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Abstract: Members of the EGFR family of tyrosine kinase receptors are major regulators of cellular
proliferation, differentiation, and survival. In humans, abnormal activation of EGFR is associated
with the development and progression of many cancer types, which makes it an attractive target for
molecular-guided therapy. Two classes of EGFR-targeted cancer therapeutics include monoclonal
antibodies (mAbs), which bind to the extracellular domain of EGFR, and tyrosine kinase inhibitors
(TKIs), which mostly target the intracellular part of EGFR and inhibit its activity in molecular signaling.
While EGFR-specific mAbs and three generations of TKIs have demonstrated clinical efficacy in
various settings, molecular evolution of tumors leads to apparent and sometimes inevitable resistance
to current therapeutics, which highlights the need for deeper research in this field. Here, we tried
to provide a comprehensive and systematic overview of the rationale, molecular mechanisms, and
clinical significance of the current EGFR-targeting drugs, highlighting potential candidate molecules
in development. We summarized the underlying mechanisms of resistance and available personalized
predictive approaches that may lead to improved efficacy of EGFR-targeted therapies. We also discuss
recent developments and the use of specific therapeutic strategies, such as multi-targeting agents and
combination therapies, for overcoming cancer resistance to EGFR-specific drugs.

Keywords: epidermal growth factor receptor (EGFR); HER-targeted drugs; EGFR-targeting drugs;
secondary resistance; EGFR mutations

1. EGF Receptor Protein Family

In humans, the EGF receptor family (ERBB/HER) consists of four structurally related
receptor tyrosine kinases (RTKs) that regulate proliferative cell signaling and play pivotal
roles in both normal physiology and proliferative diseases like cancer [1]. The four family
members are EGFR/ErbB1/HER1, ErbB2/Neu/HER2, ErbB3/HER3, and ErbB4/HER4
proteins [2], which are encoded, respectively, by genes EGFR, ERBB2, ERBB3, and ERBB4 [3].
These genes are located on four different chromosomes, but their products share common
structural organization, including an extracellular domain, lipophilic transmembrane
region, intracellular domain with tyrosine kinase activity, and a carboxy-terminal region [4].

The ERBB/HER family members are expressed in epithelial, mesenchymal, and neu-
ronal cells and in their cellular progenitors [5]. The family members play central roles
in cell proliferation, survival, differentiation, adhesion, and migration. These molecules
interconnect the inner and outer compartments of the cytoplasmic membrane and trigger
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the cellular responses to various external stimuli by transmitting the intracellular reg-
ulatory stimuli [6]. The activated ERBB/HER receptors form regulatory complexes in
which components can enter the cytoplasm and promote downstream molecular pathways
(Figure 1), including well-known oncogenic pathways of RAS-RAF-MEK-ERK and AKT-
PI3K-mTOR signaling axes [7]. Furthermore, apart from dimerization, EGFR molecules can
also form oligomers on the cell surface, both under the action of natural ligands or in their
absence [8,9]. The phenomenon of EGFR oligomerization is thought to be important for
intracellular signaling because it results in a tight organization of kinase-active molecules
in a manner that is optimal for autophosphorylation in trans between adjacent dimers [10].
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Figure 1. Intracellular signaling involving EGFR. The major regulatory pathways downstream of
EGFR and other HER receptors are shown. Binding of specific ligands (e.g., EGF) leads to homo- or
heterodimerization of receptors, thus resulting in conformational changes in the intracellular kinase
domain, which results in phosphorylation and activation of the receptor. The signaling axes RAS-
RAF-MEK-ERK and PI3K-AKT-mTOR, in turn, activate various downstream signaling pathways,
thus leading to enhanced cell proliferation and survival. Created with BioRender.com (accessed on
1 November 2023).

Several growth factors are known to be able to bind ERBB/HER receptors and activate
them. These are the members of the epidermal growth factor (EGF) family, which are
generally classified into three groups. Representatives of the first one bind only to EGFR,
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which includes EGF [11], transforming growth factor alpha (TGF-α) [12], epigen (EPG) [13],
and amphiregulin (AR) [14]. The second group has dual specificity of receptor binding and
includes betacellulin (BTC) [15], heparin-binding epidermal growth factor (HB-EGF) [16],
and epiregulin (EPR) [17]. The third group consists of neuregulins (NRG) and forms two
subgroups depending on their ability to bind both HER3 and HER4 (NRG1 and NRG2 [18])
or only HER4 (NRG3 and NRG4 [19,20]) (Figure 2a).
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The inactivated forms of EGFR, HER3, and HER4 receptors exist in a pre-dimerized
state. In turn, binding of the specific ligand causes rearrangement of the respective subunit
of the receptor by turning the transmembrane domains. Activation leads to internalization
of the receptor and trafficking to the early endosomal compartment of the cell. Next,
endocytosis sorting occurs, whereby the receptor is either transported to the lysosome
for further degradation or recycled to occupy a place in the cell membrane [21]. The
family ligands affect receptor internalization in a different manner: upon EGF binding, the
majority, but not all EGFRs, are continuously ubiquitinated and transported to lysosomes.
HB-EGF and BTC also behave the same way. On the other hand, when subjected to the low
pH of endosomes, TGF-α, EPR, and AR quickly separate from the receptor, which leads
to de-ubiquitination of the receptor and its subsequent recycling to the plasma membrane
(Figure 2b) [22].

In contrast with other HER family members, none of the ligands bind to HER2 [23]; it
always exists in the dimerized state and acts as a preferred partner for heterodimerization
with the other three ERBB/HER family members [24]. Also, HER2-containing heterodimers
are characterized by higher affinity and broader ligand specificity than other heterodimeric
ERBB/HER receptor complexes due to the slower dissociation rates of growth factors [25].
There was a controversy regarding HER3 pertaining to its kinase activity, and initially, it
was posited that HER3 lacked kinase activity due to the absence of requisite residues [26].
Later reports, however, have suggested that HER3 does possess tyrosine kinase activity in
some degree [27,28].

Ligand binding induces the formation of homo- and heterodimers by the ERBB/HER re-
ceptors and activates their internal kinase domain, which leads to the cross-phosphorylation
of the tyrosine residues in the cytoplasmic tail. In turn, these phosphorylated tyrosine
residues serve as the binding sites for a number of downstream regulatory proteins that
activate intracellular signaling, which, in the case of EGFR activation, leads to proliferation
and evasion of apoptosis [1,29].

2. EGFR Role in Cancer

Mutations and cases of overexpression of EGFR are especially frequently found in
carcinomas and glioblastomas, tumors of epithelial and glial origin, respectively [30,31].
Worldwide, carcinomas are the most common type of cancer [32]. Overexpression of
EGFR has been reported and implicated in the pathogenesis of many human malignancies,
including head and neck [33], lung [34], breast [35], pancreatic [36], and colon cancer [37].
The EGFR-positive status of the tumor often correlates with poor prognosis and outcome,
as it is beneficial for cancer cell proliferation [7,38]. EGFR overexpression was also shown
to be associated with melanoma progression and promoted invasiveness and metastasis in
this tumor type [39].

According to various clinical investigations, in non-small-cell lung cancer (NSCLC),
EGFR-targeted therapy with gefitinib or erlotinib benefit was limited to NSCLC tumors
bearing activating mutations of EGFR [40]. Still, gefitinib or erlotinib therapy can be
efficient even in NSCLC patients with wild-type EGFR, where the predictive biomarkers
remain unknown [41], whereas the objective response rate here does not exceed 21% [42].

Mutations in the tyrosine kinase domain of EGFR were found in the majority of
tumors that exhibited a positive response to treatment with EGFR-specific TKIs (Figure 3a
in green) [43]. In some reports, the frequency of EGFR-activating mutations has strong
ethnical specificity and varies by region, being as high as 46% in Asia versus only 8%
in the Americas [44]. The two most common mutations of EGFR in NSCLC represent
about 85–90% of all EGFR mutations [45]. The first one is a deletion of EGFR exon 19
(del747–750), which eliminates the leucine-arginine-glutamate-alanine motif in the tyrosine
kinase domain of EGFR (LREA deletion), and the second one (L858R) is a thymine-to-guanine
transversion, which results in the replacement of leucine with arginine in exon 21 codon
858 [46,47]. The third most frequent type of EGFR mutations in NSCLC is exon 20 insertions
(ex20ins), which constitute 9% [48]–12% [49] of all EGFR mutations. In contrast to the other
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above mentioned mutations, Ex20ins is associated with poor response to treatment with
TKIs [50]. It results in in-frame insertions, usually concentrated within or following the
C-helix that dictates the activation status of EGFR [51]. In glioblastoma, the most frequently
(~30%) occurring EGFR mutation is EGFR∆III (EGFR variant III), which results from the
in-frame deletion of 801 base pairs spanning exons 2–7 of the coding sequence, resulting in
ligand-independent activation of EGFR tyrosine kinase activity [52–54].
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Figure 3. (a) Structure of EGFR gene. EGFR exons 18–21 encode the tyrosine kinase domain and may
contain mutations, playing a crucial role in the development and progression of different cancers with
a strong proven relationship to resistance (red) and sensitivity (green) to specific TKIs. (b) Domain
view of EGFR protein. Left, a schematic diagram of ligand-bound dimerized EGFR. Right, sites of
inhibition of EGFR activity by different targeted drugs (mAb: monoclonal antibodies; TKIs: tyrosine
kinase inhibitors). Created with BioRender.com (accessed on 18 October 2023).

The LREA deletion of exon 19 of EGFR is shown to increase EGFR autophosphorylation
and to activate downstream pathways AKT and STAT, thus promoting survival and cell
growth [55]. With this mutation, the EGFR dimer exhibits increased stability as it tightens
the molecular contacts of arginine ARG744 and asparagines ASP974 and ASP976 from the

BioRender.com


Cells 2024, 13, 47 6 of 34

reciprocal monomers [56]. According to Gu and coauthors [57], this deletion is the most
frequent (63.4%) in patients primarily diagnosed with NSCLC.

The 21st exon point mutation L858R is also a common activation mutation of EGFR,
accounting for nearly 40% of all EGFR mutations. The L858R mutation locks the kinase in
a constitutively active state by preventing the activation loop segment (residue 858 and
flanking residues) from adopting the inactive, helical conformation, which leads to about
50-fold greater activity of the mutant EGFR [58].

EGFRvIII (EGFR with 2–7 exon deletion) lacks a ligand-binding domain and is con-
stitutively active. It is the most common EGFR mutation occurring in glioblastoma [52].
EGFRvIII pathologic isoform does not contain amino acids 6-273 of wild-type EGFR, and
it results in the formation of a new glycine residue at the junction site. This alteration
imitates the effects of ligand binding and triggers changes in the receptor conformation by
ultimately activating downstream signaling pathways [59].

In addition, the patients may have uncommon EGFR mutations. The use of next-
generation sequencing (NGS) has become a novel diagnostic method for detection, which
led to the identification of increasingly rare or atypical EGFR mutations. For example, EGFR
fusion mutation EGFR–SEPT14 was found in a patient with colorectal adenocarcinoma.
The exon 24 of EGFR was fused to the exon 10 on SEPT14 while retaining the EGFR tyrosine
kinase domain. This tumor appeared to be sensitive to erlotinib treatment, and the patient
developed a partial response following therapy [60]. Also, the same fusion oncogene
was identified in a lung adenocarcinoma case [61]. Additional four fusions have been
identified in lung cancer patients: EGFR–TNS3, EGFR–PURB, EGFR–RAD51, KIF5B-EGFR,
and EGFR–ZCCHC6. Although it is problematic to catch clear-cut connections with therapy
response here due to a lack of statistically sufficient patient groups, these rare mutations
most probably somewhat influenced the efficacy of targeted therapy [62,63].

In addition, activating mutations of downstream genes of regulatory kinases involved
in the Ras/MAPK signaling pathway, such as KRAS, NRAS, and BRAF, are exceptionally
frequent and appear in more than 90% of pancreatic, ~32% of lung, and ~52% of colon
cancers [64]. Ras family members activate the MAPK signaling pathway, which is originally
initiated by a ligand binding to a receptor tyrosine kinase (RTK), such as the EGFR [65].

Ras proteins are downstream targets of EGFR and are normally activated upon receptor
stimulation, but with mutations, they may become permanently active. Mutations of Ras
family genes are mainly found in codons 12 and 13. Consequently, a patient with both
EGFR sensitizing mutations and Ras mutations in the tumor may not respond to targeted
therapy due to proliferative signal transduction by an active Ras oncoprotein regardless of
upstream inhibition of EGFR by a drug. Thus, oncogenic mutations in Ras may serve as the
markers of resistant phenotype towards EGFR-targeted treatments [66].

3. EGFR-Targeted Therapies

Since EGFR is frequently overexpressed and/or mutated in multiple cancer types, it
has prompted the development of a number of specific targeted therapeutics. Currently,
there are two classes of EGFR-specific cancer drugs: monoclonal antibodies (mAbs), which
bind to the extracellular domain of the transmembrane receptor and block its dimerization,
and small-molecule tyrosine kinase inhibitors (TKIs), which bind to the adenosine triphos-
phate (ATP) binding site [67] (Figure 3b, Table 1). In turn, TKIs can be classified according
to the mechanism of binding with the receptor tyrosine kinase domain: type I (binding with
ATP site in mainly active conformation), type II (binding with ATP site plus back pocket,
DFG(Asp855-Gly857)-out, in inactive conformation), type I½ (binding to a DFG-in, in
inactive conformation), type III inhibitors binding to allosteric sites, and type IV inhibitors
which generally form covalent adducts with their target protein [68,69]. EGFR-targeted
drugs are currently widespread, globally approved, and are used worldwide for hundreds
of thousands of patients per year.
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Table 1. Characterization of EGFR-targeting inhibitors.

Tyrosine Kinase Inhibitors

Drug Tumor Type Therapeutic Indication Molecular Target Inhibitor
Type

Molecular Markers of
Efficiency

• First Generation

Gefitinib
Advanced or

metastatic
NSCLC

First-line therapy for NSCLC carrying
EGFR-activating mutations

EGFR:
ATP-binding site I

Activating mutations of
EGFR: Exon 19

deletions; L858R

Erlotinib

Advanced or
metastatic
NSCLC,

pancreatic cancer

First-line therapy for NSCLC carrying
EGFR-activating mutations

With gemcitabine: first-line treatment option for
patients with locally advanced and metastatic

pancreatic carcinoma

EGFR:
ATP-binding site I

Activating mutations of
EGFR: Exon 19

deletions; L858R

Lapatinib Metastatic breast
cancer

With capecitabine: the treatment of
HER2-positive MBC in patients who have

previously received therapy (anthracycline, a
taxane, trastuzumab)

With letrozole: the treatment of postmenopausal
women with hormone receptor positive MBC

that overexpresses the HER2 receptor for whom
hormonal therapy is indicated

ATP-binding site
of EGFR and

HER2
I½ HER2-positive status

of tumor

• Second Generation

Afatinib Metastatic
NSCLC

First-line therapy for metastatic NSCLC carrying
EGFR-activating mutations

ATP-binding site
of EGFR, HER2,

and HER4
IV

Activating mutations of
EGFR: Exon 19

deletions; L858R

Neratinib Breast cancer

Extended adjuvant treatment of patients with
early stage HER2-positive breast cancer, to

follow adjuvant trastuzumab based therapy
With capecitabine: the treatment of patients with
advanced or metastatic HER2-positive BC who

have received two or more prior anti-HER2
based regimens in the metastatic setting

ATP-binding site
of EGFR, HER2,

and HER4
IV HER2-positive status

of tumor

Dacomitinib Metastatic
NSCLC

First-line therapy for metastatic NSCLC carrying
EGFR-activating mutations

ATP-binding site
of EGFR, HER2,

and HER4
IV

Activating mutations of
EGFR: Exon 19

deletions; L858R

• Third Generation

Osimertinib
Advanced or

metastatic
NSCLC

Adjuvant and first-line therapy for metastatic
NSCLC carrying EGFR-activating mutations

The treatment of adult patients with metastatic
EGFR T790M mutation-positive NSCLC, whose

disease has progressed on or after EGFR
TKI therapy

ATP-binding site
of the EGFR IV

Activating mutations of
EGFR: Exon 19

deletions; L858R
The secondary T790M

resistance mutation

Almonertinib Advanced
NSCLC

Adjuvant therapy for advanced NSCLC patients
with T790M-mutant EGFR who had developed
resistance to first- and second-generation EGFR

TKIs like gefitinib and afatinib

ATP-binding site
of the EGFR IV

Activating mutations of
EGFR: Exon 19

deletions; L858R
The secondary T790M

resistance mutation

Lazertinib Advanced
NSCLC

Treatment of locally advanced or metastatic
NSCLC carrying EGFR T790M mutation

ATP-binding site
of the EGFR IV

Activating mutations of
EGFR: Exon 19

deletions; L858R
The secondary T790M

resistance mutation

Furmonertinib
Locally advanced

or metastatic
NSCLC

Treatment of locally advanced or metastatic
EGFR T790M+ NSCLC that developed after

progression on treatment with first-generation
EGFR TKIs

ATP-binding site
of the EGFR

The secondary T790M
resistance mutation
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Table 1. Cont.

Monoclonal Antibodies

Drug Tumor Type Therapeutic Indication Molecular Target Molecular Markers of
Efficiency

Cetuximab

Advanced or
metastatic
SCCHN,

metastatic CRC

With radiation therapy: treatment of locally or
regionally advanced SCCHN

With platinum-based therapy with fluorouracil:
metastatic SCCHN

Metastatic SCCHN progressing after
platinum-based therapy

With FOLFIRI: first-line treatment of KRASwt
EGFR-overexpressing mCRC

With irinotecan in patients who are refractory to
irinotecan-based chemotherapy: treatment of
KRASwt EGFR-overexpressing mCRC; as a

single-agent in patients who have failed
oxaliplatin-and irinotecan-based chemotherapy

or who are intolerant to irinotecan

The binding site in domain III
of EGFR

KRAS wild-type status
of

EGFR-overexpressing
tumor

Panitumumab Metastatic CRC

Single agent treatment of metastatic CRC with
disease progression on or following

fluoropyrimidine, oxaliplatin, and irinotecan
chemotherapy regimens

The binding site in domain III
of EGFR

RAS wild-type status of
EGFR-overexpressing

tumor

Necitumumab Metastatic NSCLC With gemcitabine and cisplatin: first-line
treatment of patients with metastatic NSCLC

The binding site in domain III
of EGFR

EGFR-overexpressing
status of tumor

4. First Generation of EGFR-Targeted Drugs

The function of tyrosine kinase enzymes (including those of the ERBB/HER receptor
family) is transferring γ-phosphate of an ATP molecule to the tyrosine residue of the
substrate, thus initiating signal transmission to further downstream components [70]. Thus,
targeting the tyrosine kinase activity of EGFR may abrogate its signal transducer capacity
inside the cell. Inhibition of the tyrosine kinase activity by a class of organic quinazolines
was described first in 1994 [71], and two years later, Wakeling and colleagues reported the
pharmacological characteristics of gefitinib [72].

-Gefitinib, or ZD1839 (Iressa; Astra-Zeneca Pharmaceuticals), is an oral anilinoquina-
zolone with a structure formula presented in Figure 4a. By interacting with several amino
acid residues, gefitinib takes up space in the ATP-binding site. The first nitrogen of the
quinazoline ring creates a hydrogen bond with Met793 in the hinge region and inter-
acts hydrophobically with Leu718, Val726, Lys745, Met766, Leu788, Thr790, and Leu844
residues [73].

In a dose-dependent manner, gefitinib could inhibit the growth of EGFR-overexpressing
cell lines and human-derived tumor xenografts in mice [74]. Also, it has been shown that
gefitinib also inhibits the phosphorylation of HER2 in HER2-overexpressing model cell lines
and prevents the growth of BT-474 xenografts established in nude mice [75,76].

By inhibiting EGFR tyrosine phosphorylation, gefitinib affects downstream signaling
cascades in the tumor cell. Many in vitro studies have been performed to determine cellular
changes caused by gefitinib. For example, the addition of gefitinib to the cell growth media
caused cell autophagy and apoptosis associated with the inhibition of the PI3K/Akt/mTOR
signaling axis. In human lung cancer cell line PC9 with Glu746-Ala750 deletion mutation
in exon 19 of EGFR, gefitinib inhibited phosphorylated Akt (p-Akt) and phosphorylated
mTOR (p-mTOR) expression [77]. In A549, EGFR wild-type cell line, gefitinib also decreased
the expression of PI3K, AKT, p-AKT, mTOR, and A549 cells, and apoptotic rate increased
in a dose-dependent manner following gefitinib treatment [78].

Gefitinib has been shown to inhibit cell proliferation in multiple tumor cell lines. This
effect was associated with cell cycle arrest in the G1 phase in many studies. In the A459
cell line, gefitinib inhibited the expression of transcription factor E2F-1, which determines
the G1/S transition of the cell cycle. In cell line A431, gefitinib caused upregulation of p27,
cyclin-dependent kinase inhibitor and inhibitor of cell cycle progression [79]. Also, the
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increased expression of p27 was observed in pancreatic cancer cells PANC-1 and CFPAC-1
that underwent gefitinib treatment [80]. In human cervical cancer cell lines HeLa and Siha,
gefitinib also suppressed cell proliferation and caused G1 cell cycle phase arrest [81].
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The potential antitumor effect of this drug allowed clinical trials to be launched,
leading to approval by the FDA (U.S. Food and Drug Administration) in 2003 as monother-
apy treatment for patients with locally advanced or metastatic non-small cell lung cancer
(NSCLC) after randomized double-blind clinical trials [82]. In 2004, the correlation be-
tween NSCLC tumor sensitivity to gefitinib and mutations in the EGFR tyrosine kinase
domain was discovered. It was concluded that patient screening based on the presence of
EGFR-activating mutations in the tumor could help select potential responders to gefitinib
therapy [83]. This is based on the rationale that EGFR-mutant tumors had demonstrated
enhanced tyrosine kinase activity in response to EGF and also increased sensitivity to
gefitinib [43]. On 13 July 2015, the FDA approved gefitinib for the treatment of patients
with advanced or metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21
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L858R substitution mutations as detected by an FDA-approved test [84,85] (Table 1). Gefi-
tinib is approved in 91 countries for the treatment of adult patients with locally advanced
or metastatic EGFR NSCLC [84].

-Erlotinib. In 2004, the FDA approved another low molecular mass quinazolinamine
EGFR tyrosine kinase inhibitor, erlotinib (Tarceva), as monotherapy for the treatment of
patients with locally advanced or metastatic NSCLC, for whom chemotherapy treatment
was ineffective [86] (Figure 4b, Table 1). Similar to gefitinib, erlotinib’s mechanism of action
is based on reversible binding to the intracellular tyrosine kinase domain of the EGFR
receptor and blocking the binding of ATP molecules, thus preventing further tyrosine
phosphorylation activities [87].

Erlotinib has been shown to be effective on various types of cancer model cell lines.
For example, erlotinib treatment of A549, EGFR wild-type cell line, significantly inhibits cell
proliferation in a dose-dependent manner. Also, exposure to erlotinib increased intracellular
reactive oxygen species (ROS) production and G0/G1 cell cycle arrest, thus leading to
increased apoptosis [88]. In A431, another cell line with high expression of wild-type EGFR,
it has been shown that erlotinib, similar to gefitinib, inhibits phosphorylation of ERK and
Akt, major regulators of Ras/ERK/MAPK and PI3K/Akt/mTOR signaling axes [89].

Despite the proven efficacy of erlotinib in vitro, it has been shown that human blood
serum of healthy donors can donor-specifically dramatically abolish the cell growth rate
inhibition by erlotinib, and this effect correlates with a decreased activity of ERK1/2
proteins and abolishment of drug-induced G1S cell cycle transition arrest. Bioinformatic
analysis revealed that EGF/human serum-mediated A431 resistance to EGFR drugs can be
largely explained by the reactivation of the MAPK signaling pathway [90].

In vivo study of erlotinib’s effect in nude mice carrying EGFR-mutant xenografts
derived from NSCLC cell lines HCC827, PC9, and H1975 showed that high-dose treatment
improved the progression-free survival of animals in two EGFR-mutant xenografts derived
from HCC827 and PC9 cell lines, both carrying activating exon 19 deletion of EGFR.
However, in this study, erlotinib in regular doses proved ineffective in the H1975 cell line
bearing the T790M mutation EGFR in vitro, yet high doses of erlotinib were capable of
inhibiting tumors with T790M-mutant EGFR in vivo to some extent as well [91].

Erlotinib is currently approved for the treatment of NSCLC and pancreatic cancer.
Specifically, it was proved to be highly effective against EGFR-positive tumors with exon
19 deletion or exon 21 L858R substitution in a randomized phase III trial [92]. It showed
efficacy in a phase III trial comparing erlotinib with chemotherapy in advanced NSCLC pa-
tients: erlotinib significantly improved progression-free survival (PFS) and overall survival
(OS) [93]. Another phase III study demonstrated that first-line erlotinib treatment of pa-
tients with EGFR mutation-positive NSCLC provides a statistically significant improvement
in PFS in comparison to chemotherapy treatment with gemcitabine/cisplatin (11.0 months
versus 5.5 months) [94] or docetaxel/cisplatin (9.7 months versus 5.2 months) [92]. Also,
erlotinib may be considered as a first-line maintenance treatment for NSCLC patients
who do not show any progression following four cycles of chemotherapy, as median PFS
was significantly longer for patients treated with erlotinib than with placebo: 12.3 weeks
versus 11.1 weeks [95]. Furthermore, the combination of erlotinib and chemotherapy by
gemcitabine has been approved by the FDA as a first-line treatment option for individuals
with locally advanced and metastatic pancreatic carcinoma. This regimen showed a statisti-
cally significant advantage over single-agent gemcitabine in a phase III study (OS median
6.24 months for erlotinib/gemcitabine vs. 5.91 months for gemcitabine alone) [96]. Also,
it has been shown that the lower dose of erlotinib (100 mg/d (per day) or 254 µmol/d)
achieved comparable efficacy compared with the standard dose of gefitinib (250 mg/d
or 559 µmol/d) in EGFR-mutated NSCLC [97]. As for EGFR wild-type tumors, there is
evidence that the use of erlotinib can also increase overall survival in NSCLC patients [98].
Despite the high efficacy of gefitinib and erlotinib for patients with activating mutations
of EGFR, there is also a possibility of acquired treatment resistance, which may be due
to secondary EGFR mutations. For example, the T790M missense mutation in exon 20
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of EGFR that is connected with acquired treatment resistance is found in ~60% of lung
adenocarcinoma patients [99]. Another proven secondary resistance mechanism is the am-
plification of MET, a proto-oncogene that encodes a different heterodimeric transmembrane
tyrosine kinase receptor [100].

-Lapatinib (GW572016, Tykerb/Tyverb, GlaxoSmithKline, London, UK) is a dual
EGFR/HER2 TKI that reversibly binds to the ATP-binding site of the receptor with structure
formula presented in Figure 4c [101]. Lapatinib forms two hydrogen bonds with EGFR
Thr790 and Lys745 from the ATP-binding pocket [102]. In 2007, the FDA approved lapatinib
in combination with capecitabine for the treatment of advanced or metastatic breast cancer
(Table 1) [103].

In in vitro studies, lapatinib has been shown to be an effective growth inhibitor of
tumor cells overexpressing EGFR or HER2 receptors in a cell-based proliferation assay
using protein staining. For example, IC50 for EGFR-overexpressing epidermoid carcinoma
cell line A431 for lapatinib is comparable with gefitinib and erlotinib (0.16 µM for lapatinib
vs. 0.08 µM and 0.1 µM for gefitinib and erlotinib, respectively). Interestingly, for BT-474,
HER2-overexpressing ductal breast carcinoma cell line, IC50 concentration of lapatinib was
0.1 µM, but IC50s for erlotinib and gefitinib were 1.1 µM and 9.9 µM [104].

As for other types of cancer cell lines, lapatinib is known to inhibit cell proliferation
of NB4, the cell line originating from acute promyelocytic leukemia. Twenty-four-hour
lapatinib treatment induced S-phase arrest (~40–60%) in NB4. Double staining with FITC-
labeled annexin-V and PI analysis revealed an increased percentage of apoptosis from
~5% in control cells to ~60% under 20 µM lapatinib treatment. Analysis of the levels
of Akt, p-Akt, p38MAPK, p-p38MAPK, JNK, and p-JNK revealed that lapatinib notably
downregulated the expression of p-Akt and upregulated the expression of p-p38MAPK
and p-JNK, suggesting stimulation of apoptosis potentially through the p38MAPK and
AKT signaling pathways [105]. In gastric cancer cell lines, response to lapatinib correlated
significantly with HER2 expression: in only HER2-amplified SNU-216 and NCI-N87, 2 out
of 11 cell lines were sensitive to lapatinib, and it caused G1-phase shift (~50–80%) and an
increase in the expression levels of cell cycle inhibitor p27KIP1, as well as the downregulation
of cMyc and Cyclin D [106]. An in vitro study of lapatinib effect on endometrial cancer
cell lines showed that compared to the non-overexpressing cell lines, the IC50 values of
endometrial cancer cell lines that overexpressed HER2 (USPC2, USPC1) were significantly
lower (0.33 vs. 4.15 µM). When cells were treated with lapatinib, there was a gradual
decrease in the phosphorylation of EGFR and HER2, as well as their downstream signaling
intermediates AKT and ERK [107].

Despite demonstrated activity against HER2-positive cell lines, some cellular growth
factors, such as HRG1/Neuregulin-1, have been found to have a negative effect on the
action of lapatinib. In NCI-N87, the gastric carcinoma cell line, and OE19, esophageal
adenocarcinoma cell line, both sensitive to lapatinib, exposure to HRG1 together with
lapatinib rescued cells from lapatinib-induced G1 cell cycle arrest and apoptosis. Also,
the addition of HRG1 reactivated HER3 and AKT in the presence of lapatinib in these cell
lines [108].

The growth of HN5 and BT474 tumor xenografts was inhibited in a dose-dependent
manner with lapatinib treatment in vivo, and complete growth inhibition was observed at
higher doses [104]. An in vivo metastasis assay in mice revealed that lapatinib treatment
was able to prevent metastatic outgrowth of breast cancer cells 231-BR-HER2 in the brain.
Mice treated with lapatinib had fewer metastatic foci than those treated with vehicle,
as determined by whole-brain imaging [109]. When HER2-amplified N87, the gastric
carcinoma cell line, xenografts were treated with lapatinib and tumor regression was
observed. However, the combination of lapatinib and HER2-targeted drug trastuzumab
induced a near-complete tumor regression in all the mice that were treated [110].

Lapatinib, when used in combination with capecitabine, was approved by the FDA in
2007 for the treatment of HER2-positive metastatic breast cancer (MBC) in patients who
have previously received therapy, including an anthracycline, a taxane, and trastuzumab.
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In a phase III study, OS times were 75.0 weeks for the combination of lapatinib and
capecitabine treatment and 64.7 weeks for capecitabine treatment alone [111]. Lapatinib
was approved by the FDA in 2010 for the treatment of hormone receptor-positive metastatic
breast cancer in postmenopausal women. For patients with HR-positive, HER2-positive
breast cancer, the addition of lapatinib to letrozole therapy significantly decreased the
risk of disease progression compared to letrozole–placebo. The PFS for patients receiving
the combination therapy was 8.2 months, while those on letrozole–placebo had a median
PFS of 3.0 months [112]. In a phase III trial of lapatinib plus paclitaxel with placebo plus
paclitaxel as a first-line treatment for MBC, it showed that the addition of lapatinib to
paclitaxel did not provide any benefits for patients with HER2-negative metastatic breast
cancer. However, HER2-positive patients who received first-line therapy with paclitaxel–
lapatinib experienced improvements in clinical outcomes: OS times were 104.6 weeks for
combination vs. 82.4 weeks for paclitaxel–placebo) [113].

Focused study reports indicate that patients with advanced NSCLC and TKI-sensitive
EGFR mutations may become insensitive to treatment and develop progressive disease
after 12 months on average [114]. In that case, there is an option of a second-line therapy:
the decision to choose the appropriate second-line treatment largely depends on whether
the EGFR T790M mutation is present or absent, which can be detected in either plasma
or tumor tissue. If the tumor proves to be T790M-positive, selective EGFR TKIs designed
especially for mutant EGFR, for example, osimertinib, can be an option. In case of a negative
result, platinum-based chemotherapy is applied [114]. Despite the development of new
generations of targeted cancer therapeutics, first-generation EGFR-targeted drugs are still
used against tumors with EGFR-activating mutations or EGFR-overexpressing tumors
(EGFR-positive tumors), either in combination with other drugs or alone [115,116].

5. Second Generation of EGFR-Targeted Drugs

Emerging cases of secondary resistance to erlotinib and gefitinib forced researchers and
the industry to develop new EGFR-specific therapeutics with the potential to overcome it.
Second-generation EGFR TKIs were developed to address acquired resistance by inhibiting
additional partner receptor tyrosine kinases (such as HER2) or irreversibly binding to the
kinase domain and thereby abrogating downstream EGFR signaling.

-Afatinib (Giotrif, BIBW2992, Figure 4d) was approved in 2013 for the treatment of
metastatic NSCLC carrying activating EGFR exon 19 deletions or exon 21 L858R substitu-
tion [117]. Its mechanism of action is different from first-generation EGFR inhibitors
erlotinib and gefitinib, as afatinib irreversibly inhibits autophosphorylation of EGFR,
HER2, and HER4 receptors by forming irreversible covalent bonds with ATP-binding
sites (Table 1) [118]. It has a distinct acrylate side chain that covalently binds to the EGFR
C797 residue, thus resulting in irreversible inhibition of the EGFR tyrosine kinase [119].

In cell culture studies, afatinib was more effective than erlotinib, gefitinib, or lapa-
tinib in inhibiting the survival of lung cancer cell lines harboring wild-type (H1666) or
L858R/T790M (NCI-H1975) EGFR, with IC50s (half-maximal inhibitory concentration is
drug concentration required for 50% inhibition) below 100 nM, whereas these cells were
resistant to the first-generation drugs. In cytotoxicity assays, afatinib was also 100-fold
more effective than erlotinib in Ba/F3, murine interleukin-3 dependent pro-B cells carry-
ing mutations causing resistance to erlotinib (T790M or extracellular domain mutations
A289V and R108K). The inhibition of autophosphorylation in EGFR-mutant (carrying
L858R/T790M or L858R mutation) cell lines NIH-3T3 by afatinib was also ~100-fold more
effective than by erlotinib when testing the dose–responses for afatinib and erlotinib on
EGFR autophosphorylation on wide concentration ranges (0–10,000 nM) [120]. In a head
and neck squamous cell carcinoma (SCCHN) cell culture panel, afatinib almost completely
reduced the rate of cell growth, and some cell lines (SCC25, SCC58, Detroit 562) showed a
higher sensitivity to afatinib compared to gefitinib, with 10–300 fold lower IC50 [121]. Also,
afatinib could effectively arrest the growth of nasopharyngeal carcinoma cell lines in vitro
and suppress EGF-induced phosphorylation of EGFR, AKT, and ERK [122].
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Afatinib was also proved to be more effective against NSCLC cell lines carrying the
EGFR exon 19 deletion, most probably due to more efficient inhibition of EGFR phosphory-
lation [123]. In xenograft models, afatinib showed strong activities in EGFR L858R/T790M
or HER2-overexpressing tumors [120]. In the head and neck squamous carcinoma cell line
HN5 tumor xenograft, afatinib was found to be more effective in arresting tumor xenograft
growth than three other TKIs with ERBB/HER-targeting activities (lapatinib, erlotinib, and
neratinib) [121].

Phase III trials showed the efficacy of afatinib as first-line therapy in comparison
with chemotherapy (pemetrexed/cisplatin in “LUX-Lung 3” and gemcitabine/cisplatin
in “LUX-Lung 6” trials) in patients with metastatic lung adenocarcinoma carrying EGFR
mutations. The drug significantly improved the objective response rate in patients with
brain metastases. In a combined analysis, PFS with afatinib was significantly improved in
comparison with chemotherapy (8.2 months versus 5.4 months) [124]. Another randomized-
control trial proved that, in comparison with gefitinib-only treatment, afatinib improved
outcomes in EGFR mutation-positive NSCLC patients who did not receive any previous
therapy [125]. Also, it was demonstrated that afatinib could be effective for patients with
HER2-positive breast cancer that progressed after treatment with trastuzumab, as the drug
inhibits the activity of at least three HER family receptors [126].

-Neratinib (Nerlynx, HKI-272, Figure 4e [127]) is a second-generation HER2/EGFR/HER4
TKI [128]. It covalently combines with cysteine residues Cys-773 and Cys-805 of ATP-binding
domains of HER1, HER2, and HER4, thus inhibiting the receptor function [129].

The anti-proliferative effects of neratinib were examined in vitro across a panel of
115 cancer cell lines by ATPlite 1step Luminescence Assay System for analysis of cell
viability. In this panel, there were 22 cell lines harboring point mutations or amplifications
of the HER2 (n = 9), HER3 (n = 10), or EGFR (n = 10) genes, and neratinib was proven to be
the effective drug with IC50s comparable to other TKIs in this study [130]. Interestingly,
neratinib has demonstrated efficacy in cell lines derived from triple-negative breast cancer
(TNBC). The IC50 values for neratinib varied from 0.06 µM to 1.9 µM across the 14 TNBC cell
lines, and there was no correlation between IC50 values and levels of EGFR and HER2 [131].
Also, neratinib inhibited proliferation, dose-dependently induced G0/G1 cycle arrest, and
promoted apoptosis of HL-60, the human acute myeloid leukemia cell line [132]. According
to [133], the combination of trastuzumab and neratinib was found to inhibit growth in
SKBR3 and BT474 cells that had developed resistance to trastuzumab in vitro.

In xenograft models overexpressing HER2 (BT474) and EGFR (SKOV-3 and A431),
neratinib dose-dependently inhibited tumor growth: almost by ~70–90% in xenografts
of BT474, ~30–60% in xenografts of SK-OV-3, and ~32–44% in xenografts of A431 [128].
Another study showed that a combination of trastuzumab and neratinib was additive in
tumor growth inhibition in the BT474 xenograft model, leading to decreased activities of
HER2, Akt, and ERK pathways [133].

In a phase II trial of advanced HER2-positive breast cancer patients with and without
prior trastuzumab treatment, neratinib demonstrated considerable clinical efficiency. PFS
times were 22.3 and 39.6 weeks for patients in the trastuzumab-treated and trastuzumab-
naïve cohorts, respectively. The objective response rates were 24% for patients who previ-
ously received trastuzumab treatment and 56% for patients with no prior trastuzumab treat-
ment [134]. Another phase I/II trial examined a combination of neratinib and capecitabine
as a treatment option for patients who previously received HER2-targeted drugs. Patients
who were not treated with lapatinib before had an objective response rate for neratinib plus
capecitabine of 64%; for those who received lapatinib treatment previously, the objective
response rate was 57%, with PFS of 40.3 and 35.9 weeks, respectively [135].

The FDA has granted approval for the use of neratinib as an adjuvant treatment option
for early-stage HER2-positive breast cancer patients who have already undergone a one-
year course of trastuzumab treatment [136]. Approval was based on the ExteNET phase III
trial of neratinib following adjuvant trastuzumab treatment, as disease-free survival was
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94.2% in patients treated with neratinib compared with 91.9% in those receiving placebo
for 1 year after trastuzumab-based therapy [137].

In a phase III trial of neratinib plus capecitabine against lapatinib plus capecitabine in
HER2-positive metastatic breast cancer patients who previously received ≥2 HER2-directed
MBC regimens, the combination of neratinib plus capecitabine significantly improved PFS
by 2.2 months (8.8 months versus 6.6 for lapatinib plus capecitabine). The objective response
rates were 32.8% for neratinib plus capecitabine and 26.7% for lapatinib plus capecitabine,
and median OS were 21 months vs. 18.7 months, respectively [138]. The FDA approved
the use of the neratinib and capecitabine combination for patients with HER2-positive
metastatic breast cancer who had been treated with at least two prior therapies in this
context based on the promising results of the clinical trial.

-Dacomitinib (Vizimpro, PF-00299804, Figure 4f [139]), another second-generation
EGFR inhibitor, was approved by the FDA in 2018 as the first-line treatment of pa-
tients with metastatic NSCLC with EGFR-activating mutations (exon 19 deletion or exon
21 substitution L858R) (Table 1) [140]. This drug also has activity against EGFR, HER2, and
HER4 receptors, which are inhibited through irreversible covalent binding of the drug at
the edge of the ATP-binding cleft of tyrosine kinase domain [141]. For EGFR, irreversible
inhibition is achieved by interacting with EGFR C797, similar to afatinib [119].

In NSCLC cell lines harboring endogenous EGFR T790M mutation, dacomitinib
proved itself as an effective agent in vitro. In cell lines with L858R mutation or wild-type
EGFR, dacomitinib had 10 times lower IC50 (µM) than reversible EGFR inhibitor gefitinib.
For example, the IC50 of dacomitinib in the H3255 cell line carrying L858R mutation was
0.007 µM versus 0.075 µM for gefitinib. In wild-type EGFR cell lines H1819 and Calu-3, IC50
values of dacomitinib were 0.029 and 0.063 µM versus 0.42 and 1.4 µM for gefitinib, respec-
tively [142]. In NSCLC cell line H1975 with both initial EGFR-activating mutation L858R
and first-generation drug resistance mutation T790M, dacomitinib effectively inhibited
proliferation in contrast to gefitinib [143]. In vitro SCCHN model cell lines were sensitive
to dacomitinib, and the drug caused inhibition of AKT, ERK, mTOR, and STAT3, major
EGFR pathway downstream signaling molecules. Forty-eight-hour dacomitinib treatment
caused a ~20% dose-dependent increase in the G0/G1 cell population in the wild-type
EGFR SCCHN cell lines tested (FaDu, UT-SCC-8) [144].

Furthermore, an in vitro study of dacomitinib in human bladder cancer cell lines over-
expressing ERBB/HER family proteins showed superiority of dacomitinib in comparison
with cetuximab or trastuzumab: for example, dacomitinib was superior to 2 µM trastuzumab
(p = 0.0005); 2 µM cetuximab (p = 0.042) for UM-UC-6, the transitional bladder carcinoma
cell line. In UM-UC-6, dacomitinib inhibited the phosphorylation of EGFR, ERK, and Akt,
caused G1 cell cycle arrest (with ~69–77% phase shift), and induced apoptosis [145].

In xenograft tumors obtained from the SCCHN cell line FaDu, dacomitinib reduced
tumor cell proliferation and EGFR phosphorylation and caused a delay in tumor growth by
13 days in comparison to the control group [144]. In a UM-UC-6 xenograft bladder cancer
model, dacomitinib proved to be a more effective agent than lapatinib. The administration
of dacomitinib alone and in combination with chemotherapy resulted in significantly
lower xenograft weights compared to no treatment or chemotherapy alone (~280 mg of
tumor weight when mice were treated with gemcitabine–cisplatin versus almost 0 mg
under dacomitinib or combination treatment). The weights of xenografts treated with
chemotherapy alone were not significantly different from those that received no treatment.
So, in comparison to chemotherapy-only treatment, the combination of dacomitinib plus
chemotherapy treatment was superior, feasible, and safe [145].

A phase III trial of dacomitinib versus gefitinib as first-line therapy for patients with
EGFR mutation-positive NSCLC demonstrated improved progression-free survival: 14.7
versus 9.2 months [146], and a 4-year update on the status of patients in this trial showed
overall survival benefit from first-line treatment with dacomitinib in comparison with
gefitinib: OS was 34.1 months with dacomitinib versus 27.0 months with gefitinib [147].
Interestingly, it was observed that patients with the exon 21 mutation exhibited a longer
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PFS to dacomitinib than patients with exon 19 deletion (5.8 vs. 4.1 months) [148]. In
addition, an ongoing clinical trial is currently being conducted on the clinical benefits of
dacomitinib with uncommon EGFR mutations in exons 18–21, but the results have not yet
been reported [149].

Other anti-kinase inhibitors have also demonstrated activities against EGFR. Van-
detanib (Caprelsa, ZD6474) is a multitarget inhibitor of tyrosine kinase receptors EGFR,
vascular endothelial growth factor receptor-2 (VEGFR-2), and RET [150] that was approved
by the FDA as a treatment against advanced medullary thyroid cancer [151]. In vitro stud-
ies showed that vandetanib is also active against EGFR-expressing cutaneous squamous
carcinoma (SCC) cells (A431, DJM1) [152] and human NSCLC PC-9 cells carrying a deletion
in EGFR exon 19 (delE746-A750) [153]. However, we found no indications that this drug
can work better than other EGFR inhibitors. Instead, results of a phase III study showed
that patients with advanced NSCLC after prior therapy with gefitinib or erlotinib had not
demonstrated an overall survival benefit for treatment with vandetanib [154].

Brigatinib (Alunbrig, AP26113) is a multi-kinase inhibitor of ALK, ROS1, FLT3, mutant
variants of FLT3, and also T790M-mutant EGFR [155], approved by the FDA as a treatment
against anaplastic lymphoma kinase (ALK)-positive metastatic NSCLC [156]. Its activity
against EGFR has been evaluated in preclinical studies. The treatment of T790M/del19 and
triple-del19-mutated EGFR-expressing Ba/F3 cells with brigatinib inhibited proliferation
with IC50 less than 100 nM both in vitro and in vivo; brigatinib also inhibited the growth
of PC9 cell lines with del19 alone, of double-mutant T790M/del19, and of triple-mutant
C797S/T790M/del19 PC9 cells in vitro [157]. However, brigatinib showed limited efficacy
in a phase I/II study evaluating drug use against EGFR-mutated lung cancer: only two out
of forty-two patients had demonstrated a partial response to the drug [158].

6. Third Generation of EGFR-Targeted Drugs

First-generation EGFR-targeted low molecular mass therapeutics erlotinib and gefi-
tinib have the disadvantage of being reversible inhibitors, and they are proven to be
ineffective against the secondary EGFR mutations, such as the T790M substitution, which
has been found in over 50% of EGFR-mutant NSCLC cases with acquired resistance to EGFR
inhibitors [159]. To overcome this frequent mechanism of drug resistance, third-generation
drugs have been developed.

-Osimertinib (Tagrisso™, AZD9291 AstraZeneca, Figure 5a) is an irreversible orally
administered, EGFR-specific TKI with strong selectivity to EGFR-activating mutations
as well as the secondary T790M resistance mutation in patients with advanced NSCLC
(Figure 5a, Table 1) [160]. Osimertinib’s mechanism of action is the formation of a covalent
bond to the cysteine-797 residue in the EGFR ATP-binding site [161].

In preclinical studies, the drug could effectively inhibit signaling pathways and growth
in the NSCLC cell lines bearing both activating EGFR mutations and T790M-mutant EGFR.
In contrast, this drug’s effects on wild-type EGFR cell lines were relatively small in magni-
tude, as shown in animal models of EGFR-mutated tumors [160].

In a double-blind phase III trial, osimertinib showed higher efficacy than standard
EGFR TKIs (gefitinib or erlotinib) in the first-line treatment of EGFR mutation-positive
advanced NSCLC, with a similar safety profile: the median PFS was significantly longer
with osimertinib than with standard EGFR TKIs (18.9 months vs. 10.2 months) [162].
Another phase III study showed that osimertinib had significantly greater efficacy than
chemotherapy (platinum therapy plus pemetrexed) in patients with EGFR T790M-mutated
advanced NSCLC who had progressed after first-line therapy with EGFR TKIs, as PFS
was 8.5 months among patients with metastases to the central nervous system receiving
osimertinib vs. 4.2 months receiving platinum therapy plus pemetrexed [163]. Currently,
osimertinib is approved by major regulatory agencies for the treatment of T790M-positive
cancers, which progressed after treatment with first- or second-generation EGFR TKIs [164].
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Despite the strong clinical effectiveness of osimertinib, patients ultimately develop
secondary resistance to this therapy as well, which presents a significant obstacle given the
limited number of currently available pharmacological alternatives [161].

After 8–10 months of treatment with osimertinib, secondary resistance to the drug
may occur, where resistance mechanisms may include EGFR C797S in addition to T790M
mutation or even loss of T790M mutation. Here, C797S mutation impairs the covalent bond
formation, as the alcohol side chain in serine is significantly less nucleophilic than the thiol
side chain in the cysteine residue [165].

-Almonertinib, also known as Aumolertinib, HS-10296, or Ameile, is another low
molecular mass TKI with high selectivity for EGFR-sensitizing and T790M-resistant mu-
tations. Similar to osimertinib, it covalently and irreversibly binds to cysteine-797 at the
ATP-binding site of the EGFR tyrosine kinase domain (Table 1). The only difference in
chemical structure from omisertinib is the replacement of a cyclopropyl group on the indole
nitrogen (Figure 5b) [166].

An in vitro study of NSCLC cell lines showed that almonertinib significantly inhibits
H1975 (EGFR-resistant mutation: L858R/T790M mutation) and HCC827 (EGFR-sensitive
mutation: E746-A750 deletion) cell colony formation rather than A549 cells (wt EGFR) and
induced the apoptosis in H1975 and HCC827 cells in a dose-dependent manner rather than
A549 cells [167].

In phase I-II trials, almonertinib demonstrated clinical benefits and minimal toxicity
in patients with EGFR T790M-positive NSCLC, for whom the first generation of EGFR
TKI treatment was ineffective [166,168]. In a phase III trial conducted in China, the use
of almonertinib as the first-line treatment was well-tolerated and showed a significant
increase in PFS: 19.3 months with almonertinib versus 9.9 months with gefitinib and
duration of response (18.1 months versus 8.3 months) for advanced NSCLC patients with
EGFR mutations (deletion of exon 19 or L858R substitution) [169]. In 2020, the China Food
and Drug Administration granted approval for the use of almonertinib in treating advanced
NSCLC patients with T790M-mutant EGFR who had developed resistance to first- and
second-generation EGFR TKIs like gefitinib and afatinib [167].

-Lazertinib (YH25448, Leclaza) is an oral third-generation EGFR TKI developed pri-
marily for the treatment of NSCLC (Figure 5c). It targets the EGFR molecules harboring
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T790M mutation and activating mutations such as deletion of exon 19 or L858R but is
ineffective against wild-type EGFR tumors (Table 1) [170]. Similar to osimertinib, it forms a
covalent bond with the C797 residue in the mutated EGFR ATP-binding site [119].

An in vitro study of lazertinib showed a higher selectivity in comparison with gefinitib
against Ba/F3 cells (a murine cell line that can help overcome the challenge of obtaining
patient-derived lung cancer cells that have rare driver mutations [171]) expressing different
mutant EGFRs: Del19, L858R, Del19/T790M, L858R/T790M. The mean IC50 values for
cells with mentioned mutations varied from 3.3 to 5.71 nM, similar to IC50 obtained for
osimertinib-treated cells (3.5–4.3 nM). Also, this study demonstrated the ability of lazertinib
to induce apoptosis in EGFR-mutant cell lines H1975 (carrying L858R/T790M mutation) and
PC9 (Glu746-Ala750 exon 19 deletion) [170]. In an animal model, lazertinib demonstrated
remarkable tumor regression in brain metastasis and had superior brain/plasma and
tumor/brain area under the concentration–time curve values compared to osimertinib [170].

A phase I-II trial showed that lazertinib was generally well tolerated and exhibited
encouraging antitumor efficacy in patients with tumors containing activating and T790M-
resistant EGFR mutations [172]. At present, lazertinib is approved in South Korea for the
treatment of locally advanced or metastatic NSCLC-carrying EGFR T790M mutation [173].

-Furmonertinib or Alflutinib (AST2818, Figure 5d) is another third-generation TKI
inhibitor that blocks EGFR with both activating mutations and secondary mutations such
as T790M (Table 1) [174].

Interestingly, furmonertinib showed nonlinear pharmacokinetics where its apparent
clearance increases over time in a dose-dependent manner, which may be attributed to
its self-induction of cytochrome P450. Furmonertinib was shown to be a strong CYP3A4
enzyme inducer that can increase the formation of active or reactive metabolites [175].
AST5902 is a metabolite of furmonertinib that is pharmacologically active and has sim-
ilar antitumor activity [176]. The results of phase I/II clinical trials have indicated that
furmonertinib is well-tolerated and shows notable clinical effectiveness in individuals
with T790M-mutated NSCLC who experienced progression following gefitinib or erlotinib
treatment, including patients with central nervous system metastases [176]. A phase III
clinical trial of furmonertinib versus gefitinib (FURLONG, NCT03787992) in patients with
locally advanced or metastatic EGFR mutation-positive NSCLC showed superior efficacy of
furmonertinib compared with gefitinib as first-line therapy in the Chinese population: PFS
was 20.8 months in the furmonertinib group vs. 11.1 months in the gefitinib group, along
with an acceptable toxicity profile [177]. Another phase III trial (FURVENT, NCT05607550)
is currently in progress, which aims to compare the safety and efficacy of furmonertinib
with platinum-based chemotherapy in treatment-naïve patients with locally advanced or
metastatic nonsquamous NSCLC harboring EGFR exon 20 insertion mutations [178].

-Mobocertinib (TAK-788, AP32788, Figure 5e) is another third-generation EGFR in-
hibitor that was developed to treat NSCLC patients with EGFR exon 20 insertions [179].
Mobocertinib selectively targets EGFRex20ins variants by interacting with the C790 gate-
keeper residue in the ATP-binding pocket of EGFR through its middle pyrimidine ring
while also forming an irreversible covalent bond with the C797 residue [180].

In cytotoxicity assays of Ba/F3, murine interleukin-3-dependent pro-B cells engineered
to express mutant variants of EGFR, mobocertinib inhibited ex20ins EGFR variants. Oral
administration of mobocertinib once daily at doses of 30–100 mg/kg resulted in tumor
regression in a mouse model of ex20ins EGFR tumors [181]. This drug received accelerated
approval in 2021 for the treatment of patients with locally advanced or metastatic NSCLC
with EGFR ex20ins mutations based on a non-randomized, open-label, multicohort phase
1/2 study (NCT02716116) that demonstrated significant clinical benefit [182]. However,
mobocertinib was not effective in vitro against engineered Ba/F3 cells containing a C797S
EGFR mutation [183].

A current ongoing phase 3 clinical trial EXCLAIM-2 (NCT04129502) was initiated to
assess the safety and efficacy of first-line mobocertinib versus platinum-based chemother-
apy in patients with ex20ins EGFR locally advanced or metastatic NSCLC [184]. However,
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recently, the FDA and Takeda Pharmaceuticals published a mobocertinib withdrawal
statement due to failure to achieve the planned results of a phase III trial [185].

EGFR TKIs were proven to be useful in treating various types of solid tumors. How-
ever, due to their broad applicability, there has been a growing incidence of TKI-induced
adverse effects. While TKIs have been found to interfere with the normal functioning of
many organs and cause serious adverse effects in the gastrointestinal tract, kidney, thyroid,
and blood, the most severe side effects were recorded for the skin and heart [186–188].
These include myocardial infarction, heart failure, left ventricular dysfunction, arrhythmias,
and hypertension [189].

7. Fourth Generation of EGFR-Targeted Drugs

Over time, patients treated with third-generation EGFR TKIs develop heterogeneous
resistance to this therapy, which can be either EGFR-dependent or independent [190].
The primary cause of EGFR-dependent resistance is the emergence of a specific point
mutation C797S in the ATP-binding cleft [191,192]. Another factor is a deletion spanning
the secondary mutation T790M [192].

To overcome these resistance mutations, fourth-generation drugs that bind to an
allosteric site of EGFR are currently being developed and undergoing preclinical evalu-
ation [193,194]. For example, after analyzing over 2.5 million chemical compounds, two
non-ATP competitive compounds were discovered, EAI001 (EGFR allosteric inhibitor-1,
Figure 6a) and EAI045 (EGFR allosteric inhibitor-45, Figure 6b), that target the allosteric
site of EGFR and prevent its binding to ATP [194,195].
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An in vitro study of EAI045 in NSCLC H1975 and NIH-3T3 cells with L858R/T790M
mutations showed decreased EGFR autophosphorylation. Furthermore, a study was
conducted on the combined use of EAI045 with cetuximab, which was effective against
both L858R/T790M and L858R/T790M/C797S EGFR-mutant Ba/F3 cells and also in vivo
against L858R/T790M and L858R/T790M/C797S-mutated EGFR mouse models [195].

Another reversible non-ATP competitive allosteric inhibitor of EGFR under investi-
gation is JBJ-04-125-02 (Figure 6c), which is active against EGFR L858R, L858R/T790M or
L858R/T790M/C797S Ba/F3 cells, but showed fewer activities against H1975 and H3255GR
mutant EGFR cell models [196]. CH7233163 (Figure 6d) is another allosteric inhibitor of
EGFR. It directly interacts with the gatekeeper residue T790M in addition to the P-loop and
hinge regions and binds more extensively within the ATP-binding pocket [197]. CH7233163
has demonstrated activity both in vitro and in vivo against the following EGFR mutation
models: del19/T790M/C797S, L858R/T790M/C797S, del19/T790M, L858R/T790M, del19, and
L858R. In contrast to the previous allosteric inhibitors presented, it was also effective
against del19 EGFR-mutant models [197]. However, there were currently no clinical trial
reports that could prove the clinical efficacy of the above mentioned fourth-generation
EGFR inhibitors.

BLU-945 (Figure 6e) was obtained by Blueprint Medicines by optimizing the molecules
from ~25,000 compound library of designed small-molecule kinase inhibitors and showed
in vitro sub-nanomolar activities against the EGFR T790M and EGFR T790M/C797S mutants.
In addition, it reduced EGFR phosphorylation in Ba/F3 cells: in L858R/T790M/C797S
mutants with IC50 = 3.2 nM and in ex19del/T790M/C797S mutants with IC50 = 4.0 nM.
In vivo experiments showed its effectiveness in mice with ex19del/T790M/C797S EGFR-
mutated NCI-H1975 and Ba/F3 xenografts.

In an osimertinib-resistant EGFR ex19del/T790M/C797S mouse model derived from a
patient with an NSCLC tumor who progressed after treatment with gefitinib and osimer-
tinib, the tumor growth was inhibited by BLU-945 [198]. The phase I/II SYMPHONY trial
(BLU-945-1101; NCT04862780) is currently ongoing to evaluate the antitumor activity, toler-
ability, and safety of this compound as a monotherapy and in combination with osimertinib
in patients with EGFR-mutated NSCLC [199]. The initial reports showed that BLU-945
alone or in combination with osimertinib demonstrated early signals of clinical activity and
was well tolerated in heavily pretreated EGFR-mutant NSCLC patients [200].

BLU-701 is another compound developed by Blueprint Medicines that is a highly
selective and potent inhibitor of EGFR with ex19del- or L858R-activating mutations and the
C797S resistance mutation with nanomolar IC50 (~3.3 nM) [201,202]. At tolerated doses,
oral administration of BLU-701 in mice led to significant and sustained regression of the
PC9 ex19del tumor xenografts [201]. The safety and effectiveness of BLU-701 in patients
with EGFR-mutated NSCLC who have received previous treatment with EGFR TKIs is
currently being assessed in the phase I/II HARMONY trial (NCT05153408) [203].

For two other fourth-generation EGFR inhibitors, JIN-A02 and BBT-176, the success-
ful application in both in vitro and in vivo studies were published: JIN-A02 inhibited
ex19del/T790M/C797S and L858R/T790M/C797S EGFR-mutant Ba/F3 cells (IC50 = 51.0 and
49.2 nM, respectively) and resulted in tumor regression in ex19del/T790M/C797S Ba/F3
xenograft mouse models [204]. The IC50 values of BBT-176 for Ba/F3 cells engineered
to express EGFR 19Del/C797S, EGFR 19Del/T790M/C797S, and EGFR L858R/C797S and
L858R/T790M/C797S were 42, 49, 183, and 202 nM, respectively. Moreover, when BBT-176
was used in combination with cetuximab, it showed a synergistic effect against the EGFR
19Del/T790M/C797S-expressing cells. It also inhibited tumor growth in vivo in a patient-
derived 19Del/T790M/C797S EGFR model and induced tumor regression in a LU1235 EGFR
19Del model.

Clinical phase I/II trials for these compounds are currently underway (NCT05394831
and NCT04820023, respectively). Additionally, treatment with BBT-176 caused a reduction
in tumor size in two patients belonging to the 320 mg once-daily and 480 mg once-daily
groups after receiving BBT-176 treatment for 6 and 12 weeks, respectively [205].
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Finally, it should be added that new fourth-generation drug candidates are emerging
permanently, being representatives of different chemical classes with various mechanisms
of action [206].

8. EGFR-Specific Therapeutic Monoclonal Antibodies

Soon after the discovery of the EGFR receptor in the 1980s, prof. John Mendelsohn
noted that the addition of EGF, the ligand of the EGFR receptor, had a negative effect on the
survival of the A431 tumor cell line, which contained large amounts of EGFR. The idea was
that it was possible to stop EGFR-overexpressing tumor proliferation through interference
with the EGFR signaling [207]. Because EGFR permeates the cell membrane, the idea arose
that monoclonal antibodies could be an effective therapeutic against tumors with increased
expression of this receptor. EGFR-specific mAbs function similarly by disrupting pro-tumor
growth and survival signaling through binding to growth factor receptors, thus altering
their activation state or preventing ligand binding [208]. In addition, the specific binding
of antibodies can recruit immune cells to recognize and target tumor cells [209]. The
second pathway is indirect and acts by an antibody-dependent cellular cytotoxicity (ADCC)
mechanism. For example, natural killer (NK) cells can target mAb-treated HER2/neu-
overexpressing cells through the ADCC mechanism [210]. As for EGFR-targeted antibodies,
cetuximab proved to have ADCC activity against tumor cells, which was dose-dependent
on cell surface EGFR expression [211].

-Cetuximab (Erbitux, Merck Serono) was the first monoclonal antibody targeting the
EGFR receptor, a human–mouse chimeric anti-EGFR mAb with the human IgG1 constant
region [212]. It exhibits a strong affinity for human EGFR and effectively hinders ligand
binding, ultimately resulting in the suppression of receptor phosphorylation and down-
stream signaling pathways [213]. The primary effect of cetuximab binding to EGFR is
steric blockage of ligand access to the binding site in domain III of the receptor (Figure 3b,
Table 1). The ligand binding site in domain I is not affected by cetuximab, but EGF interacts
with both domains I and III to bind with high affinity and activate the receptor; therefore,
effective blocking of either domain is sufficient to inactivate EGFR [214]. In addition to
competitive inhibition, cetuximab binding with EGFR may also induce internalization and
degradation of the receptor [215].

In vitro studies showed that, in contrast to gefitinib, cetuximab inhibited proliferation
in EGFR wild-type NSCLC cell lines only but was not effective against cell lines carrying
activating EGFR mutations and could not inhibit the phosphorylation of mutant EGFR [216].
In other cancer cell types, cetuximab proved to be effective in KRAS wild-type, EGFR-
expressing gastric cancer cell line NCI-N87 and xenografts [217]. Although, in some studied
cases, treatment with cetuximab alone had no significant effect on cell growth rate in vitro,
in combination with other drugs, it could show a synergistic effect in cells originating from
different cancer types [218].

It was found that the inhibition of cell growth induced by blocking EGFR activation of
cetuximab deals with the induction of cell cycle arrest and apoptosis. Cetuximab induced
cell accumulation in the G1 phase and increased the expression levels of cell cycle inhibitors
p27KIP1 and p15INK4B in human oral squamous cell carcinoma cell lines [219]. A similar
effect was observed in SCCHN cell lines: cetuximab treatment decreased cell motility
and enhanced cell arrest in the G1 phase; also, the accumulation of p27KIP1 was observed
following cetuximab treatment [220]. In model NSCLC cell cultures, exposure to cetuximab
led to an increase in proapoptotic protein Bax and a decrease in the negative regulator
of apoptosis Bcl2. Thus, the increase of the Bax/Bcl2 ratio in cells following cetuximab
treatment most likely relates to the initiation of apoptosis [221].

The effectiveness of cetuximab was modulated by the addition of human blood serum
of healthy donors to the growth medium in vitro. The addition of 5% human blood
serum to cells contributed to a decrease in the antiproliferative activity of cetuximab in
the EGFR-overexpressing A431 cell line [222], and this effect correlated with a decreased
activity of ERK1/2 proteins and repression of cetuximab-induced G1S cell cycle transition
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arrest. The expression of 75% differently expressed genes, obtained by RNA sequencing,
restores to the no-drug level when human serum is added along with cetuximab. The
analysis of molecular pathways revealed that the addition of human serum reactivated
MAPK signaling pathways inhibited by cetuximab alone [90]. Interestingly, human serum
also modulated the effect of the HER2 monoclonal antibody trastuzumab on the HER2-
overexpressing cell line BT-474 [223].

Results of a phase II trial of cetuximab serving as a single agent in patients with
chemotherapy–refractory EGFR-overexpressing colorectal cancer showed it is well toler-
ated but has modest activity [224]. When utilized in combination with chemotherapy to
enhance overall effectiveness, the phase III study showed that for metastatic colorectal
cancer (mCRC) patients who did not respond to previous first-line fluoropyrimidine and
oxaliplatin treatments, cetuximab in combination with irinotecan improved response rate
(16.4% vs. 4.2% for irinotecan) and PFS (median, 4.0 months for cetuximab with irinote-
can vs. 2.6 months for irinotecan) [225]. Another phase III trial evaluated cetuximab in
combination with FOLFOX as an effective standard-of-care first-line treatment regimen for
patients with RAS wild-type metastatic colorectal cancer [226]. For patients with recurrent
and/or metastatic SCCHN, the addition of cetuximab to standard cisplatin/carboplatin
and 5-fluorouracil scheme showed an improved median PFS (5.5 months with cetuximab
vs. 4.2 months without cetuximab) and median OS (11.1 months vs. 8.9 months) in a
Chinese phase III trial [227]. Furthermore, for high-dose radiation therapy, it was shown
that its co-administering with cetuximab is an effective approach for managing locoregion-
ally advanced head and neck cancer, as it enhances locoregional control (24.4 months for
patients treated with cetuximab plus radiotherapy vs. 14.9 months for patients treated with
radiotherapy) and minimizes mortality rates, while not causing any additional adverse
effects typically associated with radiotherapy for SCCHN tumors [228].

Cetuximab has been approved by the European Medicines Agency and the FDA for
the use in patients with locally advanced SCCHN and in combination with irinotecan for
the treatment of mCRC. In the US, cetuximab has also been approved as monotherapy
for patients with recurrent or metastatic SCCHN and in patients with mCRC who cannot
tolerate irinotecan-based regimens [229,230]

However, several retrospective randomized studies provided evidence indicating that
administering mAbs-targeting EGFR, such as cetuximab, does not provide any benefits to
patients with advanced colorectal cancer with tumors containing activating mutations in
the KRAS and other RAS family genes [231,232].

-Panitumumab (Vectibix, Amgen, Inc., ABX-EGF) is a human monoclonal antibody
specifically targeted at EGFR. It has the same presumed mechanism of action as cetuximab,
i.e., binding to extracellular domain III of the EGFR molecule and preventing it from
activating through interaction with ligands (Table 1) [233]. However, panitumumab has a
higher affinity for binding with EGFR than cetuximab [234].

It has been shown that panitumumab completely prevents the formation of human
epidermoid carcinoma A431 xenografts in athymic nude mice. The drug also caused tumors
to completely dissolve in mice, even without additional treatment with chemotherapeutic
agents or radiation [235]. Treatment with panitumumab also inhibited tumor growth in
other human tumor xenografts with breast, renal, pancreatic, ovarian, and prostate tissues
of origin [236].

In a phase III clinical trial, panitumumab significantly improved progression-free
survival (8 weeks for panitumumab plus best supportive care vs. 7.3 weeks for best
supportive care) in patients with advanced colorectal cancer that had progressed after
standard chemotherapy and was also well tolerated [237]. Panitumumab in combination
with infusion fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) is proven to be more
effective than FOLFOX4 treatment alone in mCRC patients with KRAS wild-type tumors as
there was an improvement in PFS (9.6 months with FOLFOX4 plus panitumumab versus
8.0 with FOLFOX4 alone) and OS (23.9 vs. 19.7 months, respectively) [238].
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In metastatic colorectal cancer patients, panitumumab is currently approved for the
treatment of Ras wild-type tumors in combination with FOLFOX or FOLFIRI (5-fluorouracil,
leucovorin, and irinotecan) as first-line therapy; and as monotherapy after non-effective
chemotherapy treatment [239].

-Necitumumab (Portrazza, IMC-11F8) is another human monoclonal antibody against
EGFR with the same mechanism of action as the previous mAbs considered in this review
(Table 1) [240].

The drug effectively inhibited the growth of tumor cell lines of epidermal, pancreatic,
and colorectal origins with EGFR overexpression in vitro [241]. Additionally, necitumumab
has significant antitumor activity in various human xenograft tumor models and can
enhance the antitumor effects of irinotecan and oxaliplatin in colorectal cancer models [242].
In vivo, necitumumab significantly reduced the expression of CCND1 (cyclin D1) in the NCI-
H1650 model. Necitumumab alone, as well as in combination with cisplatin/gemcitabine,
significantly inhibited tumor growth of NSCLC models [243].

A phase III trial of necitumumab in combination with gemcitabine and cisplatin as first-
line therapy improved overall survival in comparison with only gemcitabine and cisplatin
in patients with stage IV NSCLC (11.5 months vs. 9.9 months) [244]. Necitumumab then
received approval in the USA for the use in combination with cisplatin plus gemcitabine
for the first-line treatment of squamous NSCLC [245].

9. Future Directions and Conclusions

Despite the obvious worldwide success of targeted drug applications against different
types of cancer, there are still challenges that have not been adequately answered. Each of
the next generations of EGFR-targeting drugs was designed to overcome drug resistance
of tumor to the previous generation or to reach those patients for whom the previous
generation did not initially work [246]. However, when the drugs are designed to target
tumors with specific mutations, they become no longer effective against wild-type EGFR,
thus leading to the abandonment of their use in a large patient population. Furthermore,
secondary resistance can occur against the third generation of drugs (for example, the
substitution of cysteine by serine at codon 797 in the ATP-binding site of the EGFR tyro-
sine kinase domain—C797S [247]). It is already forcing researchers to use combinatorial
chemistry strategies and test fourth-generation EGFR-targeting candidate molecules. This
ongoing dynamic resembles an arms race, wherein mutations arise, targeted therapies are
developed and applied, and, in response, subsequent secondary mutations of EGFR appear
in the tumor clones. The temporal benefit for the patient can span from several months to
several years; nevertheless, unfortunately, the tumor inevitably can develop resistance to
the targeted drugs used.

Therefore, alongside the pursuit of novel drugs that target resistance mutations, the
strategic advancement of combination therapeutic protocols seems to be a reasonable route
to take. This approach involves the integration of multiple drugs with distinct specificities
alongside conventional chemotherapy. Moreover, additional efforts are needed to explore
and implement methodologies aimed at enhancing tumor susceptibility to immunotherapy,
which has been recognized as holding unprecedented promise in conferring survival
advantages to susceptible patients.

An alternative area of investigation for potential solutions to EGFR inhibition re-
sistance is the activation of alternative receptor tyrosine kinase pathways, which may
circumvent or evade the EGFR signaling inhibition. Comparison of gene expression in
different tumor samples that do or do not respond to treatment with targeted drugs reveals
molecular pathways important for successful therapy [248]. This also opens up the possi-
bility of utilizing combinations of therapeutic agents to act on multiple molecular targets
simultaneously in order to inhibit cancer growth [249].

Thus, the current scientific problems for the therapy of EGFR-overexpressing tumors
deal with the finding of molecular markers associated with tumor sensitivity to the treat-
ment. The fact of EGFR-positivity (overexpression of the receptor and/or amplification
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of the gene encoding it), in principle, allows the narrowing down of the population to be
treated to a significant extent but has insufficient predictive power. For example, unlike
the EGFR gene expression level itself, which is a poor predictor of cetuximab treatment
response in colorectal cancer [250], a broader view of the quantitively measured activation
of relevant molecular pathways has shown promising results [251]. Thus, exploring the
underlying cellular and molecular mechanisms that cause resistance to EGFR inhibitor treat-
ments and utilizing personalized predictive approaches can reveal innovative strategies to
improve the efficacy of EGFR-targeted therapies.
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