russia) to create sphere formation media. A
pre-optimized concentration of tumor cells (1000 cells/mL) was combined with MSC
(5000 cells/mL) to create CSS. Spheres were grown in sphere formation media on low
attachment cell culture dishes. The detection and imaging of spheres were performed
using an Axio Observer.Z1 fluorescence microscope (Carl Zeiss, Oberkochen, Germany),
equipped with FITC and Cy5 filter sets on the 7th day of culture.

2.3. Sphere Treatment with Anti-CD19 CAR-T-Cells

Sphere formation was assessed in 35 mm low attachment cell culture dishes in a sphere
formation media according to the protocol described in Section 2.2. After sphere detection
on day 7 of culture, anti-CD19 CAR-T cells were added to all sphere types (PC3M, MSC,
CSS) at a density of 106 cells per dish. Spheres were visualized and counted 6 and 24 h post
anti-CD19 CAR-T-cells addition on an Axio Observer.Z1 fluorescence microscope (Carl
Zeiss, Oberkochen, Germany). After 6 h of incubation with anti-CD19 CAR-T cells, the
culture medium was collected for multiplex immunoassay analysis.

2.4. Flow Cytometry Analysis of Cell Death

Control and anti-CD19 CAR-T-treated MSC, PC3M spheres, and CSSs were harvested
by centrifugation at 400× g for 5 min. Single cells were prepared by dissociating pellets
after preincubation with trypsin-EDTA 0.25% (PanEco, Moscow, Russia) for 10 min at 37 ◦C.
Following trypsin neutralization, the cells were resuspended in cold Annexin V binding buffer
(#422201, Biolegend, San Diego, CA, USA) and stained with Annexin V (#640947, Biolegend,
San Diego, CA, USA) and 7-AAD (#420404, Biolegend, San Diego, CA, USA) according to the
manufacturer’s instructions. Apoptotic and necrotic populations were analyzed using BD
FACSAria™ III flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA).

2.5. Analysis of Cytokine Levels in Conditioned Media

The quantitative analysis of cytokine and chemokine levels in sphere-conditioned me-
dia after 6 h of anti-CD19 CAR-T-cells addition was conducted using bead-based multiplex
technology. The Human Cytokine/Chemokine Magnetic Bead Panel (#HCYTMAG-60K-
PX41, Merck Millipore, Burlington, MA, USA) was employed to detect 41 analytes in
25 microliters of media. Prior to analysis, the conditioned media were thawed on ice, and
all subsequent steps were performed following the manufacturer’s recommendations. The
MAGPIX System with xPONENT 4.2 (Luminex, Austin, TX, USA) was utilized to register
median fluorescence intensities, adhering to a 50-bead count requirement. Data analysis
was performed using Bio-Plex Manager 6.1 Software (Bio-Rad, Hercules, CA, USA).

2.6. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 8.0 Software (Graphpad Soft-
ware, LLC Company Profile, Boston, MA, USA). The comparison of means between different
groups was performed using ANOVA with appropriate post-hoc tests. Data are representative
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of at least three independent experiments and shown as mean ± SEM otherwise specified;
p-values are indicated as *—≤0.05, **—≤0.01, ***—≤0.005, ****—≤0.0001.

3. Results
3.1. Anti-CD19 CAR-T Cells Demonstrate Cytotoxic Effect on PC3M and CSS Spheres

The presence of tumor cells and MSCs in the CSS was confirmed via fluorescent mi-
croscopy through the detection of fluorescent proteins pKatushka2S and GFP, respectively.
MSCs were detected in the center of CSS, while tumor cells were located at the periph-
ery of the spheres (Figure 1A). Both PC3M spheres and CSS exhibited sizes greater than
100 µm (185.01 ± 36.04 µm and 177.55 ± 24.20 µm, respectively), whereas MSCs were
smaller, measuring less than 100 µm (88.87 ± 11.49 µm). Additionally, all types of spheres
displayed clear boundaries and exhibited a compact structure (Figure 1B).
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Figure 1. Microphotography of spheres formed by tumor, stroma cells, and their co-culture:
(A) representative fluorescent microphotographs of CSS; (B) representative microphotographs of
PC3M, MSC spheres, and CSSs treated by anti-CD19 CAR-T cells after 6 and 24 h of incubation.

The morphology of the spheres remained unchanged after 6 h of incubation with anti-
CD19 CAR-T cells. However, after 24 h, both PC3M spheres and CSS began to disintegrate
into small cell aggregates, with the cell cytoplasm becoming poorly visualized, indicating
cell death in the outer layer of the sphere (Figure 1B).

We also assessed the effect of anti-CD19 CAR-T on tumor cell viability using an
Annexin V/7-AAD staining, which was performed on cells after 6 and 24 h of anti-CD19
CAR-T incubation. The populations of PC3M, MSC, and anti-CD19 CAR-T cells were
identified based on their size and granularity as shown in the forward and side light
scattering plot (Figure 2A). MSC in CSS was identified using GFP fluorescence (Figure 2A).
In the CSS, 97.97 ± 0.17% of the cells were presented by PC3M cells, while 1.88 ± 0.15%
were identified as MSCs (Figure 2B). No significant difference in cell viability was detected
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after 6 h of anti-CD19 CAR-T treatment (Figure 2B,C). However, the number of Annexin
V-positive cells was significantly higher in CSS spheres (19.32 ± 0.31) as compared to
PC3M spheres (2.45 ± 2.37) after 24 h incubation with anti-CD19 CAR-T cells (p < 0.001)
(Figure 2C,D).
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3.2. CSS-Conditioned Media Displays a Distinct Cytokine Profile

To investigate the initial immune profiles of all cell types in the study, we evaluated
the cytokine levels in the conditioned media of cancer and stroma spheres, as well as the
culture of anti-CD19 CAR-T cells. A total of 38 cytokines were analyzed and categorized in
the conditioned media.

First, we ranked the cytokines according to the alterations observed in the different cell
types used in the study (PC3M, MSC, CAR-T) (Figure 3A). The levels of cytokines IL1a, IL1b,
IL3, IL-7, IL-12p40, IL-12p70, IL-15, IL-17A, TNFb, PDGF-AA, PDGF-AA/AB, Eotaxin, FLT-3L,
IL-10, IL-1Ra, MDC, TNFa, IL-5, INFa2, IL-9, Fractalkine, IL-6, MCP-3, TGFa, IP-10, IL-4,
VEGF, MCP-1, IL-8, sCD40L and IL-9 were low and did not differ significantly in conditioned
media of PC3M and MSC spheres or anti-CD19 CAR-T cells (Figure 3A, group 1).
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In contrast, GM-CSF, MIP1a, MIP1b IL-13, IFNγ and RANTES were secreted by
anti-CD19 CAR-T cells at significantly higher levels than by other cell types in the study
(Figure 3A, group 2).

G-CSF and GRO were detected in PC3M-conditioned media at significantly higher
concentrations as compared to MSCs and anti-CD19 CAR-T conditioned media (Figure 3A,
group 3).

Next, we investigated the alterations in cytokine profiles induced by the co-culture
of MSC and PC3M cells in a CSS. The arithmetic sum (Σ) of the cytokine amounts in the
conditioned media of spheres formed by MSCs and PC3M was compared with the cytokine
levels detected in the CSS (Figure 3B).

Significantly higher levels of MCP-1, GRO, and IL-8 were detected in CSS culture, as
compared to the Σ of two single-cell type sphere cultures: (Figure 3B, group 2).

3.3. Spheres Show Distinct Immunological Responses to Anti-CD19 CAR-T Cell Treatment

To investigate the initial immune response of tumor and stromal cells upon co-
cultivation with anti-CD19 CAR-T cells, we evaluated the cytokine levels in the conditioned
media of spheres after 6 h of incubation with anti-CD19 CAR-T cells. The treatment of
spheres with CAR-T cells resulted in the hyperproduction of various immunological factors
in a cell-dependent manner (Figure 4A).
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treated with anti-CD19 CAR-T cells for 6 h: (A) heatmap of cytokine and chemokine levels analyzed
via multiplex immunoassay; (B) the TNFa level in the conditioned media of anti-CD19 CAR-T cell-
treated PC3M spheres, and the arithmetic sum (Σ) of the cytokine amounts; (C) the MCP-1, TNFa,
MIP-1b and IP-10 levels in the conditioned media of anti-CD19 CAR-T cell-treated CSSs and the
arithmetic sum (Σ) of the cytokine amounts. *—≤0.05, ****—≤0.0001.
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Incubation of PC3M spheres with anti-CD19 CAR-T cells led to an elevation of TNF-α
compared to the expected yield based on the sum of anti-CD19 CAR-T-treated MSC and
PC3M sphere cultures (Figure 4B). CSS culture with anti-CD19 CAR-T resulted in increases
in TNF-α, MIP-1β, MCP-1, and IP-10 (Figure 4C).

Furthermore, the arithmetic sum (Σ) of cytokine levels detected in the conditioned
media of anti-CD19 CAR-T cell-treated MSC and PC3M spheres was compared with the
cytokine level detected in the CSS (Figure 5). The arithmetic sum was higher than the
values detected in CSS for G-CSF, which may indicate the utilization of the protein by one
of the two cell types (Figure 5, group 2).
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Figure 5. Immunological response of PC3M, MSC spheres, and CSSs to CAR-T treatment. (p-values
are indicated as *—≤0.05, ***—≤0.005, ****—≤0.0001).

Notably, levels of MIP1b, IP10, MCP1, IL-8, GRO, and IL13, exceeded expected values
and were significantly higher in anti-CD19 CAR-T treated CSS conditioned media than Σ
of secreted cytokines from PC3M and MSC conditioned media (Figure 5, group 3).

4. Discussion

The use of CART therapy is currently being actively studied not only for hematological
malignancies but also for solid tumors. The use of tumor spheres allows us to create a test
system that will also be relevant for solid cancer therapy studies. Several previous studies
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have utilized tumor sphere and organoid cultures for CAR-T treatment. For example, anti-
HER2 CAR-T cells mediated lysis of pancreatic ductal adenocarcinoma (PDAC) spheres in
215 out of the 354 cultures [38]. The lysis was associated with a significant increase in IFNγ

levels. Notably, an increase in stem cell proportion was demonstrated in PDAC spheres
upon CAR-T cell exposure.

In our study, we employed a co-culture of prostate and stroma cells in a sphere format
to obtain CSS. The rationale was twofold: to analyze the contribution of mesenchymal
cells to CART-associated CRS and ICANS, and to assess the applicability of the CSS
model for CART drug toxicity studies. We analyzed levels of 41 cytokines; however, three
cytokines (IL-2, FGF2, EGF) were excluded from the analysis due to the presence of their
corresponding recombinant proteins in the culture media.

4.1. CSS Immune Profile Display Tumor Promoting and Immunosuppressive Phenotype

Initially, we demonstrated that CAR-T cells induce apoptosis more efficiently in CSS
than in PC3M spheres alone (Figure 2C,D).

Multiplex analysis of conditioned media from single cell type cultures revealed high
levels of G-CSF (granulocyte colony-stimulating factor) and GRO (growth-regulated alpha
protein;C-X-C motif chemokine 1) secretion by PC3M spheres (Figure 3A, group 3). The
role of GRO expression in prostate cancer cells was revealed in the murine TRAMP-C2 cell
model, lacking expression of CXCL8 and overexpressing CXCL1 [39]. GRO overexpression
cells showed elevated invasion and migration ability, indicating the possible activation
of these characteristics in PC3M cells growing under conditions of large (>100 µm) dense
spheres. High levels of G-CSF also support cancer cell metastasis, proliferation, and the
maintenance of cancer stem cells [40].

CAR-T cell conditioned media contained high levels of GM-CSF, IFNγ, IL-13, MIP-1α
(macrophage inflammatory protein 1-alpha, CCL3), MIP-1β (macrophage inflammatory
protein 1-beta, CCL4), and RANTES (regulated on activation, normal T-cell expressed
and secreted, CCL5) (Figure 3A, group 2). Activated T-cells release GM-CSF and IFNγ.
IFN-γ enhances the ability of macrophages to present antigens, secrete inflammatory
cytokines, and produce high levels of oxygen and nitrogen intermediates [41]. High levels
of single GM-CSF have been associated with a high risk of CRS, and blocking GM-CSF
in humanized mouse models resulted in reduced rates of CRS and ICANS [42]. IL-13
has been shown to suppress apoptosis in activated CD4+ cells [43]. Remarkably, Il13 is
also a cancer immunosurveillance factor then presented in tumor microenvironment [44].
MIP-1α, MIP-1β, and RANTES are beta chemokines secreted by CD8+ cells. In virus-
infected cells beta chemokines induce non-cytolytic suppression of viral replication in
CD4+ cells [45]. We can hypothesize that the production of beta chemokines is a response
from non-transduced CD8+ T cells to the presence of CD4+ T cells transduced with CAR-
carrying lentivirus; however, this theory requires experimental validation. In cancer
studies, beta chemokines have been shown to play a protumorogenic role by recruiting
CCR2+ monocytes to the tumor site, which subsequently differentiate into tumor-associated
macrophages (TAMs) [46]. Furthermore, Dorner and colleagues performed a single-cell
study and showed that MIP-1α, MIP-1β, and RANTES are co-secreted with IFNγ in
activated T-cells [47]. The authors claim that three chemokines together serve as coactivators
of macrophages and can affect the activity of NK cells.

Our next step was to obtain CSS and analyze the immunological profile of the condi-
tioned media resulting from their cultivation. The immunological profile of CSS, composed
of tumor and stromal cells, was characterized by a significant increase in the secretion of
IL-8, GRO, and MCP1(Figure 3B, group 2). It has been shown that IL-8 can be produced by
both tumor and stromal cells. MSCs are known to support tumor cell growth and survival
by secretion of regulatory paracrine factors. IL-8 has been shown to be an MSC-derived
angiogenesis promotion factor in colorectal cancer studies [48]. At the same time, tumor
cells produce IL-8 to recruit myeloid cells to form tumor-promoting microenvironment [49].
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All three subtypes of growth-regulated oncogene (GRO)—GRO-α/CXCL1, GRO-
β/CXCL2, and GRO-γ/CXCL3—bind to the CXCR2 receptor. The level of GRO-α is
elevated in various cancers and is associated with unfavorable patient prognosis in hepato-
cellular and pancreatic cancers [50,51]. Overexpression of GRO-α in hepatoma cell lines
has been shown to enhance cell proliferation and invasion [51].

MCP-1 is a crucial immunological regulator that controls the migration, activation,
and polarization/differentiation of immune cells. Both stromal and cancer cells produce
MCP-1. In osteosarcoma, breast, ovarian, and prostate, this chemokine has been shown
to induce invasion and migration of cancer cells (reviewed in [52]). In mice models of
contact hypersensitivity, MCP-1 pre-treated MSCs demonstrated the ability to suppress
T cell proliferation, reduce the secretion of pro-inflammatory cytokines, and polarize
macrophages towards the M2 phenotype [53].

Taken together, all presented evidence suggests that the co-culture of tumor and mesenchy-
mal cells in a sphere format creates a microenvironment that exerts an immunosuppressive
effect, ultimately enhancing the survival and metastatic potential of tumor cells.

4.2. CAR-T Cell Treatment of CSS Leads to Secretion of CRS and ICANS-Associated Factors

Treatment of PC3M spheres with CAR-T cells led to an elevation of tumor necrosis
factor alpha (TNFα) (Figure 4B). TNFα is produced by T cells upon binding to CD19 on the
surface of PC3M cells, indicating the activation of the T-cell response. At the same time,
TNFα has been recognized as a main cytokine involved in endothelial cell activation, and
its hyperproduction has been associated with the progression of CRS [54]. This finding was
further confirmed by TNFα blocking experiments using adalimumab, which resulted in
decreased activation of human umbilical vein endothelial cells (HUVECs) [54].

Co-culture of CSS with CAR-T cells resulted in increased levels of TNFa, MCP-1,
MIP-1β, and IP-10 (Figure 4C). Among these cytokines, MCP-1 demonstrated superior
predictive value for severe CRS, with a sensitivity of 100% and specificity of 95%, across
different grades of CRS in an anti-CD19 CAR-T study (levels of IFNγ, IL-6, IL-8, IL-10,
IL-15, MCP-1, TNF receptor p55 (TNFRp55), and MIP-1β have been evaluated) [12].

IP-10 acts as a chemoattractant for immune cells [55] and also stimulates the prolif-
eration and antitumor activity of CAR-T cells [56]. Serum levels of IP-10 show a positive
correlation with progression-free survival in multiple myeloma patients. At the same time,
IP-10 has been identified as a marker for ICANS and has been detected in the cerebrospinal
fluid of CAR-T-treated patients [3].

The co-culture of spheres with CAR-T cells revealed that the level of G-CSF was
significantly lower in CSS culture than expected based on the sum of MSC and PC3M
cultures (Figure 5, group 2). At the same time, multiplex analysis data indicate that most of
the G-CSF is produced by prostate adenocarcinoma cells (Figure 3A, group 3). Previous
studies have shown that G-CSF can promote MSC proliferation under both in vitro and
in vivo conditions [57]. Thus, we can conclude that G-CSF is secreted by PC3M cells and
plays a critical role in the maintenance of MSC proliferation in complex CSS.

When comparing the cytokine profiles of all CAR-T treated spheres, we identified
factors that were significantly increased only when heterogeneous CSS was used. CSS
treatment with CAR-T resulted in significant elevation of IL-8, MCP-1, IP10, MIP-1β, GRO,
and IL13 (Figure 5, group 3). Among listed cytokines IL-8, MCP-1, and IP-10 have been
associated with CRS, ICANS, or both.

5. Conclusions

When T-cells are incubated with cancer cells, we observe T-cell-intrinsic cytokine secre-
tion, which to a certain extent, may predict in vivo immune toxicity by level of hyperproduc-
tion of TNFα, IFNγ, MCP-1, and others. Secondary inflammatory mediators are produced by
the patient’s endogenous cells and play a more crucial role in the development of side effects;
for example, data on IL-6 production by monocytes is well documented. The role of MSCs in
CAR-T-associated immune and neurological toxicity remains to be fully elucidated.
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In our study, we demonstrate that the cancer-stromal cell crosstalk modulates the
immune response to CAR-T therapy, highlighting a synergistic effect and cooperation
among the cells within a CSS. The presented data indicate that complex cancer-stroma
spheres represent a powerful tool to study CAR-T-associated toxicity, as they show the
production of CRS and ICANS-associated cytokines, which were not observed in single
cell-type spheres, neither in cancer nor stromal cells.

It is important to note that a two-cell system cannot fully replicate the complexity
of a living organism. In our study, we do not observe inflammatory cytokines induced
by monocytes, endothelial cells, or other participants in CRS. Nevertheless, our study
emphasizes the importance of considering the role of MSCs in the development of the
immune response and demonstrates the utility of a new CSS in vitro model for investigating
the toxicity of novel CAR-T therapeutics.
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