
Citation: Chen, L.; Zhang, S.; Liu, S.;

Gao, S. Amyotrophic Lateral Sclerosis

Mechanism: Insights from the

Caenorhabditis elegans Models. Cells

2024, 13, 99. https://doi.org/

10.3390/cells13010099

Academic Editor: Lee J. Martin

Received: 6 November 2023

Revised: 28 December 2023

Accepted: 28 December 2023

Published: 3 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Amyotrophic Lateral Sclerosis Mechanism: Insights from the
Caenorhabditis elegans Models
Lili Chen, Shumei Zhang, Sai Liu and Shangbang Gao *

Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China; lilichen93@163.com (L.C.);
13526489225@163.com (S.Z.); liusai1013@163.com (S.L.)
* Correspondence: sgao@hust.edu.cn

Abstract: Amyotrophic Lateral Sclerosis (ALS) is a debilitating neurodegenerative condition char-
acterized by the progressive degeneration of motor neurons. Despite extensive research in vari-
ous model animals, the cellular signal mechanisms of ALS remain elusive, impeding the develop-
ment of efficacious treatments. Among these models, a well-characterized and diminutive organ-
ism, Caenorhabditis elegans (C. elegans), has emerged as a potent tool for investigating the molec-
ular and cellular dimensions of ALS pathogenesis. This review summarizes the contributions of
C. elegans models to our comprehension of ALS, emphasizing pivotal findings pertaining to genetics,
protein aggregation, cellular pathways, and potential therapeutic strategies. We analyze both the
merits and constraints of the C. elegans system in the realm of ALS research and point towards
future investigations that could bridge the chasm between C. elegans foundational discoveries and
clinical applications.
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1. Brief Introduction of ALS

Motor Neuron Disease (MND) constitutes a group of disorders, including, but not
limited to, Amyotrophic Lateral Sclerosis (ALS), Progressive Spinal Muscular Atrophy,
Primary Lateral Sclerosis, and Progressive Bulbar Palsy. These disorders share a common
feature: damage to upper and lower motor neurons, resulting in the loss of essential motor
function [1,2]. Typically, individuals diagnosed with MND manifest symptoms such as
muscle wasting and limb weakness. In addition to motor impairments, they may also
encounter challenges related to language and swallowing [3]. As MND progresses, most
patients succumb to complications such as pneumonia or respiratory failure [4]. This review
specifically addresses the intricate mechanisms underlying ALS, recognized as the most
prevalent adult-onset neurodegenerative form of MND. We predominantly summarize
the molecular and cellular pathways from studies conducted with the small model animal
Caenorhabditis elegans (C. elegans).

ALS, commonly known as Charcot’s disease or Lou Gehrig’s disease, is a motor
neuron disease (MND) affecting both upper and lower motor neurons within the central
nervous system, governing voluntary muscle movement. Clinically, ALS is characterized
by muscle rigidity and the gradual weakening of limbs and bulbar muscles, leading to
varying degrees of difficulty in speech, swallowing, and respiration [4,5]. It is noteworthy
that functions such as bladder control, bowel movements, and eye movements typically
remain unaffected until the advanced stages of the disease [6]. In addition to muscle dys-
function, 30–50% of ALS patients present with cognitive and other nervous system deficits.
Common cognitive symptoms in ALS patients include challenges in social cognition, verbal
memory, language, and executive function [7]. Approximately 15% of cases with observed
cognitive impairment exhibit visible atrophy in the frontal and/or temporal lobes, resulting
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in behavioral changes or language impairment meeting the criteria for frontotemporal
dementia (FTD) [8]. These observations indicate the complexity of ALS as a progressive
disease involving functional deficits in multiple tissues.

The onset of ALS commonly occurs between the ages of 40 and 70, although cases
exist among younger patients. Individuals diagnosed with ALS typically experience a
rapid progression of the disease, with a life expectancy ranging from 2 to 5 years [9,10].
The estimated incidence rate of ALS exhibits variability, ranging from 0.3 to 2.5 cases
per 100,000 individuals [11]. Despite being perceived as relatively rare in the public
consciousness, ALS significantly influences the quality of life for affected patients.

2. ALS-Associated Proteins

Protein misfolding and aggregation are prevalent phenomena in ALS, affecting more
than 90% of patients [12]. This section provides a concise overview of the key genetic
factors, including SOD1, TDP-43, FUS, C9ORF72, OPTN, and others, that underlie the
molecular basis of ALS. Subsequently, we present an introduction to the disease mech-
anisms associated with these genetic factors as elucidated through the utilization of the
C. elegans models.

SOD-1 (Superoxide dismutase 1), a widely expressed cytosolic protein, plays a crucial
role in converting toxic superoxide anions to hydrogen peroxide, serving as a cellular de-
fense against oxidative stress [13,14]. Initially linked to a loss of dismutase activity, it is now
recognized that mutations in SOD1 primarily induce toxicity through a gain-of-function
mechanism, although the precise toxic mechanisms remain incompletely understood [15].
Mutations in the SOD1 gene lead to alterations in the enzyme’s folding and stability, ulti-
mately resulting in aggregation within motor neurons and subsequent neuronal death [16].

TDP-43 (TAR-DNA binding protein 43), encoded by the TARDBP gene on human
chromosome I, is primarily localized within neuronal nuclei [17]. Functioning as a versatile
RNA-binding protein, TDP-43 is intricately involved in RNA processing, encompassing the
regulation of alternative mRNA splicing and mRNA stability [18]. Notably, TDP-43 stands
as a pivotal constituent of ubiquitin-positive aggregates found within the motor neurons of
ALS patients. These aggregates consist of C-terminally truncated and hyperphosphorylated
TDP-43 [17]. Over 40 ALS-associated mutations have been identified, with G298S, A315T,
M337V, G348C, and A382T being the most frequently observed mutations [19].

FUS (Fused in sarcoma), a DNA and RNA-binding protein, plays a significant role in
regulating transcription and mRNA processing in neurons. Mutations in FUS lead to the
formation of aggregated proteins, resulting in motor impairment and synaptic function
alterations through overexpression [20,21]. At the molecular level, FUS mutations cause
dysregulation in various RNA processes, including splicing, transcription, and stabilization,
ultimately culminating in neuronal dysfunction [22,23].

C9ORF72 is the most prevalent genetic cause of ALS. Mutated C9ORF72 genes exhibit
distinct expansion of the hexanucleotide GGGGCC repeat in the first intron [24]. While
the precise mechanism of this expansion remains elusive, one interpretation suggests
that AUG-independent translation of GGGGCC may lead to the formation of dipeptide
repeats [25].

OPTN (Optineurin), a hexameric protein weighing 64 kDa and composed of 577 amino
acids (aa), interacts with numerous proteins involved in processes such as inflammation,
vesicle-based protein trafficking, and signal transduction, including the nuclear factor
kappa B (NF-κB) pathway [26,27]. Associated with neurodegenerative diseases like ALS,
OPTN comprises several coiled-coil domains, a ubiquitin-binding domain (UBD), a leucine-
zipper kinase, and an LC3-binding domain [28]. Specific mutations in OPTN, such as exon
5 deletion, Q398 nonsense, and E478G missense mutations, have been identified in ALS
patients [29,30].
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3. Molecular Mechanisms of ALS in C. elegans Models

C. elegans has emerged as a potent tool for investigating the mechanisms underlying
neurodegenerative diseases [16,31–33]. This is primarily attributed to its facile genetic
manipulation, rapid cultivation, and its utility as a whole-animal system amenable to
various molecular and biochemical techniques [34]. Moreover, C. elegans genes exhibit
functional conservation with numerous critical pathogenic genes associated with ALS
in humans, thereby emphasizing the biological relevance of models established in this
organism [35,36]. Indeed, C. elegans has gained widespread recognition as an animal model
for scrutinizing the fundamental causal genes of ALS [37–41]. Approximately 42% of
human disease-associated genes have identifiable nematode orthologs, making this worm
a fitting model for exploring the molecular mechanisms and cellular processes driving
disease onset and progression [34,42]. In Table 1 below, we present an overview of the
nematode ALS models employed in various studies.

Table 1. A list of published C. elegans models of ALS.

Model Strain/Transgene
Name/Plasmid Expression in C. elegans Phenotypes

Pro-aggregant lines:
Is[Prab-3::F3∆K280 +
Pmyo-2::mCherry]

BR5270, 5485, 5706, 5944 Constitutive
pan-neuronal

Severe locomotive impairment of adulthood at
day 1; accelerating aggregate formation; severe

developmental deficiency in the nervous
system; injury in presynaptic transmission [43]

Anti-aggregant lines:
Is[Prab-3::F3∆K280(I277P)(I308P) +

Pmyo-2::mCherry]
BR5271, 5486, 6427, 6516 Constitutive

pan-neuronal
No overt locomotive impairment; minimum

influence on neurodevelopment [43]

Is[Phsp-16.2::sod-1 (WT, A4V, G37R,
G93A) + Pmyo-3::sod-1(WT, A4V)::gfp

+ rol-6(su1006)]
n.a. Heat-shock-inducible

muscles
Oxidative stress-induced aggregate

formation [44]

iwIs8[Psnb-1::sod-1(WT, G85R)::yfp] n.a. Constitutive
pan-neuronal

Severe motor dysfunction is accompanied by
both soluble oligomers and insoluble

aggregate deposits [45]

Is[Psng-1::sod-1(WT, A4V, G37R,
G93C)::gfp] n.a. Constitutive

pan-neuronal

Compared to heterodimers, mutant
homodimers demonstrate increased aggregate

formation, but G85R heterodimers are more
toxic in functional assays [46]

Is[Punc-54::sod-1(WT, G85R, G93A,
G127insTGGGstop)::yfp] AM263, 265 Constitutive muscle

SOD-1 mutants demonstrate morphologically
heterogeneous aggregates with a variety of

biophysical properties and mild motility
defects [47]

ngIs36[Punc-25::sod-1(G93A)::gfp] n.a. GABAergic motor
neurons

G93A SOD-1 animals demonstrate progressive
motor dysfunction, aggregate formation, and

axonal guidance defects [41]

lin-15(n765ts); [Prgef-1::FUS (WT,
R514G, R521G, R522G, R524S, P525L)

+ Ppab-1:: mCherry; lin-15(+)]
PJH897 Constitutive

pan-neuronal

Forms of cytoplasmic FUS aggregates: R522G,
P525L, FUS513, and FUS501 demonstrate a

significantly shorter lifespan; P525L, FUS513,
and FUS501 demonstrate partially or

completely paralyzed, severely shrunken by 8
days of age [48]

unc-119(ed3); Is[Punc-47::TDP-43-(WT,
A315T) + unc-119(+)]

unc-119(ed3); Is[Punc-47::FUS-(WT,
S57∆) + unc-119(+)]

xqIs132, xqIs133, GABAergic motor
neurons

Having a normal lifespan, but displayed
adult-onset, age-dependent damage to

motility, progressive paralysis, neuronal
degeneration, and the accumulation of highly

insoluble TDP-43 and FUS proteins [49]

iwIs26[Psnb-1::TDP-43-YFP WT],
iwIs22[Psnb-1::TDP-C25-YFP],

iwEx20[Psnb-1::TDP-43-YFP Q331 K],
iwEx28[Psnb-1::TDP-43-YFP M337 V)],

iwIs27[Psnb-1::SOD1-YFP WT],
iwIs8[Psnb-1::SOD1-YFP G85R]

IW63, IW33, IW20, IW46,
IW31, IW8

Constitutive
pan-neuronal

Transgenic models have developed robust
locomotion defects and protein

aggregation [50]

n.a.: no available information.
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In the pursuit of understanding the pivotal genetic factors underlying various forms
of ALS, the development of in vivo models has proven indispensable. Two overarching
strategies have been employed for generating these models. The first method involves the
overexpression of human wild-type or mutated ALS-associated proteins in model organ-
isms, allowing researchers to scrutinize the functional and structural consequences of these
proteins in specific tissues. This approach reveals the underlying pathological mechanisms
of human ALS-associated molecules in animal models. The second approach revolves
around the creation of loss-of-function or gain-of-function ALS-related mutants through
the manipulation of homologous genes in model organisms. This assists in introducing the
intrinsic functions of the key molecules involved in ALS and comparing the similarities in
the pathogenic mechanisms of different species.

Several transgenic C. elegans strains expressing human SOD-1 variants have been
developed to investigate the functions of mutant SOD-1 [32]. Initially, an ALS C. elegans
model was established by employing the hsp16.2 or mec-3 promoter to express human
wild-type SOD-1 and various familial ALS (FALS)-related mutants (A4V, G37R, and G93A)
of SOD-1. However, these transgenic nematodes did not exhibit any discernible pheno-
types [44]. Another transgenic C. elegans model was then developed to explore differences
in the aggregation and toxicity tendencies of wild-type and mutant SOD-1. This was
achieved by introducing YFP-tagged wild-type or mutant (G85R and G93A) SOD-1 pro-
teins into the body wall muscle cells under the regulation of the unc-54 promoter, resulting
in the appearance of heterogeneous populations of aggregates associated with mild cellular
dysfunction [47]. These transgenic worms exhibited distinctive features, allowing for a
nuanced examination of the aggregation and toxicity patterns linked to both wild-type
and mutant SOD-1. Transgenic C. elegans with pan-neuronal expression of SOD-1(G85R)
under the control of the synaptobrevin (snb-1) gene promoter exhibited severe locomotor
defects and presynaptic dysfunction, correlated with the insoluble aggregation of SOD-1
in neurons [51]. When mutant SOD-1(G93A) was expressed in GABAergic motor neu-
rons, it led to age-dependent motor impairments, axon guidance failures, and significant
SOD-1 accumulation [41]. The C. elegans sod-1 gene shares functional similarities with its
human counterpart. In SOD-1 loss-of-function mutants, the levels of superoxide anions
were increased, resulting in a shorter lifespan and heightened susceptibility to certain
environmental stresses [52]. Conversely, over-activation of C. elegans sod-1, as a by-product
of the catalase reaction, elevated hydrogen peroxide levels and extended lifespan [39].

The C. elegans ortholog of TDP-43, denoted as TDP-1, shares molecular characteris-
tics with its mammalian counterpart. TDP-1 exhibits a high affinity for binding to the
canonical TDP-43 binding sequence [(UG)n] and is capable of substituting for human
TDP-43 in in vivo splicing assays, suggesting the conservation of its fundamental molecular
functions [53]. The initial C. elegans model for TDP-43-related ALS was established by in-
ducing pan-neuronal expression of human TDP-43 under the control of the snb-1 promoter.
This resulted in pronounced phenotypes, including coordinated slow movement and de-
fasciculation of the GABAergic motor neurons [53]. Recent advancements in transgenic
C. elegans models have expanded to encompass pan-neuronal expression of both wild-type
and mutant human TDP-43 variants, such as G290A, A315T, and M337V [54]. These in-
vestigations have revealed that wild-type TDP-43 induces moderate motor defects, while
mutant TDP-43 variants precipitate severe motor dysfunction [54]. Intriguingly, analogous
phenotypes to those observed upon wild-type TDP-43 overexpression were replicated
when the C-terminal fragment of human TDP-43 was pan-neuronally expressed [50].

Numerous transgenic models of C. elegans have been generated to investigate the
effects of mutated and overexpressed FUS genes [48,55,56]. C. elegans possesses an ortholog
of FUS, known as FUST-1, sharing approximately 50% identity at the protein level. Previ-
ous studies reported that deletions in fust-1 led to neuronal degeneration and paralysis,
while overexpression did not exhibit any discernible effects [57]. Studies in C. elegans
have unveiled structural and functional similarities between FUS and TDP-43, showing
comparable outcomes when mutated ALS-associated variants are expressed [48]. Specific
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ALS-related mutations, R524S and P525L, in the FUS gene have been employed to estab-
lish transgenic C. elegans models, demonstrating impaired neuromuscular function and
locomotion reminiscent of ALS characteristics [38]. Recent advancements in genetic manip-
ulation have allowed the development of a single-copy FUS mutant transgenic strain of
C. elegans, manifesting ALS-like phenotypes, including GABAergic neurodegeneration and
progressive paralysis [58]. Interestingly, neurons with FUS-positive inclusions exhibited
substantially reduced expression levels of dynactin 1, a retrograde motor protein, suggest-
ing an association between nucleocytoplasmic transport perturbation and the formation of
cytoplasmic FUS inclusions in sporadic ALS [59]. Furthermore, it has been proposed that
reducing dynactin-1 levels can disrupt autophagosome transport and induce motor neuron
degeneration. Building on this insight, Ikenaka and their team have developed a novel
C. elegans transgenic model and found that dnc-1 (C. elegans dynactin 1) knockdown disrupts
the transport of autophagosomes, inducing motor neuron degeneration [60]. Notably, this
behavior-based model has been employed to identify and assess potential neuroprotective
drugs against motor neuron diseases, opening up new avenues for drug discovery [61].

Alfa-1, an ortholog of the ALS/FTD-associated gene C9ORF72 in C. elegans, provides a
valuable model to explore its association with ALS [40]. The development of a transgenic
model inducing motor deficits in C. elegans began with a mutation in the alfa-1 ortholog.
This model unveiled a synergistic toxic effect when combined with a TDP-43 mutation [37].
C. elegans with loss-of-function mutations in the alfa-1 gene exhibit age-dependent motility
impairments, ultimately leading to paralysis and GABAergic stress-dependent neurode-
generation [31,37]. Notably, alfa-1 mutants manifest endocytosis defects, partially rescued
by the expression of the human wild-type C9ORF72 protein, highlighting a degree of func-
tional conservation [62]. However, it is essential to note that transgenic nematode models
predominantly investigate human C9ORF72 toxicity, as alfa-1 lacks hexanucleotide repeat
expansions [31]. Comparative studies using models with different repeat lengths have
disclosed that transgenes with 29 GGGGCC repeats induce early-onset paralysis and in-
creased lethality. These phenotypes were absent in wild-type animals and those expressing
the empty vector, and were less severe in animals with 9 GGGGCC repeats [63,64].

Mutations in the OPTN gene encoding optineurin have been identified in ALS patients.
Three distinct types of OPTN mutations, including a homozygous deletion of exon 5, a
homozygous Q398X nonsense mutation, and a heterozygous E478G missense mutation
within its ubiquitin-binding domain, are linked to ALS pathogenesis [30]. Notably, expres-
sion of nonsense (Q398X) and missense (E478G) OPTN mutations in patients promotes
inflammation and induces neuronal cell death by activating NF-kB [65]. Moreover, the
E478G mutation resulted in a puncta-like aggregated distribution, differing from the dis-
persed cytoplasmic distribution of wild-type OPTN or a primary open-angle glaucoma
(POAG) mutation [29]. Hence, OPTN plays a significant role in the pathogenesis of ALS,
and targeting NF-kB with inhibitors could potentially be a therapeutic approach for ALS
treatment. It is interesting that the absence of transgenic models related to OPTN in
C. elegans has been overlooked. This may be because no C. elegans homolog of OPTN has
been identified until now.

We summarize the ALS pathogenic mechanisms in Table 2.

Table 2. ALS pathogenic mechanisms.

Pathogenic Molecule Normal Functions Pathogenic Mechanism C. elegans Model Phonotype

C9orf72-SMCR8 complex
subunit (C9orf72) [66]

Guanine nucleotide
exchange factor (GEF)
activity and regulating

autophagy [25]

A hexanucleotide repeat
(GGGGCC) within the
first intron of C9orf72

undergoes expansion with
AUG independence,

producing five separate
dipeptide-containing

proteins [37]

alfa-1 [40]
Motor neuron

degeneration and a
motility defect [40]



Cells 2024, 13, 99 6 of 18

Table 2. Cont.

Pathogenic Molecule Normal Functions Pathogenic Mechanism C. elegans Model Phonotype

Superoxide dismutase
(SOD1) [66]

A cytosolic enzyme,
catalyzes the

detoxification of
superoxide [14]

Mutant alleles of SOD1
generate toxic increases in
function in motor neurons;

misfold and then
eventually aggregate in

motor neurons until
in vitro; ER stress [67]

a: Pan-neuronal
expression of human

G85R SOD1 [47];
b: Motor neuron

overexpression of a
human G93A SOD1 [41]

a: Locomotor deficiency,
growth of aggregates and
axonal abnormalities [47];

b: Age-dependent
paralysis results in the
consequence of axonal
guidance defects [41]

Transactive response
(TAR) DNA-binding

protein 43 (TDP-43) [68]

Participate in various
steps of RNA metabolism,
including mRNA splicing,

RNA transport,
translation, and

microRNA biogenesis [69]

a: Deficiency of normal
function in the nucleus;

b: A toxic GOF in the form
of cytoplasmic
aggregates [70]

a: GABAergic neuronal
expression of human

TDP-43 [49];
b: C. elegans homologous

gene, TDP-1 [53]

a: Within the GABAergic
neurons, there is slowed

and uncoordinated
movement, as well as

degeneration of the motor
neurons [49];

b: Deficiency of tdp-1
results in lower fertility,

slower growth, and a
locomotor deficit [53]

Progranulin (PGRN)

Participate in a diversity
of physiologic and

pathological processes that
consist of cell proliferation,

wound healing, and
modulation of
inflammation

Decreasing PGRN levels
result in the

hexanucleotide repeat
expansion in the

C9orf72 gene

Stress and aging produce
PGRN impairing the

expression and activity of
lysosomal proteases [71]

PGRN deficiency resulted
in abnormal expression of

multiple lysosomal,
immune-related, and lipid
metabolic genes lysosomal

dysfunction, defects in
autophagy, and

neuroinflammation [72]

RNA-binding protein
FUS/TLS (FUS)

DNA repair and several
aspects of RNA

metabolism involving
transcription, alternative

splicing, mRNA transport,
mRNA stability, and

microRNA biogenesis [73]

Disturb the nuclear
localization signal,

resulting in the
mislocalization of FUS to

the cytoplasm with
protein aggregates [74]

a: Expressing a FUS
variant prone to aggregate
in GABAergic neurons by
the unc-47 promoter [49];

b: Expressing
panneuronlly in FUS

mutants under control of
the rgef-1 promoter [48];
c: C. elegans homologous

gene, fust-1 [48,75]

a: Neurodegeneration,
synaptic dysfunction,

paralysis and aggregation;
b: Motor dysfunction;
c: Achieve maximum

microRNA
(miRNA)-mediated gene

silencing [76]

NIMA-related
serine/threonine kinase

protein family (NEK),
NEK1 [68]

Controlling the cell cycle,
DNA damage repair,

ciliogenesis splicing, RNA
transport, translation,

and microRNA
biogenesis [69,77]

Increasing DNA damage
and a compromised DNA

damage response [78]

Acting on DDR signaling
downstream of
ATM/ATR [77]

DNA damage response
and repair as well as

mitochondrial
function [78]

4. Pathogenic Mechanisms of ALS Implicated in C. elegans

(1) Innate immunity

Data from clinical studies show that multiple genetic mutations linked to ALS enhance
neuroinflammation, which provides compelling evidence for immune dysregulation in
the pathogenesis of ALS [30,79,80]. Although C. elegans lacks a classical inflammatory
response or inflammatory cytokines analogous to mammals, it possesses an innate immune
system. Notably, mutated ALS-associated proteins have been found to activate an innate
immune response in C. elegans [81–83]. In C. elegans strains expressing mutant TDP-43 or
FUS in their motor neurons, age-dependent motility defects culminate in paralysis and
motor neuron degeneration at a rate significantly higher than that observed in wild-type
TDP-43 or FUS control strains. By examining the expression of immune response proteins,
including NLP-29 (an antimicrobial, neuropeptide-like protein expressed in hypodermal
and intestinal tissue), it is evident that the expression of mutant TDP-43A315T or FUSS57∆

protein triggers the upregulation of immune response genes, suggesting that innate immune
response may contribute to motor neuron neurodegeneration. Furthermore, mutated ALS-
associated proteins trigger an TIR-1/Sarm1 immune pathway innate immune response in
C. elegans motor neurons [84,85]. Loss-of-function mutations in tir-1, associated downstream
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kinases, and the transcription factor atf-7 collectively serve to suppress motor neuron
degeneration, further supporting the notion that the innate immune system is involved in
ALS models.

Despite knowing the importance of the immune response in ALS, there are many
details that have not yet been elucidated. For instance, mutated ALS-associated proteins in
neurons may elicit an immune response as part of a host defense reaction against pathogens
or aid tissue repair. The molecules necessary to induce the expression of NLP-29 also
need to be further explored. Chikka et al. reported that activation of the mitochondrial
p38MAPK/ATF-7 immune pathway in the intestine is neuroprotective and sufficient to
prevent rotenone-induced neurodegeneration [86]. Due to mitochondrial dysfunction
being a prevalent feature of many neurodegenerative diseases, including ALS [87], the
mitochondria-regulated immune pathway may also be involved in C. elegans motor neu-
ron degeneration. C. elegans’ innate immune response coordinates its activity with the
insulin/IGF-1 pathway [88], suggesting that insulin-related immune pathways are also
worth investigating. Nevertheless, these studies reveal that cell-based strategies that en-
hance anti-inflammatory reactivity and reverse immune dysregulation offer the potential
to slow disease progression and improve the quality of life of patients with ALS.

(2) Autophagy

It is widely acknowledged that the dysregulation of autophagy in motor neurons is a
pivotal event in ALS [89–91]. Particularly, intensified immunoreactivity in the cytoplasm of
motor neurons for microtubule-associated protein 1 light chain 3 (LC3), which is a marker of
autophagosome, is frequently observed in the spinal motor neurons of ALS patients [92,93].
Consistent with this observation, C. elegans with dynactin 1 knockdown (dnc-1(RNAi)
worms) in ventral motor neurons under the control of the Pacr-2 promoter exhibited notable
motor impairments, coupled with axonal and neuronal degeneration. Notably, the au-
tophagosomes were easily trapped where the axon was tight, curved, or at spheroids. The
phenomenon was followed by the accumulation of autophagosomes distal to the trapped
sites [60]. Given that autophagosomes serve as cargo for dynein/dynactin complexes and
play a pivotal role in the turnover of various organelles and proteins, the accumulation of
autophagosomes suggests a potential contribution of dysfunctional autophagy to motor
neuron degeneration in ALS. Indeed, the introduction of pharmacological disruptions to
autophagy, using 3-MA, resulted in locomotory defects and axonal degeneration mirroring
those observed in dnc-1(RNAi) worms. This implies that a compromised autophagy system
alone is adequate to induce motor neuronal degeneration [60].

The contribution of defective autophagy to neuronal dysfunction in ALS is well-
documented by autophagy-related genes [30,94–98]. The selectivity of autophagy is me-
diated by autophagy receptors that recognize and deliver cargoes to autophagosomes for
degradation. SQSTM1/p62 is an autophagy receptor that is commonly found in protein
aggregates in ALS brains. Related reports showed that SQSTM1 promotes the clearance of
stress granules, a hallmark of ALS, via selective autophagy [99,100]. The main autophagy
process is proteotoxic stress, which activates serine/threonine kinase TBK1, promotes
phosphorylation of autophagy receptor SQSTM1, and activates selective autophagy. In
contrast, ALS-linked mutations of TBK1 or SQSTM1 reduce SQSTM1 phosphorylation and
compromise ubiquitinated cargo binding and clearance (Figure 1). The accumulation of
SQSTM1 implicates a disturbance of the selective autophagy pathway [101]. Corresponding
with the accumulation of autophagosomes, SQSTM1/p62 has been observed to accumulate
in the motor neurons of ALS patients [102]. This observation aligns with findings demon-
strating elevated levels of LC3-positive autophagy vesicles in the motor neurons of ALS
patients with FUS mutations [103]. Notably, in an ALS C. elegans model involving overex-
pressing human mutant FUS proteins, a gain of toxic function mechanism disrupts basal
neuronal autophagy. There was an increased accumulation of SQST-1 that disrupts neuro-
muscular function in stress conditions, the C. elegans ortholog for SQSTM1/p62, in motor
neurons [38], reinforcing the link between autophagy dysfunction and ALS pathology.
Conversely, the loss of sqst-1 suppresses both neuromuscular and stress-induced locomo-
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tion defects in FUS-associated ALS worms. It is worth mentioning that this suppression
likely does not accompany a correction of neuronal autophagy defects [38], indicating that
SQST-1 operates through an autophagy-independent pathway or alternative mechanisms
to ameliorate ALS-related locomotion impairments [104,105]. The mutation of a single
autophagy receptor can induce the decline of autophagy and lead to abnormal protein
accumulation. But when autophagy receptors are passively increased, reducing autophagy
levels may have a positive effect. Thus, the treatment of ALS requires multi-factorial and
systematic consideration.
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mulate in the motor neurons of ALS patients [102]. This observation aligns with findings 
demonstrating elevated levels of LC3-positive autophagy vesicles in the motor neurons of 
ALS patients with FUS mutations [103]. Notably, in an ALS C. elegans model involving 
overexpressing human mutant FUS proteins, a gain of toxic function mechanism disrupts 
basal neuronal autophagy. There was an increased accumulation of SQST-1 that disrupts 
neuromuscular function in stress conditions, the C. elegans ortholog for SQSTM1/p62, in 
motor neurons [38], reinforcing the link between autophagy dysfunction and ALS pathol-
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comotion defects in FUS-associated ALS worms. It is worth mentioning that this suppres-
sion likely does not accompany a correction of neuronal autophagy defects [38], indicating 
that SQST-1 operates through an autophagy-independent pathway or alternative mecha-
nisms to ameliorate ALS-related locomotion impairments [104,105]. The mutation of a sin-
gle autophagy receptor can induce the decline of autophagy and lead to abnormal protein 
accumulation. But when autophagy receptors are passively increased, reducing autoph-
agy levels may have a positive effect. Thus, the treatment of ALS requires multi-factorial 
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Figure 1. Selective autophagy under physiological and ALS pathological conditions. Protein aggre-
gates, stress granules, and dysfunctional mitochondria serve as substrates for selective autophagy 
degradation. In physiological conditions (upper panel), these substrates are bound by selective au-
tophagy receptors, such as SQSTM-1/p62 (represented in blue circle), via ubiquitin-binding domains 
(ubiquitin, in pentagon). The selective autophagy receptors associate with LC3-II proteins in the 

Figure 1. Selective autophagy under physiological and ALS pathological conditions. Protein aggre-
gates, stress granules, and dysfunctional mitochondria serve as substrates for selective autophagy
degradation. In physiological conditions (upper panel), these substrates are bound by selective au-
tophagy receptors, such as SQSTM-1/p62 (represented in blue circle), via ubiquitin-binding domains
(ubiquitin, in pentagon). The selective autophagy receptors associate with LC3-II proteins in the
autophagosome (represented in yellow) or other members of the autophagy machinery. Posttransla-
tional modifications in the receptors can enhance binding with ubiquitinated substrates or the LC3-II
protein. TBK1 is one of the main kinases acting in this process. The cargo-receptor- LC3-II complexes
are then sequestered by de novo double-membrane vesicles called the autophagosome, which fuses
with the lysosome for the final degradation. Under ALS conditions (lower panel), failure in selective
autophagy can occur through mutations in the genes encoding the receptors themselves or in the
kinase, reducing the activity of the pathway and promoting the accumulation of toxic substrates for
motor neurons. Figure was generated by PowerPoint 2013.

Furthermore, increased expression levels of autophagic genes by daf-2(e1370) have been
shown to protect C. elegans motor neurons against the toxicity of human SOD-1(G93A) [41].
Metformin, the globally prescribed biguanide drug worldwide for the treatment of type
II diabetes, alleviates motor dysfunction in human SOD-1(G93A)-associated ALS worms,
partly through enhancement of autophagy [106]. Although not explicitly validated in
C. elegans models, investigations in other model systems have demonstrated cross-regulation
between TDP-43 pathology and autophagy [107,108]. These findings imply the existence
of supplementary autophagy mechanisms in ALS [109]. In conclusion, enhancing au-
tophagy emerges as a novel and significant therapeutic target for addressing motor neuron
degeneration in ALS.
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(3) Protein homeostasis

Protein homeostasis (proteostasis) is carefully maintained through a finely regulated
and interconnected network of biological pathways, crucial for preventing the accumulation
and aggregation of damaged or misfolded proteins [110]. Conversely, the breakdown of
proteostasis has been implicated in the etiology of various neurodegenerative diseases,
including ALS [111]. Zhang et al. conducted genetic analysis and expression profiling of
loss-of-function tdp-1 mutants, elucidating the role of C. elegans TDP-1 (nematode TDP-43
ortholog) in regulating protein homeostasis. In diverse proteotoxicity models, the loss of
TDP-1 alleviated protein aggregation and neuronal dysfunction. Their findings suggest that
TDP-1 loss may modify global RNA levels, consequently impacting protein homeostasis and
prompting cellular adaptation to stress on protein quality control systems [70]. Transgenic
C. elegans models that express human TDP-43 variants displayed severe locomotor defects
associated with the aggregation of TDP-43 in neurons [50]. Notably, the neurotoxicity and
protein aggregation of TDP-43 were influenced by environmental temperature, and heat
shock transcriptional factor 1 (HSF-1) played a role through protein quality control [112],
indicating that a deficiency in protein quality control serves as a risk factor for TDP-43-
associated ALS [50].

Aging-related neurodegeneration associated with TDP-43 is further connected to
protein misfolding. The well-explored regulatory mechanism governing longevity and
proteostasis involves the modulation of the insulin/IGF-1 signaling pathway through
phosphorylation [113,114]. In the nematode C. elegans, the downstream receptor of insulin
molecule, daf-2, has demonstrated the capability to counteract the shortened lifespan
resulting from FUS overexpression [50,115]. These findings illuminate the intricate network
of cellular mechanisms, notably the insulin/IGF-1 pathway, designed to preserve protein
homeostasis in the presence of environmentally induced damage or genetically encoded
misfolded proteins.

(4) Energy metabolism

While the intricate mechanisms underlying the association between mutant TDP-43,
FUS, and Amyotrophic Lateral Sclerosis (ALS) are intricate and multifaceted, an accumu-
lating body of evidence supports the presence of dysregulated energy metabolism in both
ALS patients and relevant models [116]. The AMP-activated protein kinase (AMPK) serves
as a pivotal cellular energy sensor. Upon activation, AMPK restores energy homeosta-
sis by facilitating catabolic pathways, thereby promoting ATP generation [117]. Notably,
heightened AMPK activation has been documented in the motor neurons of ALS pa-
tients, displaying a notable correlation with the extent of cytoplasmic mislocalization of
TDP-43 [118]. These observations establish a clear link between energy depletion in human
motor neurons and the pathological presence of TDP-43 in ALS. In line with this corre-
lation, reducing AMPK activity has been demonstrated to ameliorate disease outcomes
both in vitro and in C. elegans models expressing mutant SOD1 or TDP-43 [45]. Although
a definitive mechanistic link between AMPK-regulated energy metabolism and TDP-43
mislocalization remains elusive, a proposed hypothesis suggests that the aggregation of
TDP-43 stems from AMPK-mediated inhibition of nucleocytoplasmic transport.

Mitochondrial dysfunction is a prevalent characteristic of ALS [119,120]. Mutant forms
of TDP-43, SOD-1, and FUS proteins have been implicated in disrupting mitochondrial
structure and function [121–123]. This dysfunction induces an energy imbalance within
neurons, affecting energy production and utilization. Specifically, FUS mutations have been
linked to disturbances in mitochondrial function, potentially impeding the neurons’ capac-
ity to generate ATP [121]. Consequently, compromised energy metabolism may play a role
in the vulnerability and degeneration of motor neurons in ALS. Enhancing mitochondrial
biogenesis emerges as an appealing therapeutic strategy for ALS. It is important to note that,
despite the absence of current evidence from the C. elegans model, gaining further insights
into these altered physiological processes in neurons—particularly by expressing mutant
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TDP-43 or FUS in C. elegans—becomes crucial for a more comprehensive understanding of
ALS pathogenesis, specifically pertaining to energy metabolism.

In summary, mitochondria play a key role in ATP supply to cells via oxidative phos-
phorylation. Decreased ATP levels emerge as a common feature in ALS. It is conceivable
that, in line with the high energy demands of neurons, gradual depletion of ATP, due to
reduced respiration, may trigger neuronal degeneration [87,116]. In addition, the mitochon-
drial REDOX reaction is associated with the production of SOD. A lower concentration of
ROS is essential for normal cellular signaling, whereas a higher concentration and long-
term exposure of ROS cause damage to cellular macromolecules such as DNA, lipids, and
proteins, ultimately resulting in necrosis and apoptotic cell death [124]. Altogether, these
data suggest that bioenergetic abnormalities are likely to be pathophysiologically relevant
to ALS disease.

5. Advances in Therapeutic Application of C. elegans ALS Models

C. elegans has emerged as a valuable platform for investigating potential therapeutic
strategies in ALS. Researchers have explored the use of small molecules to modulate disease
pathways [125–135], RNA-based therapies targeting specific genes [136–140], and genetic
modifiers [81,141] to gain deeper insights into disease mechanisms. In this section, we
provide a comprehensive summary of the therapeutic advances in C. elegans ALS models,
covering various strategies, functions, and mechanisms of treatment.

As previously discussed, both proteostasis and autophagy play pivotal roles in pro-
tein aggregation in ALS, offering a promising avenue for therapeutic intervention. The
potential use of medication to uphold proteostasis and boost autophagy holds considerable
promise for mitigating the progression of ALS. Trehalose, a disaccharide of glucose found
in various organisms, serves as an intriguing example. In C. elegans, trehalose treatment
resulted in a remarkable extension of the mean lifespan by over 30%, along with enhanced
thermotolerance and reduced polyglutamine aggregation [142]. These findings suggest
that trehalose exerts its effects by mitigating the aging process and countering internal or
external stresses that disrupt proteostasis.

Moreover, trehalose has been demonstrated to protect neurons by inducing autophagy,
leading to the clearance of protein aggregates—a concept known as the autophagy induc-
tion hypothesis. Several animal studies, including those employing the C. elegans model,
have shown the activation of autophagy and a reduction in protein aggregates follow-
ing trehalose administration in neurodegenerative disease models [127]. These collective
findings reveal the potential therapeutic benefits of targeting proteostasis and autophagy,
with trehalose serving as a compelling candidate for further exploration in the context of
ALS treatment.

These studies not only enhance our comprehension of ALS but also offer insights
into potential treatments that may eventually progress to clinical trials for human patients.
However, it is imperative to acknowledge that findings in C. elegans require validation in
more complex models and, ultimately, in clinical trials to ensure their relevance to human
ALS. Due to space constraints, we present a summary of the advances in therapeutic
approaches in C. elegans ALS models in Table 3.
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Table 3. Advances in Therapeutic Strategies.

Therapeutic Strategies References Functions Mechanisms of Treatment

Small molecules

Riluzole [125,126] Decreasing glutamate release for
neuroprotective

Decreasing glutamate release
for neuroprotective

Trehalose [127]
Autophagy-enhancing properties
contribute to clear protein aggregates
in ALS

Improving motor function and increasing
the lifespan of C. elegans models of ALS

Curcumin [128] Decreasing oxidative stress and slowing
disease progression Prospective neuroprotective effects

Methylene blue [129,130] An aggregation inhibitor of the
phenothiazine class Protects against oxidative stress

Bafilomycin [131]

Blocking autophagosome-lysosome
fusion and inhibiting acidification and
protein degradation in cell lysosomes to
produce the effect of inducing apoptosis

Decreasing neurodegeneration via inhibiting
autophagic vesicle maturation

Dantrolene [132,133]
A muscle relaxant for noncompetitively
inhibiting human erythrocyte
glutathione reductase

Decreasing neurodegeneration by inhibiting
intracellular calcium release in the ER

Probucol [134] Regulating blood lipids and
anti-lipid peroxidation

Attenuating neurodegeneration with its
antioxidant properties

Resveratrol [135,143] Antioxidant and anti-inflammatory
properties

Mitigating ALS-like symptoms via
activating cellular protective mechanisms

RNA-based therapies
RNAi (RNA Interference)
[136–139]

Gene therapy for ALS and FTD is
possible because of the reduction in
toxicity induced by the
repeat-containing C9orf72 transcripts

Aiming and knocking down genes
associated with ALS-related proteins
by RNAi

Antisense Oligonucleotides
(ASOs) [139,140]

Reducing, restoring, or modifying RNA
and protein expression

Modulating the expression of
ALS-associated genes and potentially
reducing toxic protein production

6. Limitations of C. elegans as ALS Models and Future Directions

ALS is a complex disease influenced by various factors, with an increasing body
of literature highlighting the impact of comorbid processes on its pathological progres-
sion [5,144,145]. Effectively developing disease-modifying therapies faces a significant
challenge due to our limited understanding of the multifaceted pathways contributing to
the disease’s development. While mammalian disease models offer valuable in vivo oppor-
tunities and share considerable similarities with the human brain, they are accompanied
by inherent complexities. On the other hand, the relatively straightforward architecture
of C. elegans, a microscopic nematode, introduces its own set of constraints. For instance,
C. elegans presents limitations for studying systemic pathogenesis of neurodegenerative
diseases, particularly in tissues and organ systems crucial for diseases like ALS. Notably,
the absence or simplification of structures, such as the central nervous system (CNS) and
brain, hinders comprehensive investigations. Moreover, the genetic makeup of C. elegans
lacks certain features like adaptive immunity and DNA methylation, potentially limiting
its representation of these aspects. When employed for biochemical extraction, the use of
whole worms can introduce uncertainty regarding tissue-specific signaling. Additionally,
the cellular stress responses in nematodes differ from those in mammalian cells. Conse-
quently, C. elegans often serves as a complementary model to provide insights into the
pathogenesis and therapeutic approaches for ALS. However, it is crucial to emphasize that
findings derived from C. elegans research require validation in mammalian models and
clinical settings to establish their clinical relevance.

One potential strategy for developing C. elegans models of ALS entails the functional
annotation of human genome variants to discern factors influencing susceptibility and
resilience. The burgeoning databases housing human gene sequence information have
resulted in an overwhelming volume of variants of uncertain significance. Channeling
functional gene analysis in C. elegans towards the functional attributes of mutation data
can significantly augment our understanding of pathogenic mechanisms and treatment
prospects [146].
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Nematodes possess substantial potential for accelerating the development of neuro-
protective drugs due to their straightforward genetic attributes and suitability for high-
throughput compound screening [61]. Both target-driven and phenotypic screening ap-
proaches can be readily executed in these organisms, making C. elegans an exemplary screen-
ing target. In contrast to rodent models, worm models provide a swift and cost-effective
means to assess numerous drug combinations. Furthermore, the advent of technologies
such as CRISPR facilitates the rapid generation of new and more precise nematode models
of ALS [147,148]. This is accomplished by precisely delivering a single copy of the identified
mutated gene from the patient to the designated location in the worm’s genome. Looking
forward, the integration of a more precise genetic C. elegans model with a high-throughput
automated drug screening platform presents a potentially highly effective strategy for drug
discovery in ALS treatment.

In summary, C. elegans models have significantly facilitated the transition from ex-
perimental research to potential clinical applications. The numerous advantages offered
by C. elegans present an attractive and ethically sound alternative to more expensive and
time-consuming in vitro or mammalian models. The growing track record of translational
outcomes resulting from C. elegans research positions this microscopic organism to shed
light on the remaining uncertainties surrounding ALS. ALS, a pervasive neurodegenerative
ailment on a global scale, imposes a substantial burden on tens of millions of individuals
daily. Injecting urgency and innovative strategies into model systems research is imperative
to expedite discoveries and advancements.
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