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Abstract: Cystic Fibrosis (CF) is present due to mutations in the Cystic Fibrosis Transmembrane
Conductance Regulator (CFTR) gene, the most frequent variant being p.phe508del. The CFTR
protein is a chloride (Cl-) channel which is defective and almost absent of cell membranes when
the p.Phe508del mutation is present. The p.Phe508del-CFTR protein is retained in the endoplasmic
reticulum (ER) and together with inflammation and infection triggers the Unfolded Protein Response
(UPR). During the UPR, the Activating Transcription Factor 6 (ATF6) is activated with cleavage and
then decreases the expression of p.Phe508del-CFTR. We have previously shown that the inhibition of
the activation of ATF6 alleviates the p.Phe508del-CFTR defects in cells overexpressing the mutated
protein. In the present paper, our aim was to inhibit the cleavage of ATF6, and thus its activation in a
human bronchial cell line with endogenous p.Phe508del-CFTR expression and in bronchial cells from
patients, to be more relevant to CF. This was achieved by inhibiting the protease MBTP1 which is
responsible for the cleavage of ATF6. We show here that this inhibition leads to increased mRNA
and p.Phe508del-CFTR expression and, consequently, to increased Cl-efflux. We also explain the
mechanisms linked to these increases with the modulation of genes when MBTP1 is inhibited. Indeed,
RT-qPCR assays show that genes such as HSPA1B, CEBPB, VIMP, PFND2, MAPK8, XBP1, INSIG1,
and CALR are modulated. In conclusion, we show that the inhibition of MBTP1 has a beneficial effect
in relevant models to CF and that this is due to the modulation of genes involved in the disease.

Keywords: Cystic Fibrosis; p.Phe508del-CFTR; MBTP1; ATF6

1. Introduction

Cystic Fibrosis (CF) is the most common lethal autosomal recessive disease in the
European population. It is mainly characterized by pulmonary disorders and is due to a
large panel of mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)
gene affecting the CFTR protein synthesis and activity [1,2]. The CFTR protein is an N-
glycosylated transmembrane protein, a member of the ABC transporter family [3,4]. An
electrophoretic analysis shows that CFTR exists in three different forms of 130, 135, and
150 kDa referred to as Band A, B, and C, respectively [5]. These bands represent the different
glycosylated forms of CFTR. Band A is the non-glycosylated form, Band B is the core-
glycosylated CFTR, and Band C is the mature form of CFTR with complex glycosylation [4].
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The glycosylation state of CFTR is thus representative of its maturation and is an important
marker of its processing and function as a cAMP-activated, phosphorylation-regulated
Cl-channel, responsible for the transport of chloride (Cl-) and bicarbonate anions [2,3,6].
Linking with the Epithelial Sodium Channel (ENaC), it maintains proper hydration of the
mucus [7].

The most frequent mutation in CF is a phenylalanine deletion at position 508 of the
polypeptide sequence (p.Phe508del) [5,8]. This deletion alters the folding of the protein
(p.Phe508del-CFTR) which is retained within the Endoplasmic Reticulum (ER), which
cannot be validated with the quality control of the ER and is rapidly degraded by the
Endoplasmic Reticulum Associated Degradation (ERAD) [8,9]. p.Phe508del-CFTR remains
in a core-glycosylated form, and only a negligible amount reaches the plasma membrane of
the cells [10,11]. The consequence in the lung, together with the lost inhibition of ENaC,
is the presence of a more viscous mucus that diminishes the mucociliary clearance and
enables pathogens to develop, inducing chronic infections and inflammation [12,13]. The
subsequent altered lung function is the main cause of morbidity and mortality in CF.

Inflammation, infection, and the retention of misfolded proteins within the ER are
cellular stressors triggering the Unfolded Protein Response (UPR) [14,15]. The UPR is a
normal physiological recovery process aimed to regulate the protein load in the ER and to
alleviate the cellular stress. The 78 kDa glucose-related protein/Binding-immunoglobulin
protein (Grp78/BiP) activates the UPR through its binding to the unfolded protein [16,17].
This binding leads to its dissociation from three main effectors which are Inositol-Requiring
Enzyme 1α (IRE1α) [18], Protein kinase R (PKR)-like Endoplasmic Reticulum Kinase
(PERK) [19] and Activating Transcription Factor 6 (ATF6) [20,21]. These effectors then
activate the transcription of genes encoding molecular chaperones, folding catalysts, and
proteins involved in the ERAD. They also decrease the global synthesis of proteins in
order to avoid an overload of the ER [16,22]. ATF6 (90 kDa) allows the transcription of
chaperones, of proteins related to misfolded protein degradation, and of the cholesterol
metabolism but it also decreases the expression of some genes such as CFTR [23,24]. When
GRP78 dissociates, ATF6 migrates and anchors in the membranes of the Golgi apparatus
where it is successively cleaved with MBTP1 and two that cleave the lumen section of ATF6
and the juxta-membrane region at the cytosol side, respectively [20,25,26]. The cleaved
form of ATF6 (50 kDa) is subsequently released into the cytosol and migrates to the nucleus
where it acts as a transcription factor [24,27,28]. Whereas ATF6 negatively regulates the
expression of CFTR, we showed that its inhibition using siRNA in transfected A549 cells
expressing p.Phe508del-CFTR restores the Cl-flux, making ATF6 a potential therapeutic
target for CF [29–32]. More recently, we inhibited the cleavage of ATF6 in CFBE41o-cells
transduced to overexpress p.Phe508del-CFTR and found that this inhibition also alleviates
the defects due to the mutation in these cells [33].

In the present study, we inhibited MBTP1 and thus the cleavage and activation of ATF6
to alleviate p.Phe508del-CFTR defects, in a non-transduced Human Bronchial Cell line and
in bronchial epithelia from patients, to be as close as possible to the physiopathology of
CF in a relevant cell model. Indeed, these non-transduced CF cells freed us from possible
biases due to the CFTR transduction, with respect to UPR triggering. Furthermore, we
assessed the effects of the inhibition of MBTP1 in human bronchial epithelia from CF
patients, which has never been performed before. We found that this inhibition increases
the p.Phe508del-CFTR’s expression and the Cl-efflux, due to an augmented presence of
the core-glycosylated form of CFTR in the membranes of the cells. In order to explain
how the inhibition of MBTP1 acts upon Cl-efflux, we performed RT-qPCR-Arrays and
highlighted that the HSPA1B, CEBPB, VIMP and Calreticulin (CALR) genes are the main
genes involved in the alleviation of the p.Phe508del-CFTR’s defects in our models.

In conclusion, we showed that the protease MBTP1 is a potential target against CF.
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2. Material and Methods
2.1. Cell Culture and Protein Extraction

The native CFBE41o-cells and the transduced CFBE41o-cell lines (CFBE41o-/corrected
(corr) and CFBE41o-/F508del) were cultured, as previously described [34]. These cells are
human bronchial epithelial cells, derived from a CF patient homozygous for the p.Phe508del
mutation and immortalized with an SV40 plasmid (pSVori-) [34,35]. Cells were obtained
from the Cystic Fibrosis Foundation (Bethesda, MD, USA). In some experiments, cells were
treated with PF-429242 (PF) that specifically inhibits MBTP1 [36] (10 µM for 48 h; SML0667,
Sigma-Aldrich, Saint-Quentin Fallavier, France); and/or with thapsigargin (0.5 µM for 4 h;
#10798352, ThermoFischer, Saint Rémy les Chevreuses, France) to induce UPR; and/or
with VX-809 (3 µM for 48 h; S1565, Selleckchem, Cologne, Germany).

For protein extraction, cells were washed with cold PBS ×1 and lyzed in RIPA buffer
(25 mM Tris, 150 mM NaCl, 1% Triton ×-100, 1% Na-Deoxycholate, 0.1% SDS, 10 mM
iodoacetamide, 100 mM PMSF; pH = 7.5) in the presence of the Complete Protease Inhibitor
Cocktail (PI; 40 µL/mL, Complete tablets EDTA free, Roche, Mannheim, Germany).

For Ussing chamber experiments, human-airway epithelial cells were obtained from
the department of thoracic surgery and lung transplantation of Foch hospital
(Suresnes, France).

2.2. Nuclear Extract Preparation

Cells were washed twice with cold PBS 1×, scrapped in the presence of PI and
centrifuged (5 min, 1000× g, 4 ◦C). The pellets were suspended in Lysis buffer (0.3 M
Sucrose, 1 mM Sodium azide, Hepes 20 mM; pH = 7.2) in the presence of PI before 10 min
incubation on ice. Lysates were centrifuged (10 min, 2000× g, 4 ◦C), and pellets were
suspended in RIPA buffer with PI. Lysates were centrifuged (10 min, 800× g, 4 ◦C), and
pellets were suspended in NaI8 buffer (0.1 M NaCl, 8× Sucrose, 30 mM Imidazole) with PI.

2.3. Membrane Extract Preparation

Cells were washed twice with cold PBS 1×, scrapped in the presence of PI, and
centrifuged (5 min, 1000× g, 4 ◦C). The pellets were suspended in Lysis buffer (1 mM
EDTA, Hepes 10 mM; pH = 7.2) with PI before 10 min of incubation on ice. Mechanical lysis
was performed using Dounce homogenizer (VWR International, Rosny-sous-Bois, France)
eight times back and forth. Sucrose buffer was added (500 mM Sucrose, Hepes 10 mM;
pH = 7.2) and a further eight times of lysis back and forth was performed. Lysates were
centrifuged (10 min, 6000× g, 4 ◦C), and the supernatant was ultracentrifuged (30 min,
100,000× g, 4 ◦C). Pellets were suspended in NaI8 buffer with PI.

2.4. Immunoprecipitation

After protein extraction, lysates (700 µg protein) were subjected to pre-clearing steps
with magnetic beads (Immunoprecipitation Kit—Dynabeads™ Protein G, Invitrogen, Carls-
bad, CA, USA) for 2 h at 4 ◦C. The supernatant was incubated with 2 µg anti-CFTR anti-
body (24-1 clone, Novus Biologicals, Littleton, CO, USA) overnight at 4 ◦C. The antibody–
antigen complex was incubated with the magnetic beads for 3 h at 4 ◦C, then washed
three times. In order to load the complex on SDS-PAGE, 2× Laemmli Sample Buffer plus
β-mercaptoethanol was added on the bead–antibody–antigen complexes before heating at
75 ◦C for 10 min.

2.5. Cell Viability in the Presence of the MBTP1 Inhibitor

The viability of the cells after treatment was measured using a colorimetric MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide) test (MTT kit, Millipore, Burling-
ton, MA, USA), according to the manufacturer’s instructions. In brief, CFBE41o-cells were
cultured in a 96-well plate and treated with PF. After the treatment, WST-8 (2-(2-methoxy-4-
nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt)
was added to the wells and incubated for 4 h in a humidified incubator (37 ◦C, 5% CO2).
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WST-8 was reduced to an orange formazan product that was directly proportional to the
number of living cells, which were detected by measuring the absorbance at 450 nm. The
percentage of viability of the cells exposed to the MBTP1 inhibitor was determined through
comparing their absorbance with that of the untreated cells (100% of viability).

2.6. Western Blotting

Cell lysates were centrifuged (15 min, 16,000× g, 4 ◦C), and protein concentrations
were determined using the Lowry’s methodology. Samples were subjected to SDS/PAGE
and transferred onto membranes which were then incubated with anti-GRP78 antibody
(NBP1-06274, Novus Biologicals), anti-ATF6 antibody (MAB6762 clone 1-7, Abnova, Taipei,
Taiwan), anti-SREBP2 (#7076, Cell Signaling, Limoges, France), anti-aldolase antibody
(ab169544, Abcam, Paris, France), anti-Histone H1 antibody (sc-8030 AE-4, Santa Cruz
Biotechnology, Heidelberg, Germany), anti-CFTR antibody (596, US Cystic Fibrosis Foun-
dation), anti-CFTR antibody (24-1 clone, Novus Biologicals), anti-NaK-ATPase antibody
(ab76020, Abcam), and anti-Actin-HRP (sc-47774, Santa Cruz Biotechnology). Densito-
metric measurements were performed using Image Studio Lite software (Version 5.2) and
signals were normalized with the housekeeping genes.

2.7. Immunofluorescence

Cells were cultured in Nunc Lab-Tek II Chamber Slide System™. After 48 h, cells
were permeabilized by paraformaldehyde 4% at room temperature. Nonspecific binding
sites were saturated with BSA (3%, 2 h). Incubations were performed with the ATF6
primary antibodies (1:500; Merck-Millipore, 09-069, Burlington, MA, USA) and with the
anti-PDI antibody (1:1000, Thermo Fisher Scientific, MA3-018,). The fluorophore-tagged
secondary antibodies were Alexa Fluor 488® (1:400; Jackson Immunosearch, Montlucon,
France AB2313584) and Cyanine 3 (1:400; Jackson Immunosearch, AB2338680). Nuclear
counterstain was conducted with Vectashield Antifade Mounting Medium with DAPI
(Vector Laboratories, Les Ulis, France). Images were obtained with a Zeiss Imager M2
microscope and an Axiocam 503 (Carl Zeiss, Oberkochen, Germany).

2.8. RNA Extraction and Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA from untreated and treated cells were extracted using NucleoSpin RNA plus
columns (Macherey-Nagel, Hoerdt, France), according to the manufacturer’s instructions.
In total, 400 ng to 1 µg of total RNA was used for the cDNA synthesis. Reverse transcription
was performed with the SuperScript® II reverse transcriptase (Invitrogen). A PCR was
performed with a HotStarMastermix (Qiagen, Hilden, Germany). Primers were as follows:
for IRE1α, for forward, 5′-gaaaaggaatccctggatgg and, for reverse, 5′-tcagagggcgtctggagtc;
for XBP1, for forward, 5′-cagcgcttggggatggatgc and, for reverse, 5′-gggcttggtatatatgtgg; for
PERK, for forward, gactacatatggactcagtgc5′- and, for reverse, agatgtcctcccttcttac 5′-; for
CHOP, for forward, aaatgggggtacctatgtttcac 5′- and, for reverse, cggtcaatcagagctcgg 5′-;
and for Actin, for forward, 5′-gttgctatccaggctgtg and, for reverse, 5′-cactgtgttggctacag. The
thermal cycling conditions were 95 ◦C for 15 min followed by 40 cycles at 94 ◦C for 30 s,
61 ◦C for 30 s, 72 ◦C for 1 min, and a final extension at 72 ◦C for 10 min. The housekeeping
β-actin genes were used as a control. The PCR products were resolved using a 1% agarose
gel, prestained with BET, and visualized under UV light. The intensities of the bands
were determined with densitometry using the ImageJ software (1.54h version). β-actin
normalization was performed. A statistical analysis was performed with at least three
independent experiments.

The expression of p.Phe508del-CFTR, in the presence of and without PF, was analyzed
using real-time PCR (LightCycler 480, Roche). The synthesized cDNA was mixed with
1× SYBR Green Master Mix (Qiagen) and 10 µM of either the specific CFTR’s primers (FW
5′-atgcccttcggcgatgtttt, reverse: 5′-tgattcttcccagtaagagaggc) or the β-Actin primers. The
real-time PCR cycling conditions were as follows: PCR enzyme activation step at 95 ◦C for
15 min; 45 cycles of denaturation at 95 ◦C for 30 s; annealing at 57 ◦C for 30 s; and extension



Cells 2024, 13, 185 5 of 25

at 72 ◦C for 30 s. All conditions were normalized relative to the β-Actin control transcript.
The results were analyzed using the 2−∆∆Ct method.

2.9. Patch Clamp

Patch-clamp experiments were performed with an automatic electrophysiology work-
station (Port-a-Patch, Nanion Technologies GmbH, Hambourg, Germany) coupled to an
external amplifier unit HEKA EPC-10 [37,38]. Whole-cell recordings were performed with
treated or non-treated cells with the MBTP1 inhibitor. All measurements were obtained at
room temperature. The voltage clamp protocol was carried out between −80 and +80 mV
(10 mV per steps) with a holding membrane potential of −80 mV. The following buffers
were used to suspend the cells: 140 mM NaCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM Hepes
(pH 7.4), 5 mM D-glucose monohydrate, 298 mOsm. The internal buffers were 50 mM CsCl,
10 mM NaCl, 60 mM Cs-Fluoride, 20 mM EGTA, 10 mM Hepes/CsOH, 5 mM Mg-ATP; pH
7.2; 285 mOsmol. CFTR’s activators (forskolin, 10 µM and genistein, 30 µM; Sigma Aldrich,
Saint-Quentin Fallavier, France) and inhibitor (CFTRinh172, 10 µM; Sigma Aldrich) were
added to activate or inhibit its activity, respectively.

2.10. Surface Plasmon Resonance (SPR)

SPR was used to estimate the total amount of the p.Phe508del-CFTR protein in
CFBE41o-cells before and after treatment; the expression is too low to be detected us-
ing Western blot. We studied the expression of the fully glycosylated form of CFTR (Band
C) in untreated and MBTP1-inhibitor-treated cells, according to the previously described
method [39]. Real-time detection of the Band C of CFTR in cell lysates was performed using
a Biacore system (Biacore 3000, GE Healthcare, Velizy Villacoublay, France) and its Control
Software version 3.2. Injections were performed at 25 ◦C in HBS-P 1× running buffer (GE
Healthcare), at a flow of 5 µL/min. Sensorgrams were analyzed using the BIAevaluation
software 4.1.1. For each sample, the indicated RU value is the value on the active flow
cell (FC) minus the value of the reference FC, 20 s after the beginning of the dissociation
phase. In brief, the experiments were performed in a « sandwich » format, as follows: the
CFTR antibody (M3A7, Merck) was covalently linked onto a CM5 sensor chip according to
Biacore recommendations, in order to reach 6000 Resonance Units (RU). Various quantities
(0.5 to 10 µg) of cell lysates were injected over the antibody to determine which quantity was
necessary to reach saturation of the antibody. When the anti-CFTR antibody was saturated
with the CFTR present in the cell lysates, Wheat Germ Agglutinin (WGA, Triticum vulgaris,
Calbiochem, Wilmington, DE, USA) was injected and the RU values were recorded 20 s
after the beginning of the dissociation phase. These RU values were used to compare the
relative amount of the Band C in the samples. The opposite experiment, in which WGA
was linked onto the sensor chip (9000 RU) and the anti-CFTR was used to detect CFTR,
was performed. Negative controls were performed using an irrelevant protein. Samples
from three different cultures for each condition were analyzed in triplicate.

2.11. Gene Expression Analysis Using mRNA Array

Total RNAs were extracted from treated and untreated cells using RNeasy Mini Kits
(Qiagen), according to the manufacturer’s instructions. Purity of the RNA was analyzed
using the measurement of the 260/280 absorbance with a nanodrop. cDNA was produced
from 500 ng of total RNA using an RT² First Strand Kit (Qiagen), according to the manufac-
turer’s instructions. Gene expression analysis was performed with the RT² Profiler™ PCR
Array Human Unfolded Protein Response kit (96-Well Format, PAHS-089Z, Qiagen), using
a LightCycler480 (Roche). Supplier protocol was followed for the use of the RT²SYBR Green
ROX qPCR Mastermix (Qiagen 330520). Each real-time quantitative PCR (qPCR) plate
contained primers specific to 84 genes previously implicated in the UPR, housekeeping
genes, and appropriate controls. RT2 Profiler PCR Array Data Analysis was performed
according to the manufacturer’s instructions. Differential gene expression was calculated
as fold difference using the ∆∆Ct method. Fold difference was based on normalization
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using the average of the three most stable housekeeping genes (HKG; GAPDH, ACTB
and B2M). For each of the 84 genes of interest (GOI), the ∆Ct value was calculated as
∆Ct = CtGOI/CtHKG. The relative fold change in expression was calculated as 2−∆Ct. A
threshold of four fold changes was chosen for the overexpressed genes. The threshold
was two for down-regulated genes. Differentially expressed genes were submitted to a
bibliographic analysis, and only the genes with a described or possible link to CFTR are
presented here.

2.12. Ussing Chamber Recordings

Human tissue from three donors (p.Phe508del/p.Phe508del) was collected and used.
Bronchi were incubated in the presence of antibiotics (ceftazidime, 100 µg/mL; vancomycin,
100 µg/mL; tobramycin, 80 µg/mL; Meropenem, 8µg/mL; amphotericin B 0.25 µg/mL),
cleaned, opened, and stored in RPMI-HEPES (plus antibiotic cocktail at 4 ◦C). They were
then incubated twice for 5 min in RPMI-Hepes containing DTT (130 mg/250 mL) to remove
mucus, and then rinsed 3 times in RPMI-Hepes. They were then incubated overnight at
4 ◦C in 9 mL RPMI/HEPES containing 0.05% (w/v) pronase E and the antibiotic cocktail.
After shaking in the presence of pronase E, the bronchi were transferred to a second tube
in which 1 mL SVF was added to the supernatant (X4). The bronchi were then discarded
and the four supernatants were pooled and centrifuged (5 min, 1200 rpm). The pellet was
resuspended in 10 mL PneumaCult, and cells were counted using an automatic counter or a
Malassez cell. Cells were then seeded in Petri dishes (10 cm, 1 M cells, P0), previously coated
with collagen IV in PneumaCult, in the presence of antibiotics. The medium was changed
daily. Amphotericin B and antibiotics were removed after 4–5 days of culture. At confluence,
cells were rinsed in PBS/EDTA, trypsinized, counted, and centrifuged (5 min, 1200 rpm).
Three plates (control cells, cells treated with the inhibitor for 24 h, and cells treated with the
inhibitor for 48 h) of six Snapwells, clear (0.4 µm pore size, 12 mm diameter) and previously
coated with collagen IV, were seeded (0.1 M cells) in PneumaCult Ex medium for Ussing
chamber measurements. Inserts containing the three pseudo-epithelia were then mounted
in a Ussing chamber system (Physiologic Instruments, Reno, NV, USA) composed of two
hemi-chambers filled with (in mM) 1.2 NaCl, 115 Na-gluconate, 25 NaHCO3, 1.2 MgCl2,
4 CaCl2, 2.4 KH2PO4, 1.24 K2HPO4, 10 mannitol (pH 7.4) for apical solution, and 115 NaCl,
25 NaHCO3, 1.2 MgCl2, 1.2 CaCl2, 2.4 KH2PO4, 1.24 K2HPO4, 10 glucose (pH 7.4) for
basal solution. Apical and basal solutions were maintained at 37 ◦C and gassed with 95%
oxygen—5% CO2. Short-circuit currents (Isc) were measured.

2.13. Interleukin 8 (IL-8) Release

Epithelia were reconstituted with cells isolated from homozygous p.Phe508del CF
patients (MucilAir™-CF; Epithelix, Plan-les-Ouates, Switzerland). MucilAir™ is a reconsti-
tuted human 3D epithelium from airways’ surgical pieces. Cultures were performed at the
air–liquid interface, and the mature MucilAir™ was composed of basal cells, ciliated cells,
and mucus cells. The release of IL-8 was measured using an ELISA assay (BD Biosciences,
Le Pont de Claix, France 555244; detection: 3–200 pg/mL) in the basolateral medium of
cells exposed to MBTP1 inhibitor (5, 50, and 100 µM), according to the manufacturer’s
instructions. Each ELISA plate contained a standard curve. Absorbance was measured
at 450 nm, and the results were normalized to a 24 h secretion. The positive control of
inflammation was Cytomix (0.2 mg/mL LPS, 500 ng/mL TNFα, 1% FBS).

2.14. Statistical Analysis

Results are expressed as mean ± standard error of the mean (SEM). Differences
between experimental groups were evaluated using a two-tailed unpaired Student’s t test
and were considered statistically significant when p < 0.05 (*), p < 0.01 (**), and p < 0.001
(***). GraphPad Prism 6.01 software was used.
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3. Results
3.1. Cell Viability and Inflammatory Response

The CFBE41o-cells viability after treatment with the MBTP1 inhibitor was assessed
using an MTT test, and, as previously described, cell viability was not significantly altered
by the drug (10 µM, 48 h) [33]. Il-8 release was assessed in reconstituted human 3D
epithelium from airways’ surgical pieces when 0, 5, 50, and 100 µM PF were applied. As
shown in Figure 1, a significant inflammatory response was observed at 100 µM PF which
was 10 times more than what was used in the experiments.
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Figure 1. Assessment of the cell viability and the inflammatory response due to MBTP1 inhibition 
in native CFBE41o-cells and in epithelia from CF patients, respectively. (A) Viability was assessed 
in CFBE41o-cells using an MTT test. No significant decreased viability was observed in the presence 
of 10 µM PF for 24 h. B. IL-8 secretion was evaluated in epithelia from CF patients after different 
concentration of PF (0.5 µM, 50 µM, 100 µM; n = 3). Cytomix was used as a positive control of 

Figure 1. Assessment of the cell viability and the inflammatory response due to MBTP1 inhibition in
native CFBE41o-cells and in epithelia from CF patients, respectively. (A) Viability was assessed in
CFBE41o-cells using an MTT test. No significant decreased viability was observed in the presence
of 10 µM PF for 24 h. B. IL-8 secretion was evaluated in epithelia from CF patients after different
concentration of PF (0.5 µM, 50 µM, 100 µM; n = 3). Cytomix was used as a positive control of
inflammation. The bar graph represents the statistical analysis after ELISA assay and indicates that
the inhibition of MBTP1 has a significant effect on IL-8 secretion only at 100 µM treatment conditions.
(B) Bar graphs representing the statistical analysis of the IL-8 release in the presence of PF (0–100 µM).
Cytomix was used as a positive control. Significance (p < 0.05) was observed in the presence of
100 µM of PF. *: p < 0.05.

3.2. MBTP1 Inhibition Inactivates ATF6 and SREBP2 in CFBE41o-Cells

The effect of the inhibition of MBTP1 upon the activation of ATF6 was studied with
immunofluorescence, using an anti-ATF6 antibody. The labeling of PDI was used to delimit
the ER, and DAPI was used to label the nuclei. Before PF treatment (Figure 2A), ATF6
was observed within the nucleus of the cells (upper image); PDI was observed around the
nucleus in the ER (middle image). The merge image (lower image) indicated that ATF6 is
mostly present in the nucleus, as well as in the ER of the cells. After treatment (Figure 2B),
the localization of ATF6 was modified. As shown in the upper image, ATF6 was no longer
visible in the nuclei. Instead, it was co-localized with PDI (middle image), indicating that
the treatment maintained ATF6 in the ER, in an uncleaved and inactive form (lower image).
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Figure 2. Localization of ATF6 in response to MBTP1 inhibition in native CFBE41o-cells. Immunoflu-
orescence was used to assess the localization of ATF6 before and after treatment with PF. (A) In the
absence of treatment, ATF6 is in the nuclei of the cells (upper image). The middle image is the labeling
of the ER with PDI. In the lower image, which is a merged image of ATF6 and PDI, it can be observed
that ATF6 is mainly located in the nuclei which is a hallmark of the UPR triggering. (B) When MBTP1
is inhibited, ATF6 is observed around the nuclei (upper image). The middle image is the labeling of
the ER with PDI. In the lower image, which is a merged image of ATF6 and PDI labeling, it can be
observed that ATF6 is mainly located around the nuclei and is co-distributed with PDI. Therefore, the
inhibition of MBTP1 retains ATF6 in the ER which is a hallmark of its non-activation. Each labelling
was performed eight times, and the images are representative of 150–200 cells by field.

SREBP2 is a protein which is translocated to the nuclei of the cells after its cleavage
with MBTP1, and it is used as a marker of the inhibition of MBTP1 and, thus, of the cleavage
of ATF6 which is more difficult to detect due to its low expression and poor specificity
of the commercially available antibodies. Because the activated form of SREBP2 is in the
nuclei, we used nuclei enriched samples. As shown in Figure 3, the cytosolic protein
aldolase was present in the cytosolic fraction (lane 1) and in the total protein fraction (lane
6). Its expression was lower in nuclei enriched fractions (lanes 2 to 5). In the presence
of the UPR triggering drug thapsigargin, aldolase expression was increased (lane 4) as
previously described, indicating the efficiency of the drug [40]. This expression of aldolase
was decreased in the presence of the MBTP1 inhibitor (lane 5) suggesting that the increased
expression of aldolase when UPR is triggered is under the dependence of ATF6. To further
show the nuclei enrichment of our samples, the nucleic protein histone H1 was detected. It
was almost absent of the cytosolic and total protein fractions. It was mostly detected in the
nuclei enriched samples. The pattern of the detection of aldolase and histone H1 ensured
that samples aimed at detecting SREBP2 were indeed enriched in nuclear proteins. Western
blot using samples enriched in nuclei (lanes 2 to 5) showed that SREBP2 was absent in the
presence of PF (lanes 3 and 5), while it was, even very slightly, observed in the presence of
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thapsigargin or without any treatment (lanes 2 and 4). Therefore, the inhibition of MBTP1
was obtained even when the UPR was induced in the cells with thapsigargin.
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Figure 3. Localization of SREBP2 in response to MBTP1 inhibition in native CFBE41o-cells. The
localization of SREBP2 was assessed using Western blot in cytosolic extract (lane 1), nuclei enriched
samples (lanes 2 to 4), and total lysate lane (6). To ensure the enrichment of nuclear proteins, aldolase
was used as a cytosolic marker (upper panel) and Histone H1 as a nuclear marker (middle panel).
SREBP2’s cleaved form (lower panel) was absent in nuclear extract of treated cells indicating that its
cleavage was abolished.

3.3. MBTP1 Inhibition Does Not Trigger the UPR in CFBE41o-Cells

The main marker of the triggering of the UPR is the overexpression of its sensor Grp78.
Therefore, we assessed its expression after MBTP1 inhibition. Proteins from non-treated,
PF-treated, thapsigargin-treated, and PF-plus-thapsigargin-treated cells were loaded on
gels. Thapsigargin was used to trigger the UPR, and the PF plus thapsigargin condition
was used to assess the putative protection of the MBTP1 inhibitor against the UPR. As
shown in Figure 4A, the inhibition of MBTP1 decreased the expression of Grp78 in all
conditions, with or without thapsigargin. The lower image shows the detection of actin
which was used to normalize the signals for the statistical analysis. The results of the
statistical analysis are presented in Figure 4B. When MBTP1 was inhibited, the expression
of Grp78 was significantly decreased when compared to non-treated cells and to cells in
which UPR was triggered. The expressions of the effectors of the UPR, namely CHOP, IRE1,
PERK, and XBP1 were studied using conventional PCR. As shown in Figure 4C, the mRNA
of IRE1, PERK, and CHOP were expressed in non-treated cells as well as in treated cells.
No significant difference in the expression of the mRNA of CHOP, IRE1, PERK, and XBP1
was observed in the absence or in the presence the MBTP1 inhibitor and was confirmed
using statistical analysis (Figure 4D).

3.4. MBTP1 Inhibition Increases the Cl-Efflux in Cells Expressing p.Phe508del-CFTR

In order to assess the effect of the inhibition of MBTP1 on the Cl-channel function of
p.Phe508del-CFTR, patch-clamp experiments were performed. Currents were measured
in non-treated cells (Figure 5A) in the presence of the CFTR’s activators (Forskolin and
Geneistein) and in the presence of the inhibitor-172, in order to verify that the recorded
currents were due to p.Phe508del-CFTR. As expected, currents increased in the presence of
the activators and decreased when the inhibitor was added. We next compared the effect
of the inhibitor of MBTP1 with the control condition with currents due to the presence
of VX-809 that was used as a reference and with a combination of PF plusVX-809. Repre-
sentative I/V curves are shown in Figure 5B. A statistical analysis was performed after
a normalization of the currents (pA/pF) using the current values obtained at +80 mV. A
bar graph representation of the results is shown in Figure 5C. A significant increase of the
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Cl-efflux via the p.Phe508del-CFTR channel was observed after the inhibition of MBTP1.
The currents were greater in the presence of PF than in the presence of VX-809. However,
no synergistic effect between both molecules was observed.
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Figure 4. Expression of the UPR markers in response to MBTP1 inhibition in native CFBE41o-cells.
(A) The expression of Grp78 with or without PF and with or without thapsigargin was analyzed using
Western blot (n = 4). The image is a representative image of the detection of Grp78 (upper panel) and
of β-actin (lower panel). A higher expression of Grp78 is observed in the presence of thapsigargin
when compared to non-treated cells. A lower expression of Grp78 is observed when MBTP1 is
inhibited, with or without thapsigargin. (B) Bar graph representation of the statistical analysis of the
expression of Grp78 which is significantly increased in the presence of thapsigargin and significantly
decreased when MBTP1 is inhibited, with or without thapsigargin. (C) Representative gels worked to
detect and quantify the mRNA of CHOP, IRE1, PERK, and XBP1 using PCR. NT: non-treated cells,
PF: PF treated cells, NTC: no template control. (D) The bar graphs are statistical representations of
the mRNA level of CHOP, IRE1, PERK, and XBP1. No significant modification of their expression
was observed., p < 0.01 (**), and p < 0.001 (***).
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Figure 5. Cl-efflux when MBTP1 is inhibited in native CFBE41o-cells. Cl-efflux via the p.Phe508del-
CFTR channel in the presence of PF with or without VX-809 were assessed using patch clamp
(whole-cell configuration). (A) Representative I/V curves were obtained in a basal state with CFTR’s
activators and inhibitors which were used to assess the specificity of the recorded currents. (B) Repre-
sentative I/V curves were obtained with PF and/or VX-809. Increased currents via p.Phe508del-CFTR
were observed in all conditions when compared to the control condition. The conditions with PF
show higher currents than other conditions. (C) The bar graph represents the statistical analysis
(Untreated: n = 5; PF: n = 10; VX-809: n = 5; PF plus VX-809: n = 4) of the normalized currents recorded
at +80 mV. MBTP1 inhibition significantly increases p.Phe508del-CFTR channel currents above more
than that of VX-809, but no significant synergistic effect is observed. (D) Example of curves recorded
during the Ussing chamber experiments. The upper curve was obtained with PF-treated bronchial
epithelial cells from a patient. The lower curve is the recording made with non-treated cells from the
same patient. The responses to CFTR’s activators and inhibitor were enhanced with PF. (E) The bar
graph represent the statistical analysis of p.Phe508del-CFTR currents recorded on bronchial epithelia
from a homozygous p.Phe508del patient in Ussing chamber assays. We show that MBTP1 inhibition
(24 and 48 h) significantly increases the p.Phe508del-CFTR currents in comparison to the control
condition (n = 3). p < 0.01 (**), and p < 0.001 (***).

To verify the effect of the inhibition of MBTP1 in a more relevant model, shot-circuit
currents were measured in epithelia from patients using the Ussing chamber method. The
statistical analysis showed that the inhibition of MBTP1 increased the currents through
p.Phe508del-CFTR, after 24 h and 48 h of treatment (Figure 5D).
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3.5. Inhibition of MBTP1 Increases the Transcription and Protein Expression of p.Phe508del-CFTR

In order to compare the transcription of p.Phe508del-CFTR in cells before and after
the inhibition of MBTP1, real-time quantitative PCRs were performed. Because we failed
to obtain reliable results with native cells, we used CFBE41o-/F508del cells. Figure 6A
is the bar graph representation of the statistical analysis of the 2−∆Ct using β-Actin as
a housekeeping gene and non-treated cells as the reference. The results show that the
inhibition of MBTP1 significantly increased the gene expression of p.Phe508del-CFTR.
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Figure 6. Expression of the CFTR mRNA and protein when MBTP1 is inhibited in native CFBE41o-
cells and in transduced cells. (A). The bar graph is the representation of the quantification of the
real-time quantitative PCRs performed in CFBE41o-/F508del cells, showing that the inhibition of
MBTP1 significantly increases the gene expression of p.Phe508del-CFTR. Representative Western blot
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analyses after CFTR immunoprecipitation in CFBE41o-cells and in transduced CFBE41o-/F508del
cells are shown in (B,C), respectively. VX-809 was used to compare the qualitative effect of PF for the
global p.Phe508del-CFTR synthesis. In CFBE41o-and CFBE41o-/F508del, the inhibition of MBTP1
increases the expression of Band B of CFTR. VX-809 also increase the CFTR Band-B expression, and
we found a synergistic effect on Band B expression using a combination of PF and VX-809. p < 0.05 (*).

We further studied the protein expression of p.Phe508-del-CFTR in both CFBE41o-
(Figure 6B) and CFBE41o-/F508del cells (Figure 6C) using immunoprecipitation. In both cell
lines, we observed an increased Band-B expression after inhibition of MBTP1. Nevertheless,
after VX-809 treatment, the amounts of Band B and Band C were higher than with the
inhibitor. The combination of PF and VX-809 likely had an additive effect on the synthesis
of Band B.

3.6. Inhibition of MBTP1 Increases the Expression of p.Phe508del-CFTR Protein

Because the expression of the p.Phe508del-CFTR protein is very low in non-transduced
CFBE41o-cells, we used SPR to assess its amount before and after the inhibition of MBTP1.
Cell lysates (2.5, 5, and 10 µg) were injected over the immobilized antibody directed against
CFTR. The association, equilibrium, and dissociation phase were observed and the RU
values used for the statistical analysis were recorded. The bar graph representation of the
analysis is shown in Figure 7A. For each quantity of the total protein that was injected, the
amount p.Phe508del-CFTR protein which remained linked onto the anti-CFTR antibody
was significantly higher in lysates of treated cells, indicating that inhibiting the activity of
MBTP1 increases the total amount of the p.Phe508del-CFTR protein in the cells.
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Figure 7. Study of the expression of the p.Phe508del-CFTR protein using SPR in native CFBE41o-
cells. The expression of p.Phe508del-CFTR was assessed without and in the presence of PF. (A) 
Amounts of 2.5, 5, and 10 µg of total proteins from cell lysates were injected over an immobilized 
anti-CFTR antibody. The RU values were recorded 20 s after the beginning of the dissociation phase 
and used for the statistical analysis (n = 3). The bar graph represents the analysis and shows that the 
total amount of the p.Phe508del-CFTR protein is significantly increased when MBTP1 is inhibited. 
(B) To assess which form of p.Phe508del-CFTR used, we used WGA to specifically link the Band C 
and an anti-CFTR antibody to ensure that the linked proteins onto the WGA are really CFTRs. The 
upper panel represents the curves of the RU values in function of the total amount of injected 
proteins (from 0 to 10 µg). The lower bar graph (C) represents the analysis of the values obtained 
with 10 µg of proteins (n = 5) and shows that there is less CFTR protein in cells expressing the 
mutated CFTR than in cells expressing the Wt-CFTR. In cells expressing p.Phe508del-CFTR, no more 
protein was linked onto WGA in the presence of PF. (D) The opposite analysis in which the anti-
CFTR was linked and WGA was injected was performed (n = 5). The statistical analysis (E) show 
that the results are identical to those observed in (B). p < 0.001 (***). 

In order to know which form of CFTR was overexpressed (Band B or C), we used a 
previously described method in which WGA is used to specifically link the C band of 
CFTR [39]. WGA was immobilized and the proteins were injected. An anti-CFTR was then 
injected to ensure that the linked proteins onto the WGA were CFTRs. CFBE41o-/F508 
cells were used to obtain enough p.Phe508del-CFTR protein in the lysate for these 
experiments. CFBE41o-/corr cells were used as a positive control for the expression of the 
mature form of CFTR, and the linearity of the response was assessed The results of the 
SPR analysis are presented in Figure 7B. The upper curves represent the RU values of the 
sandwich formed by WGA/CFTR/anti-CFTR for various quantities of injected proteins. A 
plateau phase is observed above 2.5 µg of the injected proteins. A statistical analysis of the 
responses was performed and is presented in Figure 7B, in the lower panel. The amount 
of the mature form of CFTR was significantly higher in cells expressing the normal CFTR 
than in cells expressing the p.Phe508del-CFTR protein, with or without MBTP1 inhibitor. 

Figure 7. Study of the expression of the p.Phe508del-CFTR protein using SPR in native CFBE41o-cells.
The expression of p.Phe508del-CFTR was assessed without and in the presence of PF. (A) Amounts
of 2.5, 5, and 10 µg of total proteins from cell lysates were injected over an immobilized anti-CFTR
antibody. The RU values were recorded 20 s after the beginning of the dissociation phase and used
for the statistical analysis (n = 3). The bar graph represents the analysis and shows that the total
amount of the p.Phe508del-CFTR protein is significantly increased when MBTP1 is inhibited. (B) To
assess which form of p.Phe508del-CFTR used, we used WGA to specifically link the Band C and an
anti-CFTR antibody to ensure that the linked proteins onto the WGA are really CFTRs. The upper
panel represents the curves of the RU values in function of the total amount of injected proteins
(from 0 to 10 µg). The lower bar graph (C) represents the analysis of the values obtained with 10 µg
of proteins (n = 5) and shows that there is less CFTR protein in cells expressing the mutated CFTR
than in cells expressing the Wt-CFTR. In cells expressing p.Phe508del-CFTR, no more protein was
linked onto WGA in the presence of PF. (D) The opposite analysis in which the anti-CFTR was linked
and WGA was injected was performed (n = 5). The statistical analysis (E) show that the results are
identical to those observed in (B). p < 0.001 (***).

In order to know which form of CFTR was overexpressed (Band B or C), we used
a previously described method in which WGA is used to specifically link the C band of
CFTR [39]. WGA was immobilized and the proteins were injected. An anti-CFTR was
then injected to ensure that the linked proteins onto the WGA were CFTRs. CFBE41o-
/F508 cells were used to obtain enough p.Phe508del-CFTR protein in the lysate for these
experiments. CFBE41o-/corr cells were used as a positive control for the expression of
the mature form of CFTR, and the linearity of the response was assessed The results of
the SPR analysis are presented in Figure 7B. The upper curves represent the RU values
of the sandwich formed by WGA/CFTR/anti-CFTR for various quantities of injected
proteins. A plateau phase is observed above 2.5 µg of the injected proteins. A statistical
analysis of the responses was performed and is presented in Figure 7B, in the lower panel.
The amount of the mature form of CFTR was significantly higher in cells expressing the
normal CFTR than in cells expressing the p.Phe508del-CFTR protein, with or without
MBTP1 inhibitor. The comparison between cells expressing the p.Phe508del-CFTR protein
before and after PF treatment did not show any difference. In the reverse experiment, in
which the anti-CFTR antibody was linked, the proteins were injected, and the WGA was
performed. As shown in Figure 7C, in the upper panel, the presence of the mature form
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seemed increased in the lysates of the cells expressing the p.Phe508del-CFTR protein after
MBTP1 inhibition. Nevertheless, the statistical analysis (Figure 7C, lower graphs) did not
confirm this observation.

The conclusion of the SPR experiments is that MBTP1 inhibition increases the total
amount of p.Phe508del-CFTR protein and that the increased form of CFTR is in Band B.

3.7. PF-429242 Increases the Expression of p.Phe508del-CFTR in Membranes

After showing that the inhibition of MBTP1 increases the global RNA and protein
levels of p.Phe-508del-CFTR, we focused on its expression within membranes. Figure 8
shows a representative image of a blot performed with crude membrane protein enriched
samples (lanes 1 to 4) and with total lysate (lane 5). We observed that PF strongly increased
the expression of Band B in the membranes, whereas VX-809 increased the expression of
Band C. The combination of PF and VX-809 induced increased expression of both Band B
and C in the membranes. The middle and the lower panels in Figure 8 show the detection
of the Na+/K+-ATPase and aldolase in the samples, indicating that our samples were
indeed enriched with membrane proteins.
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Figure 8. Membrane expression of p.Phe508del-CFTR when MBTP1 is inhibited in native CFBE41o-
cells. The upper image is a representative Western blot showing the expression of p.Phe508del-CFTR
in membrane extract (lanes 1 to 4) and in total lysate (lane 5) when cells are treated with PF and/or
VX-809. Na+/K+-ATPase was used as a marker of membranes (middle panel), and aldolase was used
as a cytosolic marker (lower panel). The inhibition of MBTP1 increases the membrane expression of
Band B of CFTR, and the association with VX-809 increases Band C of CFTR at the membrane.

3.8. Comparison of the Gene Expression between Non-Treated and PF-429242-Treated Cells

The Human Unfolded Protein Response RT² Profiler PCR Array used in the present
study profiles the expression of 84 key genes involved in the UPR. It also determines
whether the UPR pathway activity is increased or unchanged in experimental samples. We
arbitrarily selected a selective modulation threshold of four in order to isolate genes that
exhibit huge changes in their expression in comparison to controls. A scatterplot showing
the gene distribution of each gene modulation by comparing data from untreated and
treated cells is shown in Figure 9. Most of the genes were up-regulated with the treatment
of the cells with PF. According to our selective criteria, seven genes were found to be
overexpressed, and three genes were downregulated when MBTP1 was inhibited. The
significantly overexpressed genes were HSPA1B (Heat Shock Protein Family A (Hsp70
member 1B; fold change: +4.87; p < 0.05), CEBPB (CCAAT Enhancer Binding Protein Beta;
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fold change: +4.51; p < 0.05), VIMP (VCP-Interacting Membrane Protein; fold change: +4.18;
p < 0.001). The PFND2, MAPK8, XBP1 and PPP1R15A genes had fold changes of 4.1, 4.18,
4.37, 4.51, 4.87, 5.08, and 7.76, respectively. Nevertheless, their increased expression was
not found to be significant. The downregulated genes (threshold 2) were INSIG1 (Insulin
Induced Gene 1; fold change: −1.94; p < 0.005), CALR (Calreticulin; fold change: −4.9; not
significant) and HSPA5 (BiP; fold change: −2.1; not significant).
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and three genes were found to be downregulated. The black diagonal represents the absence
of modulation.

4. Discussion

The triggering of the UPR in CF is still in debate. Some authors indicate that it is
triggered by inflammation, and others indicate that it is likely triggered by the misfolded
CFTR [29,31] leading to an atypical form of UPR [32]. UPR is a complex process involving
misfolded proteins, inflammation, and also infection, which are all present in CF [41].
Whatever triggers the UPR in CF, it inhibits endogenous CFTR expression due to the
activation of ATF6 [29,30,42]. To be activated, ATF6 has to be cleaved with the serine
protease MBTP1 [24]. Therefore, we hypothesized and showed that the inhibition of this
enzyme restores Cl-efflux in cells overexpressing p.Phe508del-CFTR [33]. The aim of the
present study was to show that in more relevant cells for CF (cells endogenously expressing
p.Phe508del-CFTR and human bronchial cells from patients), the inhibition of MBTP1
alleviates the defects due to p.Phe508del-CFTR and highlights the involved mechanisms.

We found that the inhibition of MBTP1 did not induce cell mortality or inflammation.
The inhibition impedes the activation of ATF6 and SREBP2, and, subsequently, it increases
the expression of p.Phe508del-CFTR within membranes, in accordance with our previous
results obtained using different cell models than the ones used here [29,33]. Therefore,
we showed for the first time that the inhibition of MBTP1 alleviates the defects due to
p.Phe508del-CFTR in relevant models for CF.
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Inhibition of MBTP1 presents a promising avenue for therapeutic intervention across
diverse medical conditions. In cancer, targeting MBTP1 impedes the processing of SREBPs,
thereby disrupting lipid metabolism crucial for cancer cell proliferation [43,44]. In dys-
lipidemia, inhibiting MBTP1 may offer a means to modulate lipid homeostasis [45,46].
Additionally, the emerging research suggests that MBTP1 inhibition could be explored
as a strategy against viral infections, as this protease plays a role in viral replication pro-
cesses [47,48]. The multifaceted potential of MBTP1protease inhibition underscores its
significance as a therapeutic target. While MBTP1 inhibition is proposed as a potential
therapy for various diseases, its pleiotropic nature raises concerns about its therapeutic
use. Indeed, it is involved in diverse cellular processes, including lipid metabolism, im-
mune response, and cellular stress. The broad impact of its modulation may result in
unintended consequences, affecting physiological functions beyond the targeted disease
pathway. Striking a balance between therapeutic efficacy and minimizing off-target effects
poses a challenge. A comprehensive understanding of the intricate roles MBTP1 plays
in cellular pathways is crucial for optimizing its therapeutic potential while mitigating
adverse effects. Indeed, the MBTP1 inhibition may have off-target effects that could be
depicted with the inactivation of the MBTP1 gene. Nevertheless, for male CD1 mice
treated with the inhibitor of MBTP1 at doses of 10 and 30 mg/kg/dose i.p. every 6 h for
24 h, beside the altered lipogenesis due to the inhibition of SREBP, no side effects were
reported [36,49]. Interestingly, rare cases of patients with reduced MBTP1 expression due
to bi-allelic pathogenic variants resulting in MBTPS1 deficiency have been reported [50,51].
These patients presented skeletal dysplasia and increased circulating lysosomal enzymes,
which is by far the most obvious clinical manifestation, but exhibited no pulmonary al-
terations. These results suggest that, if MBTP1 inhibition were to be used in CF patients,
precautions should be taken regarding dosage and duration of treatment.

In order to further estimate the effect of the inhibition of MBTP1 upon the triggering
of the UPR, we assessed the expression of the UPR’s sensor Grp78, which is overexpressed
when the ER is overloaded. Without, or in the presence of thapsigargin, which is a UPR
inducer, we observed a decreased expression of the UPR’s sensor when PF was applied,
indicating that UPR is decreased when MBTP1 is inhibited. Another possible explanation
for the decreased expression of Grp78 is that the inhibition of ATF6 leads to a decreased
presence of the p.Phe508del-CFTR protein in the ER that offers no binding sites for Grp78,
inhibiting the UPR triggering. This could be due to an increased ERAD activity or to an
increased output of the protein from the ER. Because the UPR induces the overexpression
of the effectors of the ERAD with its three arms, we assessed the expression of IRE1 and
XBP1, PERK, and CHOP. Under PF treatment, no modification of the expression of these
effectors was observed. Because when IRE1 is activated it splices the mRNA encoding XBP1
which encodes a bZIP transcription factor that activates the expression of enzymes for the
degradation of misfolded proteins [52,53], the absence of its activation likely indicates that
the p.Phe508del-CFTR protein is less degraded and thus likely exported out of the ER. It
has to be noted that the activation of XBP1 has, partially, a redundant role with ATF6 [54].
Since the PERK pathway leads to the attenuation of the translation of proteins and to the
ER stress-induced apoptosis [22], the absence of its increased expression suggests that the
stress-induced protein translation attenuation, as well as the apoptosis programs due to
CHOP, is not prevalent when MBTP1 is inhibited. Nevertheless, XBP1s were detected,
without any increased expression of IRE1. These results are in accordance with previous
works, showing that ATF6 leads to an upregulation of XBP1 [55]. Nevertheless, the amount
of XBP1 mRNA is a rate-limiting factor in the production of XBP1S [55]. Because the
mRNA of XBP1 is not increased in the presence of PF, the spliced XBP1 produced at a low
level should be rapidly degraded by the proteasome, as previously described [53]. Taken
together, these results indicate that the inhibition of MBTP1 does not trigger the UPR and
that it is likely due to the exit of p.Phe508del-CFTR from the ER to the plasma membrane.

Our assumption that the inhibition of MBTP1 allows misfolded proteins to exit the
RE and reach the membrane was further tested. We observed increased Cl-efflux via the
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mutated CFTR, showing that there is more p.Phe508del-CFTR protein in the membrane
of the cells. Furthermore, we showed that the p.Phe508del-CFTR’s mRNA and protein
are increased. Finally, we assessed the presence of the p.Phe508del-CFTR protein within
membranes and found that, when MBTP1 is inhibited, there is a higher synthesis of
p.Phe508del-CFTR protein and that the alleviation of the Cl-efflux is due to an increased
amount of the immature form of CFTR (Band B) in membranes, which is also active as a
Cl-channel [11]. This result also indicates that the observed rescue does not occur through
the Golgi apparatus but probably involves unconventional protein secretion (UPS), which
is in accordance with previous results showing that the rescued p.Phe508del-CFTR protein
can use UPS [56]. This is a key result because, to our knowledge, no corrector of the
p.Phe508del-CFTR protein is able to also induce an increased synthesis of its mRNA and
protein. Beside UPS, ATF6 inhibition downregulates the expression of genes involved
in the ER-associated degradation (ERAD) pathway. These genes are Derlin-1, which is
involved in the retrotranslocation of misfolded proteins from the ER to the cytosol for
subsequent degradation; Homocysteine-induced ER protein, which is involved in the
degradation of misfolded proteins; ER degradation-enhancing alpha-mannosidase-like
protein, which is involved in the recognizing and targeting misfolded glycoproteins for
degradation; p97/VCP, which plays a crucial role in extracting ubiquitinated substrates
from the ER membrane for subsequent degradation with the proteasome; and SEL1L, which
forms a complex with the ERAD E3 ubiquitin ligase and contributes to the recognition and
degradation of misfolded proteins. Therefore, if ERAD activation is decreased or impaired,
there might be a reduced efficiency in targeting F508del-CFTR for degradation. As a result,
a larger fraction of the immature (Band B) F508del-CFTR may escape degradation and
progress through the secretory pathway. Aside from degradation, it is important to note
that the exact impact of ATF6 on endocytosis and recycling membrane proteins is not fully
understood and that changes in its activation may modulate the internalization or recycling
of specific membrane proteins, which are increased in the case of F508del-CFTR.

To further understand how the inhibition of MBTP1 can rescue the p.Phe508del-CFTR
protein and because the active form of ATF6 is a transcription factor targeting many genes,
we used a qPCR-Array of 84 genes. The significantly overexpressed genes were HSPA1B,
CEBPB, and VIMP. HSPA1B (Heat Shock 70 KDa Protein 1B) is a molecular chaperone
implicated in the protection of the proteome from stress, the folding and the transport of
newly synthesized polypeptides, and in the activation of the proteolysis of misfolded pro-
teins. It is involved in the degradation of the p.Phe508del-CFTR protein [57]. Nevertheless,
HSPA1B maintains protein homeostasis during cellular stress using two opposing mecha-
nisms, which are protein refolding and degradation. It is demonstrated that it facilitates
protein refolding after stress and slowly evolves to protein degradation depending on its
acetylation state [58]. Therefore, in the present work, it is possible that it acts positively
to protect p.Phe508del-CFTR. CEBPB is a transcription factor regulating the expression
of genes involved in immune and inflammatory responses. It is essential in the lung
for the spatial and temporal regulation of the expression of the CFTR gene. Because it
is demonstrated that CEBPB is a positive regulator acting on the CFTR promoter, it is a
good candidate to explain our observed enhanced expression of the p.Phe508del-CFTR
protein after the inhibition of MBTP1 [59,60]. VIMP is a small protein located at the ER
membrane that interacts with both Derlin-1 and VCP, implying that it participates in ERAD.
Unfortunately, it cannot explain the rescue of the p.Phe508del-CFTR protein because its
overexpression reduces the steady-state level of p.Phe508del-CFTR protein by shorten-
ing its half-life [61]. Despite having no significant overexpression, the PFND2, MAPK8,
XBP1, and PPP1R15A genes were increased when MBTP1 was inhibited. PFND2 (Pre-
foldin Subunit 2) is a chaperone involved in protein folding that was shown to favor the
rescue of the p.Phe508del-CFTR protein in HEK293 and BHK cells [62]. MAPK8/JNK1 is a
serine/threonine-protein kinase involved in various processes such as cell proliferation,
differentiation, migration, transformation, programmed cell death, and autophagy. It was
shown that the control of the stability of the CFTR mRNA is linked to the phosphoryla-
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tion state MAPK [62]. Importantly, MAPK8/JNK1 is a downstream effector of the kinase
activity of the IRE1α pathway [18]. Some studies describe that the kinase pathway TRAF2-
ASK1-JNK1, following the IRE1α activation, leads to the autophagy which seems to be
involved in the transport of p.Phe508del-CFTR to the plasma membrane through the UPS
pathway [63–65]. The role of XBP1 was discussed above. PPP1R15A (GADD34) dephospho-
rylates the translation initiation factor eIF-2A/EIF2S1 leading to reverse of the shutoff of
protein synthesis initiated by stress and facilitating the recovery of cells [66–68]. Therefore,
its activation is in favor of an increased expression of CFTR in our model. Polyubiquitinated
GADD34 is rapidly eliminated upon removal of cell stress, but when the proteasome is
silenced, it is stabilized. It was shown that the stabilized form of GADD34 enhanced the
accumulation of the p.Phe508del-CFTR protein [68]. Therefore, its overexpression in our
treated cells is in favor of an increased expression of the mutated CFTR.

In contrast, INSIG1, CALR, and HSPA5 were found to be decreased, but significance
was reached only for INSIG1. INSIG1 is a membrane protein of the ER that regulates
cholesterol metabolism and lipogenesis homeostasis through blocking the processing of
SREBPs [69]. Nevertheless, the SREBPs are activated with MBTP1, and we found that
SREBP2 was inhibited by PF [69,70]. Thus, the decreased INSIG1 expression is further
evidence that the inhibition of MBTP1 induces the inhibition of ATF6 in our model. Lipids
are unbalanced in CF with an increased accumulation of cholesterol in CF cells, whereas
SREBPs are the main regulators of the lipid homeostasis [71,72]. Therefore, their decreased
accumulation due to the decreased SREBP2 activity found that when MBTP1 is inhibited this
could favor a better membrane insertion and function of p.Phe508del-CFTR [73]. Because
it was shown that ER stress responses can promote lipid accumulation in hepatocytes,
and despite, to our knowledge, that this was never searched in epithelial cells, it can
be proposed that the inhibition of MBTP1 without UPR triggering could be beneficial in
CF cells. Interestingly, CALR was decreased even though significance was not reached
when MBTP1 was inhibited. This could also explain our results by helping the membrane
exportation of p.Phe508del-CFTR because CALR is a negative regulator of the cell surface
expression of the mutated CFTR [74].

5. Conclusions

In conclusion, we show here for the first time that the inhibition of the MBTP1 enzyme
alleviates the p.Phe508del-CFTR defects in cells endogenously expressing the mutated
CFTR (cell line and patient’s bronchial cells), with a better effect than that of VX-809. Nev-
ertheless, a triple combination (elexacaftor/tezacaftor/ivacaftor, Trikafta™, Vertex, Boston,
MA, USA) is approved for the treatment of CF patients with at least one p.Phe508del
mutation or at least one other mutation in the CF gene that is responsive to Trikafta
(i.e., 177 other approved mutations), regardless of their second mutation type [75–77]
(www.cff.org, accessed on 20 November 2023). Whereas Trikafta™ is generally well toler-
ated with mild adverse events, 10-30% of the CF patients remain without any therapeutic
alternative [75,78,79]. Indeed, patients with rare variants remain excluded from the treat-
ment, and no clinical trials supported the use of Trikafta™ in the majority of rare genotypes
lacking the p.Phe508del allele [80]. For these rare mutations and for the patients receiv-
ing Trikafta but presenting severe side effects, new molecules are needed. Inhibitors of
MBTP1, alone or in combination with existing molecules, could be an alternative. Indeed,
an increased synthesis and membrane localization of p.Phe508del-CFTR could be ben-
eficial when a functional CFTR protein with decreased ion transfer is expressed, when
a decreased production of the protein is observed, and when there is a reduced CFTR
membrane stability, which increases the turnover of the protein. Nevertheless, whereas
inhibition of MBTP1 seems to be well tolerated in mice, in CF patients, the potential side
effects would need to be carefully considered. One approach could involve developing
MBTP1 inhibitors that are specifically designed for short-term use during exacerbations.
This would aim to harness the potential therapeutic benefits while minimizing the risk of
long-term side effects. The therapy could be administered in conjunction with existing
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treatments during exacerbations to address the acute symptoms. Close monitoring of
patients and thorough assessment of both short-term benefits and potential side effects
would be essential in evaluating the effectiveness and safety of this approach. As with any
potential therapy, further preclinical and clinical research would be necessary to determine
the optimal dosage, duration, and safety profile of MBTP1 inhibition in the context of CF
exacerbations. Collaborative efforts between researchers, clinicians, and pharmaceutical
companies would be crucial to advance the development of such targeted therapies.
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