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Abstract: This last decade, chimeric antigen receptor (CAR) T-cell therapy has become a real treatment
option for patients with B-cell malignancies, while multiple efforts are being made to extend this
therapy to other malignancies and broader patient populations. However, several limitations remain,
including those associated with the time-consuming and highly personalized manufacturing of autol-
ogous CAR-Ts. Technologies to establish “off-the-shelf” allogeneic CAR-Ts with low alloreactivity
are currently being developed, with a strong focus on gene-editing technologies. Although these
technologies have many advantages, they have also strong limitations, including double-strand
breaks in the DNA with multiple associated safety risks as well as the lack of modulation. As an
alternative, non-gene-editing technologies provide an interesting approach to support the devel-
opment of allogeneic CAR-Ts in the future, with possibilities of fine-tuning gene expression and
easy development. Here, we will review the different ways allogeneic CAR-Ts can be manufactured
and discuss which technologies are currently used. The biggest hurdles for successful therapy of
allogeneic CAR-Ts will be summarized, and finally, an overview of the current clinical evidence for
allogeneic CAR-Ts in comparison to its autologous counterpart will be given.
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1. Introduction

These last decades, immunotherapy has become an important treatment option for
patients with cancer indications [1,2]. Among the most promising options, T-cells engi-
neered to express chimeric antigen receptors (CAR) aim to strengthen the power of T-cells
to recognize and eliminate tumor cells in a human leukocyte antigen (HLA)-independent
manner. Since 2017, six CAR-T products have been approved by the US Food and Drug
Administration (FDA) in the United States and other countries, and two CAR-T prod-
ucts are approved in China by the National Medical Products Administration [3]. All
products are aimed for patients with advanced or resistant large B-cell lymphoma, acute
lymphoblastic leukemia or multiple myeloma, where outstanding results were obtained
with overall response rates reaching up to 100% objective response rates in some cases [4,5].
Nevertheless, challenges remain for these cell therapies, including the low durability of
responses, severe adverse events, low effectiveness in the context of solid tumors, and
limitations due to manufacturing of a highly personalized product [4–7].

CAR-T therapies in advanced stage of development, including those currently mar-
keted, are of autologous origin, whereby peripheral blood cells are taken from the indi-
vidual receiving treatment to be engineered into CAR-Ts before being reinfused to the
patient. The variability among patients in the initial material, due to the patient’s prior
treatment and disease history, may result in disparities in efficiency or yield of the end prod-
uct, leading to a 2–10% manufacturing failure rate [8] and in treatment deprivation for a
patient who has already undergone the apheresis process. Another obstacle arises from the
logistics, planning and increased expenditures associated with tailored medicines, which
necessitate creating and releasing a single product for each patient. The manufacturing,
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testing and release process itself is time-consuming, and the logistical challenge in shipping
cells back and forth between the treatment site and cell production facilities—which usually
follows a centralized manufacturing model—poses a significant concern for individuals
with rapidly progressive or aggressive cancers. The development of allogeneic and/or
‘off-the-shelf’ CAR-Ts from healthy donors allows many of these limitations to be overcome
by contributing to scalability and direct access to CAR-T therapies, providing a readily
available therapeutic solution for multiple patients (Figure 1).
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Figure 1. Overview of autologous versus allogeneic CAR-T manufacturing process from peripheral
blood mononuclear cells.

Whilst allogeneic therapies are attractive new treatment opportunities, their main
downside is the risk of a potential life-threatening toxicity called “graft-versus-host disease”
(GvHD) that is triggered by recognition of the patient’s healthy tissues by the T-cell receptor
(TCR) present on the surface of allogeneic CAR-Ts. To minimize this risk, selection of T-cell
sources presenting low TCR signaling capacity can be considered (see Section 3). Most
often, the manufacturing process of allogeneic CAR-T therapies include an engineering
step that aims to eliminate or blunt the signaling or the expression of the TCR using specific
technology (see Section 4). As a result, the engineered allogeneic CAR-Ts fail to recognize
the patient’s healthy tissue as foreign, thereby preventing GvHD.

Another challenge to overcome is the opposite scenario, where the patient’s immune
system swiftly rejects any transferred allogeneic cell, called the host-versus-graft (HvG)
reaction, thereby limiting the persistence of allogeneic CAR-Ts. For this, too, further
engineering of CAR-Ts is needed.

Here, we review potential sources of allogeneic cells for CAR-Ts and focus on advan-
tages or inconveniences of using existing technologies to establish “off-the-shelf” allogeneic
CAR-Ts with low alloreactivity, including the most studied and developed gene-editing
technologies, but also other non-gene-editing technology alternatives.

2. Source of Allogeneic Cells

The potential of allogeneic CAR-T lies largely in the ability to mass-produce CAR-
Ts that are as efficient and potent as their autologous counterpart. One of the crucial
factors in the manufacturing of allogeneic CAR-Ts lies in the source material used for the
final product.
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Currently, the most frequently used allogeneic cell source for CAR-T manufacturing
involves using peripheral blood mononuclear cells (PBMCs) from a random healthy donor.
More rarely, other cell sources are used such as umbilical cord blood (UCB) or a renewable
cell source such as induced pluripotent stem cells (iPSCs).

2.1. PBMCs

The most frequent source for the manufacturing of allogeneic CAR-Ts is PBMCs
collected from healthy donors, where T-cells are isolated and expanded. This allows for
the creation of multiple vials from a single apheresis product that can be easily used in a
very rapid and standardized manufacturing protocol [9,10]. Another manner by which
CAR-T can be manufactured is via isolation of stem cells from PBMCs [11], which can be
further activated and transduced into CAR T-cells. The advantage of using hematopoietic
progenitor cells is their ability to self-renew; however, as their absolute numbers are limited,
other strategies may be needed for their enrichment, such as CD34+ mobilization, similarly
to what is performed for autologous stem cell transplantation [12]. This also allows for
the generation of a bank of cells that express different human leukocyte antigen (HLA)
subtypes to potentially match the donor HLA to that of the patient [13]. The selection of
donors on the basis of their immune characteristics is likely to be a key factor in decreasing
the heterogeneity in the final manufactured product and lower the risk of GvHD.

2.2. UCB

The use of UCB was shown to be associated with reduced incidence and severity of
GvHD, making it a potentially more tolerable source material than PBMCs for allogeneic
T-cells and allowing for less stringent HLA matching [14]. Furthermore, UCB is an enriched
source of hematopoietic stem cells (HSCs), which are able to self-renew and can be used to
differentiate into T-cells, although there is a limit to their total number [15,16].

Interestingly, T-cells isolated from UCB have a unique antigen-naive status which
is probably linked to the decreased alloreactivity observed in UCB grafts [17,18]. Fur-
thermore, UCB T-cells are characterized by impaired nuclear factor of activated T-cells
(NFAT) signaling and reduced activity, which most likely further contributes to the reduced
GvHD [19].

However, an obvious drawback of UCB is its limited availability compared to other
cell sources.

2.3. Induced Pluripotent Stem Cells (iPSCs)

T-cells derived from iPSCs can also be used as a source of CAR-Ts [20]. In theory, iPSCs
have an unlimited capacity for self-renewal, thus allowing them to be banked and used
indefinitely [21]. A bank of iPSC lines with different homozygous HLA combinations could
be generated to minimize the risk of allorejection of CAR-T derived from iPSCs [22]. An
advantage of using iPSCs is that CAR T-cells can be generated from a single iPSC clone with
the capacity for clonal expansion, and therefore, the genetic modifications they undergo
would be homogeneous in the final cell population [23]. However, the quality controls
should be strict because undifferentiated proliferating iPSCs may compromise product
safety, since they could induce important adverse effects such as teratomas [24].

iPSCs can be developed from different cell types, such as fibroblasts or lymphocytes,
that are reprogrammed into a less differentiated cell by inducing the expression of specific
factors. For example, Iriguchi et al. generated iPSCs from an antigen-specific cytotoxic
T-cell clone, or from TCR-transduced iPSCs, as starting material [25]. These iPSCs can
then in turn be differentiated into T-cells through the addition of several differentiation
drivers and/or inhibitors (SDF1α and p58 inhibitors in the above case, for example) to
enhance T-cell commitment. While the potential to create a large cell bank that covers a
study cohort is appealing, the arduous tasks of T-cell differentiation and selection leading
up to the commitment of a single positive T-cell is much more complex then the use of
T-cells isolated from either PBMCs or UCB. However, while PBMCs and UCB both offer a
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heterogenous T-cell population of cells, iPSCs are clonal and thus give rise to a homogenous
T-cell population both with the advantages/disadvantages of each.

The generation of allogeneic CAR-T irrelevant of the starting material faces two major
hurdles. The first is the induction of GvHD and the second is the HvG response. Each T-cell
expresses a T-cell receptor (TCR), where the majority of T-cells express a TCR composed of
an alpha and a beta protein chain that can recognize HLA-peptide complexes on target cells
through the direct pathway of allorecognition, thus leading to GvHD [26,27] independent
of the CAR.

3. How to Prevent Alloreactivity in CAR-Ts by Selecting the Right Cell Population?

The use of allogeneic donor T-cells (CAR or not) that still express a functioning TCR
may play a role in anti-tumor effects. This has been clearly demonstrated in leukemia in
a process termed graft-versus-leukemia (GvL): after allogeneic stem cell transplantation
(SCT), protection from relapse is partly due to donor T-cells that recognize leukemia-
specific minor antigens [28]. This may be similar to CAR-T, although the recognition of
allo-antigens will likely induce GvHD, as studies assessing both acute and chronic GvHD
have clearly established a central role for αβTCR in GvHD pathogenesis [29–32]. The
application of SCT, for example, was not appreciated until T-cell-depleted grafts were
assessed to eliminate GvHD [33,34]. These successfully decreased the occurrence of GvHD
to extremely low frequencies, although the risk of opportunistic infections and relapse
increased substantially [34,35]. While the role of αβTCR in GvHD development is not in
doubt, the possible risks and/or benefits in the case of CAR-T therapy are not completely
clear, and the development of GvHD may be relatively low [36].

To avoid GvHD, two main approaches exist depending on (i) T-cells that have low
or non-reactive TCRs (discussed in this section) or (ii) engineering methods to avoid
allorecognition (Section 4). The αβTCR repertoire is selected in the thymus and is educated
based on the ability to be tolerant to self-HLA complexes. This tolerance means that the
TCR recognizes the self-HLA and responds to non-self peptide. However, in the case of
allorecognition, the TCR recognizes both structurally similar HLA-peptide complexes and
dissimilar HLA-peptide complexes, therefore allowing for the high frequency of alloreactive
T-cells (1 in 103) [37]. It is these alloreactive αβTCRs expressed on T-cells that drive GvHD.

The HLA locus is the most polymorphic region in the human genome, thus leading
to many HLA variants in each individual. There are six HLA-class-I molecules and six
HLA-class-II molecules, making the matching between donor and patient a complex issue,
and although decades of data from transplantation centers have shown that the most
important HLAs to match are the class I HLAs A,B and class II HLA-DR [38,39], this still
requires a vast bank of cells in order to produce the CAR-Ts, which renders the allogeneic
manufacturability rather complicated.

3.1. Infusion of Allogeneic CAR-Ts Post or Prior to an Allogeneic Transplantation

Patients treated with allogeneic SCT can be subsequently treated with CAR-Ts gen-
erated from the same donor if they relapse. This was performed in a study by Brudno
et al., where 20 patients with B-cell malignancies received CD19 CAR-Ts generated from the
same donor as SCT with no chemotherapy administered before T-cell infusion. Six patients
achieved complete remission and two patients achieved a partial response. No GvHD was
reported [40]. These results confirmed previous observations made by other groups [41,42].
In a more recent study, eight r/r B-ALL patients received either HLA-matched (n = 4) or
HLA-haploidentical (n = 4) CD19 CAR-Ts immediately preceding an intended SCT [43].
The haploidentical CAR-Ts induced transient or no reduction in peripheral blood leukemia
cells with no significant CAR-T expansion, which suggests rejection. In contrast, patients
treated with the HLA-matched CAR-Ts exhibited higher complete response rates, although
more severe toxic side effects, with no GvHD observed in either group. However, only
three out of eight patients reached complete response and only two of the eight patients
proceeded to transplant, indicating that while HLA-matched and HLA-haploidentical
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allogeneic CD19 CAR-Ts are feasible in r/r B-ALL before SCT, other factors besides GvHD
need to be considered in clinical applications of allogeneic CAR T-cell infusions.

3.2. Memory T-Cells

T-cells with a specific memory phenotype are considered to have a TCR specificity
directed to previously detected antigens, which are expected to be different from those of
the patient receiving the CAR-T therapy. Interestingly, studies have shown that memory
T-cells do not induce GvHD [44]. It is unclear why this is the case, but one possibility is
the diversity of the TCR, which is limited in memory T-cells, thus reducing GvHD. One
manner by which the T-cell memory and TCR specificity can be further specified is through
selection or the development of virus-specific T-cells (VST), as has been achieved in Epstein–
Barr virus (EBV)-associated malignancies. Adoptive transfer of HLA partially matched
EBV-specific T-cells from healthy donors has had positive results in post-transplant lym-
phoproliferative disease for example, with response rates of 60–70% and low incidences of
toxicity or GVHD [45]. Infusion of EBV-specific T-cells has also been used in patients with
Hodgkin’s lymphoma with good tolerance and remission rates [46,47]. The use of viral
antigens can enhance the proliferative capacity of the allogeneic CAR-Ts, making them per-
sist longer and possibly enhance their efficacy. This has been shown with cytomegalovirus
(CMV)-specific CD19-CAR-Ts that had enhanced in vivo anti-tumor activity following the
administration of anti-CMV vaccination [48].

However, all these methodologies require partial matching and thus require the
creation of multiple cellular banks. Next to the above-mentioned options, sub-populations
of T-cells can be used for the generation of allogeneic CAR-Ts.

3.3. T-Cell Sub-Populations

T-cell sub-populations comprise a relatively low percent of the circulating total T-cells
(making up anywhere between 0.01 and 10% of T-cells). These sub-populations include
double-negative T—cells (DNTs); invariant Natural Killer T-cells (iNKT); cytokine-induced
killer (CIK) cells; mucosal-associated invariant T (MAIT)-cells; and lastly, γδT-cells.

3.3.1. Double-Negative T-Cells (DNTs)

DNTs are a rare subset of immune cells that express CD3 but not CD4, CD8, and CD1d-
αGalCer [49–51]. DNTs comprise about 1 to 5% of human PBMCs and can be isolated
and expanded ex vivo under clinically compliant conditions from the peripheral blood
of healthy donors [52,53]. Expanded DNTs can express either γδTCR or αβTCR, where
the frequency of TCR expressing DNTs can range between 60 and 90% depending on the
donor origin.

In a recent study conducted by Vasic et al. the feasibility, safety, and efficacy of DNTs
for the development of allogeneic CD19-CAR-T was assessed. The resulting allogeneic
CD19-CAR DNTs had the properties of an off-the-shelf cellular therapy and were effective
against CD19-expressing hematological and solid malignancies [54]. Pre-clinical studies
have thus confirmed the feasibility of DNTs, but whether DNTs will actually yield good
results clinically remains to be seen.

A phase I/IIa clinical trial using third-party-donor-derived, genetically non-modified
DNTs to treat patients with relapsed/refractory acute myeloid leukemia (AML) showed
that the therapy was safe and had a positive efficacy profile [55]. One major concern is
regarding the cellular efficacy. Interestingly, Kang et al. have shown that one manner by
which the cellular efficacy and persistence of DNTs CARs can be enhanced is through
inhibition of the PI3K pathway during manufacturing, Which is something that we and
others have seen in αβT-cells as well [56,57].

3.3.2. Invariant Natural Killer T-Cells (iNKTs)

Invariant NKT-cells (iNKTs) are a subset of T-cells that share morphological and
functional characteristics of both NK and T-cells. They have a restricted TCR that has a
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constant α-chain paired with a low-diverse β-chain. iNKTs comprise between 0.01 and 1%
of the peripheral blood T-cell population and have shown not to cause GvHD in xenograft
models [58–60]. They are restricted by CD1d, a glycolipid-presenting HLA-I-like molecule
expressed on B-cells, antigen-presenting cells and some epithelial cells [61,62]. The fact that
iNKT-cells recognize B-cell lymphomas through CD1d makes them of particular interest
for B-cell malignancies [63].

3.3.3. Cytokine-Induced Killer (CIK)-Cells

CIK-cells are a heterogenous population of polyclonal effector T-cells that have func-
tional NK-cell properties. They comprise between 0.01 and 1% of the peripheral blood
T-cell population and can be expanded from PBMCs, bone marrow and UCB through a
manufacturing process that involves the addition of cytokines like IFN-γ and IL-2 and
TCR-activating antibodies [64,65]. CIK-cells have the advantage of exerting non-HLA-
restricted cytotoxicity and very low alloreactivity across HLA barriers in comparison
with conventional donor lymphocyte infusion [66–68]. This was further confirmed by
preclinical and phase I/II studies, where the infusion of bulk CIK-cells population was
well-tolerated [69–71]. In addition to the alloreactivity, the dual activity (of both NK cell
receptors and TCRs) gives CIKs an added ability to mediate cytotoxicity and prevent
infection, which is a major concern after CAR-T therapy. In a recent clinal trial where
relapsed B-acute lymphoblastic leukemia (B-ALL) patients were treated with CD19 CAR
CIK-cells, no GvHD was observed, and the cells could be detected up to 10 months after
infusion [72]. The overall response rate was 61.5% (13 patients), which is in line with its
autologous counterpart.

3.3.4. Mucosal-Associated Invariant T (MAIT)-Cells

MAIT-cells are primarily localized to mucosa-rich regions, comprising a fraction of
T-cells distributed throughout the pulmonary (5%), hepatic (20–40%) and intestinal (1–2%)
lamina propria, as well as peripheral circulation (1–10%; [73–75]). MAIT-cells have a
heavily restricted TCR repertoire that consists of TCR alpha variable (TRAV)1 combined
with three kinds of TCRA junctionals (TRAJ; TRAJ33, TRAJ12, TRAJ20) and a limited
repertoire of β chains in humans [76]. The MAIT TCR can recognize modified derivatives
from the vitamin B2 synthesis pathway presented by MHC class I-related molecule MR1 on
APCs. MR1 is a conserved molecule, thus making MAIT-cells incapable of inducing strong
GvHD in vivo [77]. This has further been shown in clinical studies where MAIT-cells were
positively correlated with improved survival and fewer allogeneic adverse events [78].

The use of MAIT-cells for CAR-T has been assessed in multiple pre-clinical studies,
and while their efficacy against tumor antigens was significant (as assessed with a mesothe-
lin and a CD19-targeting CAR), significant concerns were raised based on both cellular
persistence and manufacturing due to the limited cell number [79,80]. These concerns
imply that the use of MAIT-cells clinically may be limited.

3.3.5. γδT-Cells

One other subset of T-cells that is currently being used extensively in both preclinical
and clinical studies are γδT-cells (reviewed elsewhere [81–83]), which represent 1–10%
of circulating T-cells (although they are also prevalent in some epithelial tissues; [84]).
The γδT-cells have a unique TCR composed of variable gamma and delta chains and
recognize antigens independent of the HLA, leading to low or no risk of GvHD [85,86].
It is this advantage that has made them a popular starting material for the creation of
allogeneic CAR-Ts, and at least a dozen trials are currently underway to assess this as a
viable option [81,83,87].

Several studies have shown the safety and some efficacy of γδT-cells’ transfusion into
cancer patients, thereby relying on the HLA-independent function of γδT-cells (mediated
by NKG2D, for example, among others; [88,89]). These studies imply that the use of
γδT-cells may prove beneficial as a CAR-T therapy. This observation has led to multiple
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CAR-T- and TCR-based strategies being employed by companies to improve the efficacy of
γδT-cells for cancer immunotherapy. However, the tumor toxicity has been limited, and
consistent problems with both persistence and homing in vivo has limited the translation
of γδCAR-Ts.

4. ‘Off-the-Shelf’ Allogeneic CAR-Ts
4.1. Methods to Engineer ‘Off-the-Shelf’ Allogeneic CAR-Ts

The strategies to reduce GvHD by using partially matched allogeneic material, and/or
T-cells that have low or no TCR, naturally offer good alternatives, and many CAR-Ts
have shown the alloreactivity to be limited or manageable. However, in most instances,
allogeneic cells are persistent for a very short amount of time, meaning that the lack of
GvHD may be due in part to the lack of persistence. This lack of persistence is driven by
multiple-factors, including (i) a resurgence of the host immune response (in most instances,
the patients undergo lymphodepletion prior to CAR-T therapy) that in turn rejects the
allogeneic cells, (ii) the immune-suppressive tumor microenvironment that may inhibit
T-cell proliferation, as well as other factors [90]. This requires additional engineering to
circumvent the host immune response and/or the tumor microenvironment. The different
methods can be divided into gene-editing technologies and non-gene-editing technologies.

4.1.1. Gene-Editing Technology

The two biggest hurdles in the use of allogeneic T-cells are GvHD and HvG. The
former can be avoided by eliminating the TCR, usually through the knockout (KO) of the
constant domain of one of its chains (α and/or β), or by replacing some TCR subunits,
which impedes its antigen recognition function [91]. However, although this takes care of
the alloreactivity, the cells would still be susceptible to HvG. The most common antigens
driving HvG are the mismatched donor-HLA-I molecules on the donor cells. These are
recognized by the patient αβT-cells that are CD8+ through the direct pathway of allorecog-
nition. By knocking-out the common subunit β2-microglobulin (encoded by the B2M
gene), the HLA-I molecule will not be expressed on the cell surface, thus making the cell
susceptible to NK-cell lysis [92]. To avoid recognition by NK-cells, different strategies have
been developed, most commonly utilizing overexpression of a non-classical HLA-I such as
HLA-E or G fusion protein to avoid lysis [93,94].

Other strategies to avoid HvG include (i) CD47 overexpression [95] and (ii) CD52
KO [96]. CD47 is found on both healthy and malignant cells and regulates macrophage-
mediated phagocytosis by sending a “don’t eat me” signal to the signal regulatory protein
alpha receptor. Upon depletion of HLA-I on CAR-Ts, recognition by both macrophages
and NK-cells is triggered. In a recent study by Hu et al., the overexpression of CD47 in
allogeneic CD19-CAR-T negated the recognition of NK and macrophages to the absence
of HLA on the cell surface, thus avoiding rejection [97]. This approach is currently under
investigation in a phase I clinical trial (NCT05878184).

CD52 is protein expressed on the cell surface of many immune cells such as mature
lymphocytes, NK-cells, monocytes/macrophages and others [96,98]. The humanized anti-
CD52 monoclonal antibody (mAb), alemtuzumab, has been widely used in clinics for the
treatment of transplant patients and B-cell chronic lymphocytic leukemia [99–101]. Alem-
tuzumab targets CD52+ T-cells and is capable of both complement-dependent cytotoxicity
and antibody-dependent cell-mediated cytotoxicity [100]. Therefore, CD52 KO in allogeneic
CAR-Ts can be combined with Alemtuzumab to enhance CAR persistence. However, this
will necessitate multiple infusions and close monitoring of the immune system of each
patient. This approach has been assessed in multiple clinical trials involving allogeneic
CAR-Ts, most notably by Allogene, who have used this in combination with CD70 [102]
and CD19 CAR-Ts [103].

Next to recipient CD8+ T-cells that recognize the HLA-I molecules, CD4+ T-cells
recognize HLA-II molecules that are expressed on multiple cell types, including activated
T-cells [104]. Therefore, once donor CAR-Ts recognize their antigen, they will upregulate
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the HLA-II expression and become targets for recognition by recipient CD4+ alloreactive T-
cells [105]. It is therefore likely that for a persistent CAR-T, the removal of HLA-II becomes
necessary. One strategy that can achieve this is through the removal of the CIITA gene, an
HLA class II transactivator that controls HLA-II expression [106].

However, it is likely that for the success of allogeneic CAR-Ts, other modifications
become necessary to tackle the tumor microenvironment, for example. Different strate-
gies exist to introduce double-stranded DNA breaks (DSBs) that allow for the editing of
proteins. These breaks are subsequently repaired in error-prone pathways that can result
in insertions/deletions that can disrupt open reading frames. An overview is shown in
Table 1.

Table 1. Gene-editing technologies used to engineer allogeneic CAR-Ts.

ZFN TALEN CRISPR/Cas9 CRISPR/Cas12a Base-Editing

Recognition site Zinc finger protein RVD tandem repeat
region TALE protein

Two RNA molecules
(guideRNA and
tracrRNA)

Single-stranded
guide RNA

CRISPR/Cas dependent
(Cas sequence +
base-editor mRNA)

Modification
pattern Fok1 nuclease Fok1 nuclease Cas9 nuclease Cas12a nuclease

Four possible transition
mutations:
C→T
A→G
T→C
G→A

Target sequence
size 9–18 bp 14–20 bp 20 bp- guide + PAM

sequence
20 bp- guide + PAM
sequence CRISPR/Cas dependent

Specificity
Small number of
positional
mismatches

Small number of
positional
mismatches

Positional/multiple
consecutive
mismatches

Positional/multiple
consecutive
mismatches

CRISPR/Cas dependent

Targeting
limitations

Difficult to target
non-G-rich sites

5′ targeted base must
be a T for each
TALEN monomer

Recognizes 3′ G-rich
Must precede a PAM
sequence of 3–5 nt

Recognizes 5′ T-rich
Must precede a PAM
sequence of 3–4 nt

CRISPR/Cas dependent

Engineering Requires substantial
protein engineering

Requires complex
molecular cloning
methods

Uses standard
cloning procedures

Uses standard
cloning procedures

Uses standard cloning
procedures

Delivery Easy due to small
size

Difficult due to large
size

Moderate to difficult
due to large size of
SpCas9

Moderate to difficult
due to large size of
FnCas12a

Difficult due to large site
and added complexity

PAM: protospacer-adjacent motif.

Zinc finger nucleases (ZFNs)—A ZFN is an artificial endonuclease that has a zinc
finger protein (ZFP) fused to the cleavage domain of the FokI restriction enzyme [107]. A
ZFN is targeted to cleave a chosen genomic sequence. The FokI cleavage domain needs to
be dimerized to cut DNA, and because the dimer interface is weak, a construct of two sets
of fingers directed to neighboring sequences is needed. The cleavage-induced event caused
by ZFN leads to a cellular repair process that mediates the efficient modification of the
targeted locus. If the event is resolved via non-homologous end joining (NHEJ), it can result
in small deletions or insertions, effectively leading to gene KO. If the break is resolved via
a homology-directed repair (HDR), small changes or entire transgenes can be transferred
into the chromosome. Because each zinc finger unit recognizes three nucleotides, three to
six zinc finger units are needed to generate a specific DNA-binding domain.

The use of ZFNs has multiple challenges such as the specificity of ZFN binding, where
some fingers bind equally well to triplets other than their supposed preference. Thus,
off-targets can occur, and it is therefore necessary to extensively test ZFNs employed in
clinical trials [108,109]. Furthermore, the efficient delivery of ZFNs and donor DNA will
naturally be different among applications, and biological variations in the availability of
particular DNA repair pathways may affect the outcome.

Current clinical trials involving ZFNs include the knockout of the CCR5 gene, which is
the coreceptor for HIV-1 (e.g., NCT02388594, NCT00842634, NCT01044654, NCT01252641,
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or NCT02225665) [110]. ZFNs are also currently being used for the targeting of the glucocor-
ticoid receptor in IL13Rα2-targeting CAR-T in an allogeneic setting, where infusion of the
CAR has led to dexamethasone-resistant effector activity in six patients with unresectable
recurrent glioblastoma [111].

TALEN—TALENs are similar to ZFNs in that they are heterodimeric nucleases that
contain a fusion between the FokI restriction enzyme and a transcription activator-like
effector (TALE) DNA-binding domain. The amino acid repeat variable di-residues (RVD)
are two hypervariable amino acids that make up part of the sequence that mediates the
binding of TALE to DNA [112]. This greatly simplifies TALEN design. The TALENs’
monomeric architectures are developed by fusing TALE domains to a sequence-specific
catalytic domain derived from the homing endonuclease (HE) I-TevI, resulting in a Tev-
TALE monomeric nuclease [113].

Currently, multiple CAR-Ts have been developed using TALEN for the purpose of
creating allogeneic CAR-Ts. TALEN has been used to knockout both TRAC and CD52
in UCART19 (a CD19-targeting CAR-T), as assessed by Allogene Therapeutics. Similarly,
Cellectis has assessed multiple CAR-Ts such as CAR-Ts targeting CD123 [114], CD22 [115]
and CS1 [116]. In all candidates, TRAC was disrupted, but multiple strategies were
shown to enhance cellular persistence. Among those, CD52 and B2M have been discussed
previously. However, an additional target is CS1 (SLAMF7), which in this instance is
specifically removed to inhibit fratricide by the CAR-Ts.

MegaTALs—MegaTALs are a short TALE domain that fused to the homing endonu-
clease (HE). The artificial chimeric nucleases derived from HEs can be engineered to target
specific sequences within the genome [117–119]. This fusion increases the specificity and
activity of the MegaTALs [120]. Currently, to our knowledge, no clinical trials are utilizing
MegaTALs for allogeneic CAR-Ts.

Clustered regularly interspaced short palindromic repeats (CRISPR)—The CRISPR
system is derived from microbial adaptive immune system. It combines a nuclease and
a short RNA. The specificity of the CRISPR system is not through the protein-DNA in-
teraction (like the above) but rather RNA-DNA base pairing. A 20 nucleotide RNA that
is complementary to the target DNA(termed single guide RNA; sgRNA) is responsible
for the specificity. However, due to the system, off-targets are tolerated [121,122]. The
most common nuclease is Cas9 [123]. CRISPR/Cas9 is the most widely used because it
has demonstrated a remarkably low rate of off-target mutagenesis in T-cells [124,125]. In
addition, a specific high-fidelity Cas9 mutant, called eSpCas9, did not cause any detectable
off-target effect, making it an even safer technology [126,127].

CRISPR/Cas9 has been used to KO multiple targets to inhibit both GvHD and HvG,
focusing on TRAC, B2M, CD52 (as previously mentioned); however, multiple preclinical
studies have also shown that the KO of many other genes can play a role in cellular
persistence and efficacy, thus giving rise to the need for multiplexing (as reviewed by [128]).
However, although CRISPR/Cas has become the standard technology for use in adoptive
cell therapy, it is important to note its risks and limitations (Table 1). The first major risk is
the issue of off-targets. Well-designed sgRNAs are intended to induce gene insertions or
deletions, disrupting protein-coding sequences and establishing functional gene KOs, but
they can also induce off-target mutations at regions similar to the target sequence. These
off-target mutations have the potential to disrupt the normal genomic sequence, leading
to compromised cellular functions and a high risk of cell death [129]. The second risk
occurs after on-target CRISPR/Cas KO and relates to unwanted mutations that can occur
following DSB-induced repair [130]. The DSBs can lead to chromosomal abnormalities
such as chromosomal loss [131], and/or chromosomal translocations/rearrangements [132].
These risks are further increased when multiplexing several genes with Cas9 nuclease;
therefore, a lot of work has gone into multiplexing with an effort to reduce this risk.
Through the use of a catalytically dead Cas9 or base editor technology, modifications can
be made to optimize and improve the limitations of CRISPR/Cas9 [133].
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Although multiplexing these in unison becomes increasingly difficult, the relative
improvements seen, when such targets are removed, does imply that allogeneic CAR-Ts
may need more engineering to become long-lasting CAR-Ts.

CRISPR/other Cas—The most widely used CRISPR-Cas system is CRISPR/Cas9;
however, there are multiple systems, which are generally divided into two classes (class 1
and 2), and subsequently subdivided into six types (types I through VI). Class 1 (types
I, III and IV) systems use multiple Cas proteins, while class 2 systems (types II, V and
VI) use a single Cas protein [134]. The class 1 CRISPR/Cas systems comprise 90% of all
identified CRISPR/Cas loci. Class 2 comprises the remaining 10% and is almost exclusively
in bacteria [135]. Cas9 (type II) still presents challenges, mostly due to the possibility
off-targets and difficulty in delivering ribonucleoprotein particles [134]. The second most
utilized Cas is Cas12a (type V). It has substantial differences in comparison with Cas9 in
multiple aspects, one of which is a higher gene repression in the template strand of the
target DNA than SpdCas9 [136]. It may also be easier to multiplex in comparison with
Cas9 [137]. However, both Cas 9 and 12a suffer from a dependence on host cell DNA
repair machinery, meaning the induction of DSB and induction of repair. Although both
technologies have been used successfully to insert specific DNA into the genomic loci, their
efficiency differs between cell types [138–140]. Furthermore, DNA repair through HDR
is also related to active cell division, meaning that cells that do not divide (like neurons)
render the tools ineffective.

One such example is Cas-Clover, which relies on an RNA-guided endonuclease
(termed Cas-Clover) that consists of a Clo051 nuclease domain that is fused with a catalyti-
cally dead Cas9. These changes lead to fewer off-targets compared to CRISPR/Cas9 and a
better safety profile (genomic stability and normal karyotype; [141]). However, naturally,
other possibilities exist, such as the use of meganucleases that can be mutated individually
in order to change the specificity but without disrupting the catalytic efficiency [142]. This
approach is currently being assessed with the ARCUS platform in a phase I clinical trial
that will be discussed below.

Recently, CRISPR-Cas12a was successfully used in combination with CRISPR-Cas9
to generate simultaneous genetic manipulations for the generation of allogeneic CAR-Ts.
Combining both Cas12a and Cas9 led to triple-edited CAR-Ts that resulted in TCR- and
HLA-I/II-negative CAR-Ts resistant to allogeneic stimuli [143]. However, due to the nature
of DSBs explained above, and the high safety concern when multiplexing CRISPR/Cas, a
secondary methodology was necessary to achieve a safe CAR-T and minimize DSBs. This
technology is base-pair editing.

Base-pair editing—Base editing involves the use of CRISPR-Cas9 (or other Cas)
together with avoidance of DNA DSBs during genetic modification. Fusing a single-strand
DNA (ssDNA) deaminase enzyme to a catalytically inactive Cas9 variant leads to there
being only an ssDNA cut (nick). The Cas9-mediated nicking of the genomic DNA means
that a short stretch of ssDNA is exposed to the attached deaminase that can convert the
selected bases within their target window [144]. Many improvements have been conducted
since the first report on cytosine base editors (BE), and these have yielded novel base editors
that reduce unwanted byproducts, improve the targeting scope and allow the editing of
different bases [145]. Currently, four possible transition mutations can be installed: C→T,
A→G, T→C and G→A.

The added safety and possibility to multiplex gene KO through CRISPRs makes this
approach very interesting for CAR-Ts. A proof of concept for the approach was shown by
Diorio C et al. using an allogeneic CD7 CAR-T for T-cell acute lymphoblastic leukemia (T-
ALL). Here, base editing was used in combination with CRISPR-Cas9 to target four genes,
namely CD52 (to enable lymphodepletion with alemtuzumab); TRAC (removal of the
TCRα chain, GvHD); CD7 (to inhibit fratricide); and PDCD1 (PD1-receptor—an immune-
checkpoint inhibitor) successfully [146], currently under clinical evaluation (NCT05885464).
Importantly, the CD7 CAR-Ts functioned well and showed no detectable translocations or
karyotypic abnormalities. Similar base-pair-edited CD7 CAR-Ts were assessed in a phase
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I clinical trial. Preliminary results reported one patient to be in leukemic remission, one
that received SCT while in remission and the third developed an opportunistic fatal fungal
infection. Other adverse events included cytokine release syndrome and multilineage
cytopenia [147].

Multiple publications have shown that BEs can induce transcriptome-wide off-target
RNA editing [148,149] and genome-wide off-target DNA editing [150,151], as well as
unexpected nucleotide conversions [152]. However, whether these risks are applicable to
patients remains to be seen [153].

4.1.2. Non-Gene Editing

The biggest concern with gene editing is the complexity involved in removing multiple
genes (multiplexing) while keeping the safety concerns to a minimum. We developed two
non-gene-edited approaches: (i) The first is based on a TCR inhibitory molecule (TIM)
that, upon incorporation with the T-cell DNA, competes with TCR elements rendering the
TCR unresponsive [10]. This approach was used together with an NKG2D-based CAR
and assessed in metastatic colorectal cancer [154]. (ii) The second uses an miRNA scaffold
targeting CD3ζ, which has led to a complete abolishment of TCR from the cells [155].
This approach was assessed in a phase I clinical trial using a BCMA-targeting CAR-T in a
relapse/refractory multiple myeloma patient cohort.

Another approach includes intracellular retention of TCR/HLA-I to prevent GvHD/
HvG. There are multiple methods to retain components in the endoplasmic reticulum (ER),
including using a peptide (such as KDEL) that is associated with the ER retention domain.
Then, by combining said peptide with an scFv targeting the TCR, for example, all TCRs
will be retained in the ER [156].

While the argument for the removal of the TCR is clear, it is unclear which factors
govern cellular persistence in an allogeneic setting. While the usual suspects (HLA-I/II)
naturally play a role, other proteins are possibly involved in HvG. Furthermore, other
cellular processes such as metabolic regulation may affect cellular persistence in an allo-
geneic setting. Current results suggest that additional modifications are needed to achieve
success in an allogeneic setting. In this regard, the ability to multiplex multiple targets
simultaneously becomes a key factor. While this is complex in gene-editing approaches, t is
relatively simple in a non-gene-edited approach. Multiple groups have combined either
miRNA- or siRNA-like sequences in an effort to inhibit multiple target-sequences together
either through a natural scaffold or a synthetic one [157–160]. We have recently developed
a microRNA (miRNA)-based multiplex shRNA platform, obtained by combining highly
efficient miRNA scaffolds into a chimeric cluster [161]. We were able to deliver up to four
shRNA-like sequences (in a plug-and-play manner) in a single vector containing the CAR
and four different shRNA-like sequences targeting CD3ζ (GvHD), B2M (HLA-I/HvG)
and additional combinations of either CIITA (HLA-II/HvG), CD95 (Fas receptor/inhibit
apoptosis), LAG-3 (Immune-checkpoint inhibitor) and/or CD28 (co-stimulation, reduc-
tion/persistence). Interestingly, we discovered that the modulation of genes rather than
gene KO is essential for certain targets (such as B2M, where a clear balance exists between
removal of the HLA-I and recognition by NK-cells and the minimal expression needed to
avoid NK-cell lysis and/or T-cell-mediated activation), making the method a good and
easy-to-use tool for certain targets.

4.2. Clinical Experience with ‘Off-the-Shelf’ Allogeneic CAR-Ts
4.2.1. Successes to Date

Several off-the-shelf allogeneic CAR-T products are currently under clinical evaluation
in Phase I or Phase I/II studies by several groups (Table 2).



Cells 2024, 13, 146 12 of 25

Table 2. Engineered allogeneic ‘off-the-shelf’ CAR-Ts with published clinical experience.

Allogeneic
Engineering
Technology

Target Antigen Strategy for GvHD Strategy for HvG Product Name Developers Trial Names, Phase and Number

αβ T-cells (from PBMCs)

TALEN

CD19 Disruption of TRAC Disruption of CD52 and use of
anti-CD52 ALLO-501/UCART19 Cellectis (Paris, France); Allogene

Therapeutics (San Francisco, CA, USA)

CALM Phase 1 [162,163]
NCT02746952
PALL Phase 1 [162]
NCT02808442
ALPHA Phase 1 [164]
NCT03939026

CD19 Disruption of TRAC Disruption of CD52 and use of
anti-CD52 ALLO-501A Cellectis (Paris, France); Allogene

Therapeutics (San Francisco, CA, USA)
ALPHA 2 Phase 1/2 [165]
NCT04416984

BCMA Disruption of TRAC Disruption of CD52 and use of
anti-CD52 ALLO-715 Allogene Therapeutics (San Francisco,

CA, USA); Cellectis (Paris, France)
UNIVERSAL Phase 1 [166]
NCT04093596

CD70 Disruption of TRAC

Disruption of CD52 and use of
anti-CD52
CD70 CAR designed to avoid
fratricide

ALLO-316 Allogene Therapeutics (San Francisco,
CA, USA); Cellectis (Paris, France)

TRAVERSE Phase 1 [167]
NCT04696731

CD123 Disruption of TRAC Disruption of CD52 and use of
anti-CD52 UCART123 Cellectis (Paris, France)

AMELI-01 Phase 1 [114]
NCT03190278
Phase 1
NCT04106076
ABC123 Phase 1
NCT03203369

CD22 Disruption of TRAC Disruption of CD52 and use of
anti-CD52 UCART22 Cellectis (Paris, France) BALLI-01 Phase 1 [168]

NCT04150497

SLAMF7 Disruption of TRAC Disruption of CS1 gene to avoid
fratricide UCARTCS1 Cellectis (Paris, France) MELANI-01 Phase 1 [169,170]

NCT04142619

ARCUS

CD19 Disruption of TCR - PBCAR0191/Azercabtagene
zapreleucel

Precision BioSciences (Durham, NC,
USA)

Phase 1/2 [171]
NCT03666000

CD19 Disruption of TCR shRNA against β2M and HLA-E
transgene PBCAR19B Precision BioSciences (Durham, NC,

USA)
Phase 1 [171]
NCT04649112

BCMA Disruption of TCR - PBCAR269A Precision BioSciences (Durham, NC,
USA)

Phase 1 [172]
NCT04171843

CD20 Disruption of TCR - PBCAR20A Precision BioSciences (Durham, NC,
USA)

Phase 1/2 [173]
NCT04030195
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Table 2. Cont.

Allogeneic
Engineering
Technology

Target Antigen Strategy for GvHD Strategy for HvG Product Name Developers Trial Names, Phase and Number

CRISPR/Cas9

CD19 Disruption of TRAC - CB-010 Caribou Biosciences (Berkeley, CA, USA) ANTLER Phase 1 [174]
NCT04637763

CD19 Disruption of TRAC Disruption of β2M CTX110 CRISPR Therapeutics (Zug, Switzerland) CARBON Phase 1/2 [175]
NCT04035434

BCMA Disruption of TRAC Disruption of β2M CTX120 CRISPR Therapeutics (Zug, Switzerland) Phase 1 [176]
NCT04244656

CD70 Disruption of TRAC Disruption of β2M + CD70
disruption to avoid fratricide CTX130 CRISPR Therapeutics (Zug, Switzerland)

COBALT-RCC Phase 1 [177]
NCT04438083
COBALT-LYM Phase 1 [178]
NCT04502446

CD19 Disruption of TRAC Disruption of CD52 and use of
anti-CD52 CTA101 Nanjing Bioheng Biotech (Nanjing,

China)

Phase 1 [179]
NCT04154709
NCT04227015

CD19/CD7 Disruption of TRAC CD7 disruption to avoid fratricide GC502 Gracell Biotechnologies (Suzhou, China) Early Phase 1 [180]
NCT05105867

CD7 Disruption of TRAC CD7 disruption to avoid fratricide WU CART 007 Wugen (St Louis, MO, USA) Phase 1/2 [181]
NCT04984356

Cas-CLOVER™

BCMA Disruption of TCR beta chain 1 Disruption of β2M P-BCMA-ALLO1 Poseida Therapeutics (San Diego, CA,
USA)

Phase 1 [182]
NCT04960579

FKBP12; MUC1-C Disruption of TCR Disruption of β2M P-MUC1C-ALLO1 Poseida Therapeutics (San Diego, CA,
USA)

Phase 1 [183]
NCT05239143

Base-pair editing CD7 Disruption of TRAC Disruption of CD52 and CD7 to
avoid fratricide BE-CAR7 Great Ormond Street Hospital (London,

UK)
Phase 1 [147]
ISRCTN15323014

Peptide-based
(TIM8) NKG2DL Negative competition with CD3ζ - CYAD-101 Celyad Oncology (Mont-Saint-Guibert,

Belgium)

alloSHRINK Phase 1 [154,184]
NCT03692429
CYAD-101-002 Phase 1
NCT04991948

miRNA-based
shRNA BCMA Knock-down of CD3ζ - CYAD-211 Celyad Oncology (Mont-Saint-Guibert,

Belgium)
IMMUNICY-1 Phase 1 [185]
NCT04613557

Non-gene editing CD19
Intracellular retention of TCR/CD3
complex via KDEL-tagged anti-CD3
scFv

Decreasing surface HLA-A and
HLA-B by HCMV US11 protein ThisCART19 cells Fundamenta Therapeutics (Suzhou,

China)
Phase 1 [156]
NCT04384393

cytolytic T-lymphocytes (from PBMCs)

Zinc Finger
Nuclease IL13-zetakine Disruption of the glucocorticoid

receptor Use of dexamethasone GRm13Z40-2 City of Hope (Duarte, CA, USA) Phase 1 [111]
NCT01082926

αβ T-cells (from iPSCs)

CRISPR/Cas CD19 Disruption of TRAC - FT819 Fate Therapeutics (San Diego, CA, USA) Phase 1 [186]
NCT04629729

iPSC: Induced pluripotent stem cells; PBMC: peripheral blood mononuclear cells.
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Most experience to date has been obtained with an allogeneic universal anti-CD19
CAR-T product (UCART19/ALLO-501), which is genome-edited with TALEN technology
to simultaneously disrupt TRAC and CD52 genes. While TRAC is targeted to prevent
GvHD risk, CD52 gene knockout aims to protect allogeneic CAR-Ts from rejection by
alemtuzumab/ALLO-647, an anti-CD52 antibody used as an additional lymphodepleting
agent [121]. UCART19/ALLO-501 was evaluated in two completed Phase I studies in
pediatric (PALL study, NCT02808442) and adult (CALM study, NCT02746952) populations
with relapsed or refractory (r/r) B-cell acute lymphoblastic leukemia (B-ALL) [162,163],
initiated following successful therapy in two infants with r/r B-ALL who had relapsed
after a first allo-SCT [187]. UCART19/ALLO-501 is still under evaluation in adult patients
with r/r large B-cell lymphoma (LBCL) or follicular lymphoma (FL) in the ALPHA study
(NCT03939026). Globally, UCART19/ALLO-501 induced antileukemic activity with an
overall response rate (ORR) of 48% in these heavily pretreated populations and exhibited
a manageable safety profile with moderate cytokine release syndrome (CRS) events and
minimal—but still some (8% of patients)—grade 1 acute cutaneous GvHD. Two deaths in
the CALM trial were considered to be associated with UCART19, and both were reported
as dose-limiting toxicity [162]. Of note, between 3% and 6% of UCART19/ALLO-501
cells had translocation-associated karyotype abnormalities, without suggestion of adverse
effects [162]. An evolution of UCART19/ALLO-501 was also developed and referred
to as ALLO-501A, in which the safety switch rituximab recognition was removed; it is
currently being evaluated in the ALPHA2 (NCT04416984) and EXPAND (NCT05714345)
studies. Data from the optimal lymphodepletion regimen confirmed a good anti-tumor
efficacy, with an ORR of 67% across both ALPHA and ALPHA2 studies and no GvHD
reported [188].

The same TALEN technology is used in the universal anti-CD123 (UCART123) and anti-
CD22 (UCART22) CAR-T product candidates evaluated in two Phase I studies involving
adult patients with relapsed or refractory B-ALL (NCT04150497, BALLI-01 study) [168]
or relapsed/refractory acute myeloid leukemia (NCT03190278, AMELI-01 study) [114],
respectively, as well as in the anti-BCMA CAR-T product ALLO-715 currently under
evaluation in the Phase 1 UNIVERSAL study involving refractory/relapsed adult multiple
myeloma patients [166]. Under the optimal lymphodepleting regimen, 70.8% of patients
had an objective response. The median duration of response was 8.3 months, and no cases
of GvHD were reported.

The ARCUS genome-editing technology is used in the anti-CD19 allogeneic CAR-T
product (PBCAR0191, Azercabtagene zapreleucel or Azer-Cel) currently under evaluation
in a Phase I/II study involving relapsed/refractory non-Hodgkin’s lymphoma (NHL) and
B-ALL patients (NCT03666000) and has shown promising results. Azer-Cel achieved an
83% ORR and a 61% complete response (CR) rate with a 55% durable response among
evaluable patients who had relapsed following autologous CAR-T therapy (n = 18) and
a 58% ORR overall (n = 61) and no GvHD reported [171]. The PBCAR19B product, an
anti-CD19-targeting allogeneic CAR-T designed to evade immune rejection by host T-cell
and NK-cells, was evaluated in a Phase I study (NCT04649112) and achieved a 71% ORR
and a 43% CR rate [171].

CRISPR/Cas9 is also used in the CD19-targeting CTX110 product evaluated in the
phase 1 CARBON trial (NCT04035434) in patients with r/r NHL. A 67% ORR was observed
at the highest dose level [175]. No cases of GvHD were reported despite a high HLA
mismatch between donors and patients [175]. The only case of immune effector cell-
associated neurotoxicity syndrome (ICANS) of Grade 3 or higher was in a patient with
concurrent HHV-6 (Human Herpes Virus). Administration of a second CTX110 infusion
was well tolerated and demonstrated evidence of further clinical benefit. CTX-130, an
anti-CD70 allogeneic CAR-T, was evaluated in the COBALT-LYM study (NCT05722418) in
patients with T-cell lymphoma and in the COBALT-RCC study (NCT04502446) in patients
with advanced clear cell renal cell carcinoma (RCC). At the highest dose level, the ORR was
71% in patients with T-cell lymphoma [178], and there was no report of GvHD in any of the
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17 evaluated patients. Results in the RCC population showed an ORR of 8% (n = 13), with
one patient experiencing a durable complete response maintained at 18+ months and no
GvHD reported [177]. The anti-CD19 CAR-T product CB-010, engineered via CRISPR/Cas9
to knockout both TRAC and PD-1 to reduce T-cell exhaustion, is evaluated in the ANTLER
Phase 1 study (NCT04637763) in patients with B-NHL and showed 94% ORR across all
dose levels, which rivals autologous products [174], and no GvHD was observed (n = 16).

CAR T-cell products using non-gene-editing technologies were also evaluated in clinic.
CYAD-101 is an allogeneic CAR-T candidate engineered to co-express a CAR based on
NKG2D, a receptor recognizing eight different stress ligands, and an inhibitory peptide
interfering with the signaling of the endogenous TCR complex. CYAD-101 was evaluated
in the alloSHRINK phase I study in patients with unresectable metastatic colorectal cancer
(NCT03692429). Twenty-five patients received three infusions of CYAD-101 after stan-
dard preconditioning chemotherapy (FOLFOX or FOLFIRI). No dose-limiting toxicity or
GvHD were reported, nor was any patient discontinuation due to treatment-related adverse
events or treatment-related adverse events greater than Grade 3. The results also showed
that two patients achieved a partial response (13% ORR), including one patient with a
KRAS mutation, and nine patients (60%) reached a stable disease [154,184]. In CYAD-211,
a miRNA-based shRNA approach was used to silence the mRNA coding for the CD3ζ
component of the TCR, co-expressed with an anti-BCMA CAR in the CYAD-211 product,
which was evaluated in the phase I IMMUNICY-1 trial (NCT04613557) for the treatment of
patients with r/r multiple myeloma. Clinical activity from 12 patients in the dose-escalation
segment of the IMMUNICY-1 trial was encouraging, with 3 patients achieving partial re-
sponse (PR), while 8 patients had stable disease (SD). Overall, CYAD-211 was well tolerated,
with no dose-limiting toxicity (DLT), GvHD or neurotoxicity at the three dose-levels [185].
A CD19-targeting allogeneic CAR-T using intracellular retention of membrane proteins to
prevent TCR expression at the surface was evaluated in a Phase I study (NCT04384393) in
patients with NHL [156]. Data from the first eight patients demonstrated no evidence of
GvHD reaction but presented encouraging activity (75% ORR).

Finally, the iPSC-derived CAR T-cell product candidate FT819 targeting CD19 was
evaluated in a Phase I study (NCT04629729) in patients with B-cell malignancies and
demonstrated a tolerable safety profile with no reported DLT or GvHD in the 12 evaluated
patients [186].

4.2.2. Challenges to Overcome

In the clinical setting, some allogeneic candidates have reached objective response
rates similar to those observed in their autologous counterparts, and, apart from two
patients (one infant and one adult) presenting with Grade I acute skin GvHD that was
easily controlled [162], preliminary data from any of those studies showed no evidence of
acute GvHD. Therefore, despite earlier concerns, the modifications made to prevent GvHD
in allogeneic ‘off-the-shelf’ CAR-Ts seem sufficient to drastically reduce this risk.

In contrast, the engraftment of the allogeneic CAR-Ts has been stymied to some
extent by host rejection, mediated by the recognition of non-self HLA molecules on the
donor T-cell membrane, and is clearly the main concern of allogeneic CAR-Ts, as this
limits their activity and duration of responses. For example, in the CALM study, although
expansion of the CAR-Ts, similar to those observed with autologous CAR-Ts, was observed
from day 8 to day 14 after infusion, a rapid decline was observed in most patients by
day 28 [189], a limited duration of response. Cellular kinetics were also limited beyond
day 28 with ALLO-715 [166], UCART123 [168], UCART122 [114], CYAD-101 [154] and
CYAD-211 [155]. As a first solution, a deeper lymphodepletion through a more intense
preconditioning regimen is generally used as an approach to improve the allogeneic CAR-T
persistence. In addition, strategies to increase the dose of cells—either by using higher dose
levels at first infusion, or by using multiple infusions—have been proposed but do not fully
counteract the allorejection. The CALM study evaluated different lymphodepleting regimen
(fludarabine 30 mg/m2 × 3 [days-7 to day-5] and cyclophosphamide 500 mg/m2 × 3 [day-4
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to day-2] with or without alemtuzumab 1 mg/kg, 40 or 60 mg flat doses [day-7 to day-3])
and different cell doses (from 6 × 106 to 2.4 × 108 CAR-Ts per infusion). Nevertheless,
although the dose of alemtuzumab, and altogether the intensity of the lymphodepleting
regimen, had a positive impact on cell persistence post-infusion, it also increased the
risk of infectious complications. In the UNIVERSAL study, one dose-limiting toxicity
of grade 5 fungal pneumonia related to lymphodepletion was reported [166]. A second
(consolidation) dose of ALLO-501/ALLO-501A was therefore proposed in the ALPHA and
ALPHA2 studies around day 30 after first infusion to further maintain peripheral blood
levels of CAR-Ts beyond day 28, with the aim to improve duration of responses [164,165]. A
clinical hold was also reported for UCART123 in the ABC study after a fatality event [169],
which led the Data Safety Monitoring Board to recommend lowering the dose of UCART123
cells and capping cyclophosphamide to a total dose of 4 g over 3 days. Similarly, one grade
5 event of multifocal pneumonia after ALLO-715 infusion was considered to be related to
progressive myeloma and the conditioning regimen [166].

Alternative methods to prevent allorejection are currently being developed, and
some of them have already been evaluated in clinical trials. The PBCAR19B product was
engineered to knock-down β2M (beta-2 microglobulin) and express an HLA-E transgene to
prevent allorejection [171]. Preliminary clinical results provide proof-of-concept that these
modifications appeared to be effective in delaying the recovery of host T- and NK-cells.
Similarly, CTX-130, an anti-CD70 allogeneic CAR-T modified to disrupt β2M and CD70
genes to reduce allorejection and fratricide, has been reported to elicit a durable complete
response in a patient with RCC [177], which may suggest the approach is indeed improving
the activity of allogeneic CAR-Ts even in solid tumors. CB-011, an anti-BCMA allogeneic
CAR-T engineered with CRISPR/CAS12a to KO not only TRAC but also β2M and co-
express a β2M-HLA-E fusion peptide, is currently being evaluated in the CaMMouflage
Phase 1 study, and has demonstrated promising preclinical data leading to significant
improvement in anti-tumor activity durability [174].

Safety risks related to the use of gene-editing technologies are still a big concern.
Chromosomal abnormality was reported in a single patient who received a consolidation
dose of ALLO-501A, which caused a clinical hold of several months of all studies with
similar technology [165]. Investigations concluded that the chromosomal abnormality was
unrelated to TALEN gene editing or manufacturing process but raised the question of
safety of gene-edited cellular therapies.

Recently, the Food and Drug Administration (FDA) has determined that there is a
risk of T-cell malignancies, applicable to all currently approved CAR T-cell therapies [190].
These concerns are raised with autologous CAR T-cells that persist for a long period of
time. Allogeneic CAR-Ts suffer from a lack of persistence; hence, this safety concern does
not currently apply. With improved technological advancements, the increase in allogeneic
CAR T-cell persistence may lead to similar safety concerns.

5. Conclusions

Undoubtedly, more extensive research is required to prove the superior clinical efficacy
of allogeneic CAR-Ts compared to their approved autologous counterparts, particularly in
treating solid cancer, which has limited therapeutic options.

However, current evidence suggests that allogeneic CAR-Ts can efficiently overcome
major hindrances that restrict access to CAR-T therapy to a wider patient population.
This feasible approach stems from the emergence of suitable techniques that interrupt the
endogenous TCR and mitigate GvHD, which is the primary risk for toxicity in allogeneic
T- cell treatment. Genetic ablation of TCRα through targeted gene-editing techniques
has become popular in this field. However, there are potential drawbacks related to
double-strand DNA breaks and the manufacturing complexities which may impact cell
fitness and/or yield. A noteworthy substitute exists in the form of non-gene-editing
technologies, which warrant further exploration because they offer potentially safer and
more adaptable choices for manufacturing next-generation CAR-Ts. Nevertheless, although
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those approaches seem promising to prevent the risk of GvHD, rejection of the cells
following post-infusion, via HvG reaction, is the greatest challenge as of today.

Hence, the ideal ‘off-the-shelf’ allogenic CAR-T not only needs to prevent GvHD
but also HvG via diverse modifications like the downregulation or disruption of genes
involved in allorejection, such as B2M, CIITA or CD52. It is therefore imperative to further
invest in developing technologies that allow safe administration of allogeneic CAR-Ts while
improving their persistence and their efficacy and maintaining a favorable safety profile.
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