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Abstract: Senescent cell accumulation has been observed in age-associated diseases including car-
diovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated
secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Thera-
pies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal,
have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical
models. Some senolytic clinical trials have already been completed or are underway for a number of
diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell
types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts,
immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senothera-
peutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells
and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell
types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and
clinical potential of senotherapeutics for cardiovascular diseases.
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1. Introduction

Age-related diseases, including cardiovascular diseases, are becoming more prevalent
due to the increasing older population worldwide [1,2]. These diseases cause morbidity
and mortality and contribute heavily to health care costs [3]. Consistent with this, epi-
demiological studies have shown that aging itself is a major predictor for many chronic
diseases, including cardiovascular diseases [4]. The drug arsenal targeting the risk factors
for cardiovascular diseases such as hypertension, diabetes, and hypercholesterolemia has
grown exponentially, and the prevalence and mortality rates of cardiovascular disease
have improved accordingly. However, even after strict lipid and hypertension control with
statins, angiotensin-converting enzyme (ACE) inhibitors, and angiotensin receptor blockers
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(ARBs), cardiovascular event rates have not dropped precipitously. This may be because
while early risk factor mitigation may be capable of attenuating the impact of fundamental
aging mechanisms that particularly relate to cardiovascular disease, many of these ap-
proaches fail to effectively modulate “already established” fundamental mechanisms of
aging, including senescent cell accumulation. Recognizing the importance of fundamental
aging processes in cardiovascular disease development pertains to many potential new
targets for pharmaceutical intervention, which may tip the scales to reduce the burden of
cardiovascular diseases.

Senescent cell accumulation is a fundamental aging process. Accumulating in vivo
and in vitro evidence indicates that cellular senescence contributes to chronic disorders
such as cardiovascular diseases [5–8], type 2 diabetes and other age-related metabolic
conditions [9–17], liver disease in association with hyperinsulinemia, metabolic syndrome,
age-dependent steatosis [18–20], idiopathic pulmonary fibrosis and other lung
disorders [21–23], kidney dysfunction in diabetic nephropathy and obesity [24,25], radiation-
induced and age-related osteoporosis (as distinct from estrogen deficiency-related osteo-
porosis) [26–29], endometrial and uterine dysfunction [30], cognitive dysfunction, anxiety
associated with obesity, dementias [31,32], and cancers and their complications [33]. Among
these detrimental effects of senescent cell accumulation, complications in the cardiovascular
system have been the subject of several recent studies. For example, senescent endothelial
cells (ECs) exhibit functional abnormalities, such as decreased expression of endothelial
nitric oxide (NO) synthase and increased expression of proinflammatory molecules, con-
tributing to vascular inflammation [34–36]. Senescent ECs and other senescent cell types
in the cardiovascular system share characteristics with other types of dysfunctional cells.
However, there is difference between senescent cells and other dysfunctional cell types that
potentially contribute to CVD: senescent cells are in a state of proliferative arrest, restricting
repair of damaged tissues. These and other findings point to the importance of research
into therapies directly targeting aging biology to alleviate age-associated diseases, reduce
healthcare burden, and improve the quality of life for older individuals. Interventions
known to enhance healthspan or extend lifespan in mice and other mammals, such as
caloric restriction, have been shown to decrease senescent cell burden [37]. We therefore
began to devise strategies for testing if selectively targeting and removing senescent cells
in vivo can delay, prevent, alleviate, or treat disorders and diseases related to fundamental
aging processes. Senolytic agents selectively eliminate those senescent cells that are tissue-
damaging. Although the impact of senolytics is now backed by considerable evidence from
preclinical studies and early clinical trials, a better understanding of cellular senescence in
different types of cells, developing clinically useful markers of senescent cell abundance,
and more data about the effects of these cells may speed the pace at which senolytics can
be translated into clinical application.

2. Molecular Mechanisms of Cellular Senescence

Human cells have limited replicative potential, as discovered by Hayflick and Moore-
head in 1961 [38]. They termed this loss of proliferative capacity “cellular senescence” and
suggested that human aging can occur at the cellular level. Cellular senescence as initially
discovered is related to telomeric dysfunction [39]. Telomeres are non-nucleosomal DNA-
protein complexes with 5′-TTAGGGG-3′ repetitive sequences in human cells. They are
located at both ends of chromosomes and protect and stabilize the genome and chromatin
structure. In organisms that have linear DNA, telomeres are depleted with each cell division
and restrict replicative potential, contributing to replicative cellular senescence [40]. Past a
critical threshold, telomere shortening and telomere damage (even without shortening),
are related to chronic DNA damage, with activation of cell cycle inhibitors, including
p53/p21CIP1/WAF1 or p16INK4a/Rb, that induce cell cycle arrest in the G1 phase. Apart
from telomeric dysfunction, DNA damage responses and subsequent cellular senescence
can also be triggered by stimuli including oncogenes, radiation exposure, and chemother-
apy [40]. Cellular senescence appears to be linked to a variety of senescence initiators,
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including DNA damage (by alkylating agents or radiation, causing accelerated telomere
attrition or mutations), oncogenes (Ras, Myc, etc.), reactive oxygen species (ROS), reactive
metabolites (ceramides, fatty acids, high glucose), mitogens, proteotoxic stress (protein ag-
gregation, unfolded protein response, mammalian target of rapamycin (mTOR) activation),
inflammation, damage-associated molecular pattern factors (DAMPs), pathogen-associated
molecular profile factors (PAMPs), progenitor cell dysfunction, and epigenetic changes,
among others [41,42]. These initiators might interact and amplify the detrimental effects of
each other and senescent cells are also known to produce senescence initiators. An example
is ROS, which causes DNA damage. Senescent cells formed due to this DNA damage
also have increased ROS production, leading to a feed forward cycle. In the CVD setting,
established risk factors such as angiotensin II (Ang II) [43], excessive insulin signaling [44],
and hyperlipidemia [45] contribute to increased ROS, DNA damage, and increased senes-
cent cell accumulation. Autophagy is critical for cellular homeostasis as well as cellular
senescence and apoptosis. Cellular senescence and autophagy are commonly associated
with detrimental processes including oxidative stress, DNA damage, telomeric dysfunction,
and oncogenic stress. In addition, cellular senescence and autophagy share a common
molecular mechanism: the mTOR pathway and lysosomal signaling. It is known that
elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger
cellular senescence and might contribute to CVDs [46].

Cellular senescence per se can contribute to tumor suppression. In response to DNA
damage, cells enter cell cycle arrest, which suppresses uncontrolled proliferation of dysfunc-
tional or cancerous cells. Cells that complete DNA repair can proliferate again. However,
cells in which DNA repair has failed are eliminated by apoptosis. Those cells that escape
such elimination become senescent and enter cell cycle arrest but are resistant to removal
by apoptosis due to senescent cell anti-apoptotic pathways (SCAPs) [47]. Senescent cells
can cause tissue dysfunction but remain viable and metabolically active. These cells can
hinder tissue repair. As a result, tissues with high senescent cell burden can become
dysfunctional. Furthermore, senescent cells can secrete pro-inflammatory, pro-fibrotic,
and pro-apoptotic factors, such as interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis
factor-alpha (TNF-α), and proteases such as plasminogen activator inhibitors 1 and 2 (PAI-1
& -2) or matrix metalloproteases (MMPs), elements of the senescence-associated secretory
phenotype (SASP) [48–51]. The SASP can induce immune cell attraction, anchoring, and
activation to remove senescent cells. As the immune system becomes dysfunctional with
increasing age, senescent cells can avoid such removal. Senescent cells can also express
“don’t eat me” signals such as the immune checkpoint programmed cell death protein 1 (PD-
1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and major histocompatibility
complex molecules (MHC class I). These markers of self-tolerance further hinder immune
system clearance. In addition, senescent cells can release IL-17, which activates IL-23 and
other factors within T lymphocyte subtypes that impede senescent cell removal. Therefore,
senescent cells can accumulate in tissues, cause chronic inflammation, and contribute to a
wide range of diseases.

3. Markers of Cellular Senescence

Markers that can be expressed by senescent cells include the cell cycle arrest proteins
p53/p21CIP1/WAF1 and p16INK4a/Rb, DNA damage-related factors such as gamma-H2AX
(γ-H2AX), p38 mitogen-activated protein kinase (p38MAPK) activity [52,53], telomere-
associated foci (TAFs) [54,55], and senescence-associated β-galactosidase activity (SA-βgal)
activity [56]. However, none of these markers are fully sensitive and specific. Indirect
ways of assessing senescent cell burden include assays of SASP factors in blood, tissues,
or cells. Examples of such SASP factors include interleukin-1α (IL-1α), IL-6, interleukin-8
(IL-8), IL-17, plasminogen activator inhibitors 1 and 2 (PAI-1, PAI-2), and profibrotic met-
alloproteases such as MMP-2, MMP-9, and MMP-12 [48]. Pregnancy-associated plasma
protein A (PAPP-A), a metalloprotease that increases insulin-related growth factor (IGF)
signaling by cleavage of IGF-binding protein 4, can be a SASP component [57,58]. In-
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hibition of PAPP-A by genetic modification was shown to increase lifespan in murine
models [59–61]. However, SASP factors are not reliable as senescence markers if used
individually because these molecules can be released by other cell types [62–67]. Another
strategy for estimating senescent cell burden is to combine assays and measurements as
a panel [68–70]. Among the first such blood composite score indicative of senescent cell
burden and effect of senolytic drugs was examined in a study of senolytics administered
to obese young adults with diabetes [71]. This composite panel of 10 blood SASP factors
was significantly reduced following administration of senolytics compared to baseline and
mirrored declines in senescent cell abundance in fat biopsies from these subjects. Many
others have published or are developing composite scores. An example is the 125 gene-
wide “SenMayo” panel, which uses genes identified from various age-related datasets in
a transcriptome-wide approach for assaying tissue samples by whole-transcriptome and
single-cell RNA-sequencing (scRNA-seq). This yields a senescence score that was reduced
in bone samples after genetic clearance of senescent cells in mice as well as in human
adipose tissue following pharmacological senescent cell clearance [72]. These data suggest
that a combination of markers in a panel can be used to estimate senescent cell abundance
across tissues and species.

With senolytic clinical trials underway, there is a need for biomarkers, “gerodiag-
nostics”, for following the therapeutic effects of these drugs. These should preferably be
measurable non-invasively in blood or other body fluids such as urine or saliva. Recent
studies have proposed quantifying p16 expression of CD3-positive T cells in peripheral
blood as a relatively non-invasive way to assess senescent cell burden [73,74]. Post hoc
analysis of the first clinical trial of senolytics revealed higher levels of the ‘geroprotective’
factor α-Klotho in urine after oral D+Q administration in each of 20 subjects with idiopathic
pulmonary fibrosis [75]. In addition to other SASP factors, senescent cells can release small
extracellular vesicles (EVs), including exosomes. Molecules in EVs obtained from the blood
could be novel gerodiagnostic markers [76,77]. The microRNA (miRNA) expression and
secretion profile of senescent cells has recently come into the spotlight [78,79]. These short,
non-coding RNAs are involved in post-transcriptional regulation. They may represent a
sensitive way to identify senescent cells.

The search for a single, common senescence marker for various senescent cell types
has to date not been successful. Senescent cells often express different molecules depending
on the initial trigger of senescence (e.g., oncogene-induced senescence [OIS] vs. therapy-
induced senescence [TIS]), the cell type that become senescent, how long the cells have
been senescent, and the tissue microenvironment). One approach to detect senescent cells
is to classify them by senescence markers, cell type, and localization, focusing on one
sub-group of senescent cells at a time. A recent example of this approach was in studies of
adipose tissue senescence induced by a high-fat diet, where upregulation of p21Cip1/Waf1

but not p16Ink4a was found [11,80]. Recent advances in single cell analysis, including single
cell or nuclear RNA-seq, flow cytometry, or flow mass cytometry (CyTOF), can reveal
information unavailable in bulk analysis of tissues. Cell subsets are already being classified
using cell surface markers in the field of immunology. An example is the monocyte subset
Ceacam1+Msr1+Ly6C-F4/80-Mac1+ [81] which has been shown to be critical for fibrosis.
Recently, CD153+PD-1+CD4+ T cells were identified as senescence-associated T (SAT)
cells [82] and a peptide vaccine targeting CD153 was successfully senolytic [83]. Classifying
senescence in cardiovascular system cells, such as ECs, vascular smooth muscle cells
(VSMCs), cardiomyocytes, immune cells, fibroblasts, and progenitor cells, will potentially
be valuable. For example, expression of adhesion molecules attracting immune cells, such as
intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-
1), has been found to increase in senescent endothelial cells. Although not as useful as global
senescence markers, these could be used as cell-type specific senescence markers together
with classical markers (Table 1). Ultimately, a goal of the field is to develop composite
scores of analytes not only in body fluids, but potentially also including questionnaire
data, physical findings, imaging, and wearable-device data. For the cardiovascular system,
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physiological indicators such as electrocardiogram, diastolic dysfunction measured by
echocardiogram, endothelial function assayed by ankle brachial index (ABI) test, skin
perfusion pressure measurement (SPP), flow dilation (FMD), near-infrared spectroscopy
(NIRS), peripheral microvascular endothelial function (PMEF), and functional thrombus
assays may also useful. Ideally, such a composite score might be able to estimate senescent
cell burden, track fundamental aging mechanisms, predict disorders and diseases linked
to these mechanisms, select the best anti-senescence interventions for each patient, and
perhaps even be acceptable to regulatory agencies as primary outcomes of clinical trials.
Developing such assays and composite scores across multiple clinical trials of geroscience
interventions has been a priority of the Facility for Geroscience Analysis of the NIH
Translational Geroscience Network (R33AG 61456).

Table 1. Possible cell-type specific senescence markers for classifying senescent cells in the cardiovas-
cular system. The ↑ and ↓ symbols indicate increases or decreases, respectively, in protein synthesis
or activity.

Cell Type SASP Factors Possible Cell-Type Specific Senescence Markers and Hallmarks

Endothelial cells
IL-1, IL-6, IL-8, Il-15, MCP-1, TNF-α,
SELP, ANGPTL-2, HTRA4, PCNA,

CHEK4, and VEGF

Down-regulation of nitric oxide (NO) and eNOS

Prothrombotic metalloprotease (PAI-1, and PAI-2) activity

Expression of adhesion molecules (ICAM-1, VCAM, and PECAM-1)

Production of Angiotensin II (Ang II) and Endothelin 1

IGF binding protein expression, such as IGFBP-5

microRNA34a

Vascular smooth
muscle cells

IL-1a, IL-6, IL-8, TGF-ß1, and MMPs,
CCL-3/CCL-4, and MCP-1

Calcification markers (OPN, OPG, Runx-2, BMPs, and ALP) ↑
Fibrosis markers (elastase ↑, collagen ↓)

Muscle contraction markers (α-SMA ↓, SM-MHC ↓and calponin ↓)
microRNA34a

Cardiomyocytes IL-6, EDN3, TGF-ß2 and GDF15

Fatty acid oxidation enzyme (CPT1) activity ↓
Glutathione reductase activity ↓
PPARα and PGC-1α activity ↓
Troponin I phosphorylation ↓

Macrophages IL-1ß, IL-6, TNF-α, and MMP-3, and
MMP-13 TM1, SIPR1, TAM, MERTK and BRD4

T cells

IL-6, TNF-α, IFN- γ and OPN

Perforins and granzymes ↑
Down-regulation of CD27 and CD28

CD4+ CD44high CD62Llow PD-1+ CD153+

Fibroblasts

Myofibroblast markers (POSTN, PARP1, IL-6, IL-13, THBS1, and
TGF-ß1)

Matricellular protein (CCN1) ↑

4. Detrimental Effects of Certain Types of Senescent Cells in Cardiovascular Diseases

Accumulating evidence from in vitro and in vivo studies has revealed the molecular
mechanisms behind senescent cell contribution to onset and progression of cardiovascular
disorders. Here, we summarize the molecular patterns leading to cellular senescence and
how various senescent cell types in the cardiovascular system can contribute to disease.
(Figure 1, Table 2).
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Figure 1. Consequences of senescent cell accumulation in cardiovascular diseases and the mechanisms
behind disease development.

Table 2. Senescence initiators, pathological processes, and associated cardiovascular diseases.

Cell Type Initiators Pathology Diseases

Endothelial cells

Telomere shortening
Shear stress from blood flow
Dyslipidemia
AngII signaling
LDL oxidation
Hyperinsulinemia
Doxorubicin
Irradiation
ROS

Local and systemic
inflammation
Impaired vascular relaxation
Hindered blood flow
regulation
Hypercoagulability
Angiogenesis ↓
Expression of adhesion
molecules ↑

Hypertension
Atherosclerosis
Peripheral artery disease
Ischemic heart disease

Vascular smooth muscle cells

Telomeric dysfunction
AngII signaling
Dyslipidemia
Hyperinsulinemia
ROS

Vascular calcification
Fibrosis
Impaired smooth muscle
contraction
Hindered blood flow
regulation
Atherosclerotic plaque
vulnerability

Hypertension
Aortic aneurysm
Aortic dissection
Atherosclerosis
Myocardial infarction



Cells 2023, 12, 1296 7 of 37

Table 2. Cont.

Cell Type Initiators Pathology Diseases

Cardiomyocytes

Pressure overload
Hypoxia
Cardiotoxic drugs
Irradiation
ROS

Cardiac dysfunction
Cardiac hypertrophy
Fibrosis

Heart failure
Cardiomyopathy
Ischemic heart disease
Arrhythmias

Immune cells
Dyslipidemia
Cell debris
ROS

Inflammation
Impaired cardiac electrical
conduction

Atherosclerosis
Heart failure
Arrhythmias

Fibroblasts

Pressure overload
Hypoxia
Cardiotoxic drugs
Irradiation
ROS

Fibrosis
Cardiac dysfunction
Cardiac hypertrophy

Heart failure
Cardiomyopathy
Arrhythmias

4.1. Endothelial Cells

Endothelial cells are constantly exposed to circulating blood and pathogenic stimuli
and flow/shear stress that predispose them to damage and induce senescence. Conse-
quently, senescent cell burden is high in well-vascularized tissues with many endothelial
cells [84]. Endothelial cells are also one of the first cell types to manifest increasing effects
of biological age [85]. PMEF as an index of vascular aging correlates better with advanced
vascular aging as estimated by artificial intelligence (AI) analyses of ECGs than with actual
age. This suggests that vascular aging as manifested by endothelial function is associated
with accelerated physiological aging [86]. The hemodynamic environment in blood ves-
sels is an important factor, evidenced by the fact that endothelial cells exposed to high
shear stress have high cellular turnover that predisposes to replicative senescence [87,88].
Lifestyle-related metabolic conditions, such as dyslipidemia, are risk factors for cardiovas-
cular diseases and promote endothelial senescence. Dyslipidemia propagates endothelial
cell senescence due to increased oxidation of low-density-lipoproteins [45]. Type 2 diabetes
may also cause endothelial cell senescence due to increases in circulating glucose and
excessive insulin signaling [44]. Oxidized low-density-lipoproteins and insulin activate the
phospho- inositol 3-kinase (PI3K)/RACα serine/threonine protein kinase (AKT1) signaling
pathway, inhibiting forkhead box protein O(FOXO) 3A, resulting in reduced manganese
superoxide dismutase (SOD) activity and a subsequent increase in reactive oxygen species
(ROS). In vivo and in vitro studies have demonstrated that high glucose levels promote
endothelial cell senescence by NADPH oxidase-, SOD-, and sirtuin- (SIRT) mediated ROS
accumulation and increased pro-inflammatory SASP factor production [89,90]. ROS trig-
ger the p53/p21CIP1/WAF1 DNA damage response pathway, inducing proliferative arrest
and cellular senescence. Chemotherapeutic drugs such as doxorubicin are also known to
increase mitochondrial ROS [91] and production of arterial SASP factors [92].

Senescent ECs exhibit functional abnormalities such as decreased expression of va-
soprotective factors and increases in inflammatory cytokines and adhesion molecules.
Senescent ECs also dysregulate blood flow and cause barrier dysfunction. They do not
proliferate, impeding capacity to repair the blood vessel lumen. ECs produce the potent
vasodilatory molecule nitric oxide (NO), which in addition to its vasodilatory effect me-
diated by VSMC relaxation, also reduces endothelial expression of adhesion molecules,
improves barrier function, and prevents coagulation [93]. Furthermore, NO may have
a protective effect against cellular senescence [94]. Consequences of senescence-driven
EC dysfunction include reduced vascular dilation, partly due to increased p53 activity
leading to decreased active endothelial nitric oxide synthase (eNOS) levels [95]. Inhibiting
p53 activation in endothelium has been demonstrated to increase eNOS production [96].
Evidence exists that high glucose levels reduce telomerase activity, length, and phospho-
rylation of eNOS, thereby reducing NO production [97]. Persistent senescent endothelial
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cells can induce increases in Ang II [98] and endothelin 1 (ET1) levels [99], contributing
to elevated blood pressure. Reduced NO synthesis and increased Ang II levels, along
with studies of senescence markers, connect EC senescence to a common cardiovascular
risk factor, hypertension. As the endothelium effectively is an endocrine tissue, senescent
ECs may cause wide-ranging systemic consequences [100]. Reduced vasodilation due to
senescent endothelial cell accumulation has also been associated with heart failure with
preserved ejection fraction (HFpEF) [101]. Senescent endothelial cells exhibit increased
production of ROS and certain SASP markers, such as intercellular adhesion molecule-1
(ICAM-1) [102,103], IL-1 [104], IL-6 [105], IL-8 [106], and MCP-1 [106], facilitating immune
cell infiltration of tissues. Senescent ECs cause increased thrombosis risk and susceptibility
to atherosclerosis due to increased plasminogen activator-1 (PAI-1) expression as well as
reduced endothelial nitric oxide synthase (eNOS) [107]. Cyclo-oxygenase activity is altered
in senescent ECs, as demonstrated by decreased prostaglandin I2 levels and increased
thromboxane A2 production. The SASP factors considered above, including inflammatory
proteins and growth factors, are recognized risk factors for atherosclerosis. Unsurprisingly,
senescent ECs are found in high numbers in human atherosclerotic plaques [5]. Recent
studies have identified endothelial cell senescence as a contributor to pulmonary hyper-
tension. EC senescence seems to drive dysfunctional phenotypes through upregulation
of several canonical SASP factors, such as IL-6, TNF-α, and PAI-1, leading to dysfunction
in other vascular cells [108,109]. Angiogenesis is another aspect of endothelial function,
protecting tissues against ischemia in ischemic heart disease and peripheral arterial dis-
eases, primarily through vascular endothelial growth factor (VEGF) [110], fibroblast growth
factor (FGF) [111], and hypoxia-inducible factor (HIF) 1α [112]. Senescent ECs decrease
expression of these factors in vessels due to signaling through the p53-p21 senescence
pathways, as evidenced by increased angiogenesis after this pathway is inhibited [96].
Angiogenesis may be associated with the development and vulnerability to atherosclerotic
plaques. Further studies investigating this possibility are needed.

4.2. Vascular Smooth Muscle Cells

Vascular smooth muscle cells (VSMCs) are the main drivers of atherosclerosis, but
senescent VSMCs appear not to be involved in initial plaque formation; rather, they
may primarily lead to increased plaque size [113]. Accumulation of senescent VSMCs
in atherosclerotic plaques is evidenced by reduced proliferation [114], larger and flatter
cell morphology [115], increased expression of p16 INK4a and p21 CIP1/WAF1 [116], and
shortened or dysfunctional telomeres [116]. VSMC senescence can be caused by many fac-
tors, such as chronic inflammation, dysregulated local calcium metabolism, and increased
oxidative stress. Conditions considered to be significant risk factors for atherosclerotic
cardiovascular disease such as diabetes, hypertension, dyslipidemia, and smoking increase
reactive oxygen species (ROS) in the vessel wall [117]. One significant source of ROS is
nicotinamide dinucleotide phosphate (NADPH) oxidases (NOXs) [118]. Accelerated senes-
cence of aortic VSMCSs, increased DNA damage, and a proinflammatory secretory profile
were found in young mice with NOX4 overexpression, with the suggested mechanism
being increased superoxide and hydrogen peroxide production [118]. ROS have also been
tied to accelerated telomere depletion, which potentially contributes to the finding that
VSMCs covering atherosclerotic plaques exhibit telomere shortening [116]. VSMCs are
influenced by neural and endocrine signaling, and crucially, by paracrine mediators from
ECs. The renin-angiotensin-aldosterone system (RAAS) is a regulator of VSMC activity,
and high levels of Ang II are connected to VSMC senescence [43]. Inhibition of RAAS
signaling may attenuate premature senescence and proinflammatory cytokine production
caused by Ang II [43]. Other signals driving VSMC senescence are chronic exposure to
high levels of the coagulation factor Xa [119,120], leading to chronic inflammation and
stimulating p53 and insulin-like growth factor binding protein 5 (IGFBP-5) expression [121].
The monocyte chemotactic protein-1 and transforming growth factor-ß signaling pathways
are additional players in VSMC senescence [122]. There are proteins that may delay cel-
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lular senescence, such as sirtuins [123]. In mice, sirtuin protein 6 (SIRT6) may counteract
onset of senescence in VSMCs. Other beneficial effects of sirtuin activation may be in-
creased atherosclerotic plaque stability, protection against telomeric damage, and reduced
inflammatory cytokine production [124].

As VSMCs senesce, they can lead to increased production of proinflammatory proteins
such as IL-1α, IL-1β, IL-6, IL-8, IL-18, and TNF-α [125]. These SASP factors and reduced
anti-inflammatory protein expression drive chemotaxis of immune cells and increase en-
dothelial cell adhesion molecule expression. Collagen production by senescent VSMCs and
surrounding cells is consequently reduced, making atherosclerotic plaques more vulnerable
to rupture [126–128]. Moreover, senescent VSMCs have increased production of elastase
and other matrix-degrading proteases and add less collagen to the surrounding extracel-
lular matrix (ECM) [129]. The contractile capacity of aged VSMCs is reduced [130] due to
reduced expression of proteins involved in muscle contraction, such as α-smooth muscle
actin (α-SMA), smooth muscle myosin heavy chain (SM-MHC), and calponin [131,132]. Ion
channel types on the cellular membrane change: their numbers decrease and responses
to mediators secreted by endothelial cells are diminished [131,132]. These changes may
contribute to hypertension due to blood flow dysregulation and arterial stiffness. Senescent
VSMCs may further contribute to this stiffness due to increased production of osteogenic
mediators such as osteopontin (OPN), osteoprotegerin (OPG), runt-associated transcription
factor 2 (Runx-2), bone morphogenetic protein 2 (BMP-2), and alkaline phosphatase (ALP)
as a response to oxidative stress and inflammation [125,133]. Attenuators of this calcifica-
tion include myostatin, an activator of the mTOR pathway that reduces osteogenetic factor
expression [134]. Interestingly, no correlation was found between p21-expressing VSMCs
and pulmonary hypertension, suggesting that senescent VSMCs may not be a primary
driver of this disease [135].

4.3. Cardiomyocytes

As cardiomyocytes are terminally differentiated, post-mitotic cells in adult humans
(with a yearly renewal capacity of less than 1% [136]), senescence in cardiomyocytes is
challenging to define precisely compared to proliferative cells. Evidence from animals and
humans has indicated that post-mitotic cardiomyocyte senescence is mediated by length-
independent telomeric damage [54,137]. In mice, it has been reported that cardiomyocyte
size, ROS production, and p53 or p16Ink4a expression increases with chronological age
together with telomere attrition [54,138]. These findings are signs of cellular senescence
also encountered in senescent normally proliferating cell types. In addition to biological
aging, senescent cardiomyocytes may be implicated in multiple pathologies, including dys-
functional remodeling after myocardial infarction [139] and hypertrophic cardiomyopathy.
In heart failure due to sustained pressure overload, p53-expressing cells were present in
increased numbers. Senescent cell accumulation was shown to inhibit Hypoxia-Inducible
Factor (HIF)-1 activity and impair cardiac angiogenesis and systolic function [112]. Car-
diomyocyte remodeling is initiated by p53-independent mitochondrial activation and is
characterized by hypertrophy, but continuous stimuli from volume overload led to p53-
dependent mitochondrial inhibition, morphological elongation, and heart failure [140].
Cardiotoxic drugs such as doxorubicin can induce premature senescence in cardiomy-
ocytes as evidenced by increases in p16Ink4a and p53/p21Cip1/Waf1 expression, increased
SA-ßgal signaling, decreased cardiac troponin I phosphorylation, and decreased telom-
erase activity [141,142], potentially contributing to doxorubicin-induced cardiomyopathy.
Paracrine mediators from ECs, fibroblasts, and immune cells are possibly also drivers of car-
diomyocyte senescence. ECs promote cardiomyocyte maturation during infancy through
growth factors such as platelet-derived growth factor (PDGF). With increasing age, senes-
cent ECs instead drive inflammation and senescence in cardiomyocytes through release of
factors such as tumor growth factor-β (TGFß) and IL-6. Decreased NO production by senes-
cent ECs directly exacerbated cardiomyocyte contractility by disrupting the fine regulation
of excitation–contraction coupling, dysregulating autonomic signaling, and impacting mito-
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chondrial respiration in addition to vascular-dependent aspects such as increasing vascular
stiffness, inflammation, thrombosis, and impairment of angiogenesis [143]. Consistent
with this, endothelial senescence has been demonstrated to play a key role in heart failure.
Senescent fibroblasts also secrete these markers, along with TNF-α and IGF-1. Immune
cells such as macrophages may drive senescence by producing factors such as IL-1ß. SASP
factors from adipose tissue are also involved in cardiomyocyte aging and heart failure [144].

Senescent cardiomyocytes produce SASP factors, including proinflammatory cytokines
and chemokines, growth modulators, angiogenetic factors, and matrix metalloproteinases
(MMPs) [145]. Examples include CCN family member 1 (CCN1), interleukins (IL1α, IL1β,
and IL6), TNF-α, MCP1, endothelin 3 (Edn3), TGFβ, and growth and differentiation factor
15 (GDF15) [54,146]. These factors can contribute to cardiac remodeling and dysfunction.
As cardiomyocytes consume more energy than most other types of cells, well-functioning
cellular metabolism is essential for homeostasis. Dysfunctional metabolism may con-
tribute to cardiomyocyte senescence during aging and the development of various diseases.
When cardiomyocytes become senescent, p53 upregulation shifts the cell toward glucose
metabolism. This increases activation of the insulin growth factor receptor, promoting
senescence and increasing the release of SASP factors. Age-related declines in mitochon-
drial enzyme levels may also cause further toxicity due to metabolite buildup. For example,
carnitine palmitoyltransferase 1 (CPT1), one of the rate-limiting enzymes in the fatty acid
oxidation and glucose oxidation pathways, has been shown to be decreased in cardiomy-
ocytes of aging rats [147]. In addition, expression of other regulators of fat metabolism,
such as peroxisome proliferator-activated receptor α (PPARα) and PGC-1α, is also reduced
with age [148]. As these enzymes decrease with age, consequent intracellular lipid buildup
may induce senescence. Core metabolism-regulating enzymes such as AMP-activated
protein kinase (AMPK), NAD+-dependent sirtuins, FOXOs, and mammalian target of ra-
pamycin (mTOR) play prominent roles in driving or inhibiting cardiomyocyte senescence.
AMPK activation is reduced in aged myocardial tissues, and activation of AMPK improves
mitochondrial dynamics, reduces ER stress, improves the function of cardiomyocytes,
and represses cardiomyocyte senescence [149–151]. Sirtuins are NAD+-dependent cell
metabolism and senescence regulators, and contractile dysfunction is linked to NAD+
depletion [152]. Increased mTOR activity, on the other hand, has been linked to pathologic
cardiomyocyte hypertrophy.

4.4. Immune Cells

Immune cells play a prominent role in CVDs, as demonstrated by a report show-
ing that atherosclerotic plaques with high macrophage content were more vulnerable to
rupture [153–155]. The detrimental effects of immune cells may partly be due to SASP secre-
tion that may increase inflammatory cell migration and cause local damage. For example,
the SASP directly drives inflammation through IL-1α translocation to the cell surface, which
activates neighboring VSMCs, ECs, and macrophages, causing the spread of inflammation,
and promotes atherosclerosis through secondary proinflammatory cytokines [122].

Myocardial cellular composition includes resident immune cells such as subsets of
leukocytes encountered in the healthy heart. In a recent study, flow cytometry of cardiac
tissue showed approximately 103 leukocytes per milligram of tissue in the steady state
and 3380 ± 1279 CD45+ cells per cubic millimeter of tissue. Three-dimensional recon-
structions of immunohistochemistry images detected CD45+ cells even within the healthy
myocardium. Interestingly, cardiac muscle contained 12 times more leukocytes per mil-
ligram of tissue compared to skeletal muscle. Of all the leukocytes found in the healthy
heart, only ∼13% were in direct contact with the bloodstream. Fundamental changes in
cardiac leukocyte composition occur over time, affecting macrophages and T cells. The
resident cardiac macrophage population (primarily CD206+ cells) significantly diminishes
with aging, being replaced by granulocytes. Despite the reduction in macrophage numbers,
aging does not affect the ratio of the F4/80+CD206+ and F4/80+CD206− subsets. Still, a
slight increase in C-C motif chemokine receptor 2-(CCR2)-expressing macrophages was
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observed in the hearts of 12- to 15-month-old animals, suggesting possible macrophage
replenishment [156]. Cardiac macrophages have been reported to improve electrical con-
duction in the atrioventricular node, evidenced by cells being fused together with elongated
macrophages expressing connexin-43 in the adult heart. Using the Cd11bDTR mouse model,
macrophage ablation was shown to cause progressive atrioventricular blockage. These
findings elucidate the role of macrophages in normal and aberrant cardiac conduction [157].
Macrophages lodge within the healthy myocardium phagocytose cell components, in-
cluding mitochondria, of damaged cardiomyocytes. Immune system aging may increase
formally senescent immune cell burden, potentially contributing to morbidity and mor-
tality. After myocardial infarction, cellular debris from dead cardiac cells is cleared by
neutrophil and macrophage phagocytosis. Depletion of cardiac macrophages results in
defective elimination of mitochondria from myocardial tissue, inflammasome activation,
impaired autophagy, abnormal mitochondrial accumulation in cardiomyocytes, metabolic
alterations, and ventricular dysfunction [158]. With increasing age, cardiac macrophages
appear to become senescent-like, starting to secrete damaging matrix metalloproteinases
(MMPs) and CCL2, both shown to drive cardiomyocyte hypertrophy. The pathological
effects of immunosenescence on CVDs can be further exacerbated by increased levels of
osteopontin (OPN) and/or visceral obesity.

A recent study demonstrated that macrophages are the most common p16Ink4a/SA-
βgal-positive cells accumulating in aging mice [159]. In the CVD setting, leukocytes with
short telomeres, a sign of senescence, have been found in atherosclerotic coronary arter-
ies. Senescent-like macrophages appear to have increased SA-β-Gal activity and p53 and
p16 INK4a expression, display impaired cholesterol efflux, and exacerbate atherosclero-
sis [160,161]. Foamed macrophages exhibiting senescence markers may possibly secrete in-
flammatory cytokines, chemokines, and metalloproteinases in atherosclerotic plaques [162].
There are three distinct immune cell types in atherosclerotic plaques, each with a different
morphology when analyzed by transmission electron microscopy (TEM). These three are
the elongated, vacuolated cells located in the endothelial layer, spindly foam cells with his-
tological properties of VSMCs, and large foamy cells resembling lipid-loaded macrophages
producing X-galactosidase (X-Gal) crystals [162]. Oxidized low-density lipoprotein (LDL)
inhibits macrophage proliferation and migration, induces cellular senescence, and pro-
motes the secretion of inflammatory factors such as TNF-α, monocyte chemoattractant
protein-1(MCP-1), and IL-1β, possibly establishing a positive feedback loop [163].

Besides macrophages, senescent-like T cells may also be involved in the pathogenesis
of chronic inflammatory diseases, including vascular diseases [82]. In T cells, oxida-
tive stress reduces telomerase activity, causing a T cell senescent-like state and creating
proinflammatory phenotypes within plaques [164–166]. Senescent-like T cells with the
CD8+CD57+CD27−CD28null phenotype produce large amounts of IFN-γ and TNF-α and
may promote inflammation in atherosclerotic disease [167]. Furthermore, telomere short-
ening in T cells has been observed in patients with atherosclerosis. Terminal restriction
fragment (TRF) analysis has indicated that the mean length of the TRF in leukocytes of
coronary artery disease (CAD) patients is shorter than in controls with no family his-
tory of CAD [168]. It is still unclear whether senescent-like T cell accumulation is the
cause or the result of atherosclerosis; however, senescent T cells have been implicated
in damaging VSMCs and ECs by producing perforin and granzymes, which may drive
atherosclerosis [126]. Senescent-like T cells also secrete IFN-γ, which activates macrophages
and increases metalloproteinase production [169]. The resulting ECM destruction may
again play a part in atherosclerosis [46]. During aging, T cells accumulate potentially
inflammatory cholesterol. The cholesterol efflux pathways behind this accumulation sup-
press T cell apoptosis and cause a senescent-like state, contributing to atherosclerosis in
middle-aged mice [170]. Senescent T cells have been reported to drive hypertension. A
higher frequency of CD57+CD28−CD8+ T cells and increased expression of CXCL11 has
been noted in patients with hypertension compared to healthy controls, suggesting that
immunosenescent cytotoxic CD8+ T cells are linked to hypertension [171]. Senescent CD4+
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T cells producing interferon-gamma (IFN- γ) are found in high numbers in patients with
acute coronary syndromes and may contribute to decline in myocardial function. Senes-
cent CD8+ T cells have been connected to increased mortality six months after suffering
a myocardial infarction [172]. In HIV-positive women, they were associated with carotid
artery disease, and in CMV-seropositive patients, their numbers correlated with worsening
left ventricular function [173]. IFN-γ-producing CD28null CD4+ T cells were shown to
accumulate in lymph nodes draining the heart of aged mice, and implanting these cells
to young mice caused inflammation [156,174]. It has also been speculated that senescent
CD4+ T cells might infiltrate the heart and promote inflammation and an increased stress
response, causing heart failure [175]. Senescent CD57+CD8+ T cells have been observed in
patients with acute myocardial infarction (MI) in higher concentrations than controls, and
their numbers correlate with post-MI cardiovascular mortality [172]. Perhaps senescent cell
IFNγ-driven IL-17 secretion may alter IL-23 levels and impact T lymphocyte subsets and
contribute to post-MI dysfunction.

4.5. Progenitor Cells

Endothelial progenitor cells (EPCs) from the bone marrow can participate in postnatal
neovascularization and vascular repair [176–178]. Declines in EPC function, proliferation,
and telomere length are potentially detrimental to vascular EC function and contribute to
reduced neovascularization and atherosclerosis [179,180]. In vitro, senescent EPCs form
fewer capillaries and grow more slowly than non-senescent controls [181]. Senescent EPCs
may impede vascular healing and worsen age-related vascular diseases.

Cardiac progenitor cells (CPC’s) can differentiate into cardiomyocytes, VSMCs, and
ECs, and their myogenic potential is especially important since differentiated cardiomy-
ocytes have low proliferative capacity. One characteristic of CPCs is expression of the
protein c-kit; in the adult heart, only approximately 2% of the cells express this protein.
Senescent CPCs accumulate in the heart right atrial appendage [7] and most CPCs in
human hearts become senescent in old age [7]. Patients with cardiac diseases, particu-
larly ischemic heart diseases, have damaged cardiomyocytes and may require myocardial
regeneration from progenitor cells. The increasingly senescent CPCs may not be able to
maintain homeostasis, repair damage, or regenerate after injury [182–184]. In chronic heart
failure, senescent CPCs may hinder myocardial ability to regenerate and cause further
fibrotic remodeling.

Senescent CPCs can produce proinflammatory and profibrotic SASP components such
as IL-1ß, IL-6, IL-8, PAI-1, and MMP-3 [51]. These paracrine mediators spread senescence,
as shown by conditioned media from senescent CPCs causing an increase in senescence
markers in a non-senescent CPC population [7].

Cardiac tissue obtained from nonaged (50- to 64-year-old) patients with type 2 di-
abetes mellitus (T2DM) and without DM (NDM) and post-infarct cardiomyopathy had
higher ROS production in T2DM, which was associated with an increased number of
senescent/dysfunctional T2DM-human CPCs with reduced proliferation, clonogenesis/
spherogenesis, and myogenic differentiation versus NDM-CPCs in vitro. Moreover, T2DM-
CPCs expressed a pathologic SASP [185].

Further studies are needed to more fully elucidate the characteristics of senescent
EPCs and CPCs and their role in CVD development. As of today, consensus about methods
for identifying these cells and their function has not been reached. As discussed above,
several groups have independently reported that senolytic administration improves CPC
function and have suggested that progenitor cell senescence may become a target for future
CVD interventions.

4.6. Fibroblasts

Cellular senescence was originally discovered by L. Hayflick et al. using fibroblasts [38].
In the cardiovascular system, fibroblasts may be the most abundant cell type. Increased
biological age has been linked to fibroblast senescence, evidenced by fibroblasts containing
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X-Gal crystals in the pericardium. Recent studies have reported that senescent biomarkers,
including p16Ink4a and p21Cip1/Waf1, were increased in post-myocardial infarction mouse
hearts, and costaining of α-SMA with p53 or p16 supports the possibility that senescent
myofibroblast numbers are increased in infarct-border regions [186,187]. Senescent cardiac
fibroblast accumulation was also noted in murine models of overload-induced cardiac
hypertrophy. Senescence markers such as p16Ink4a, p21Cip1/Waf1, and SA-ßgal were higher
in cardiac fibroblasts (CF), up to 20 times compared to sham models. These senescent cells
accumulated within fibrotic areas [188]. Induced cardiac hypertrophy in transgenic mice
with high ß1-adenoreceptor expression also increased the number of CFs expressing these
three senescence markers. In heart biopsies from patients with idiopathic cardiomyopathy,
there were significant increases in p16INK4a, p21CIP1/WAF1, and SA-ßgal positive cell popu-
lations. Another group found that heart tissue from patients undergoing ablation for atrial
fibrillation (AF) exhibited increases in senescence markers co-localized with vimentin and
α-SMA. Senescent fibroblasts were found to accumulate in the adventitial layer of blood
vessels in the lungs of a pulmonary hypertension mouse model [189,190]. Another recently
discovered marker of CF senescence is osteopontin (OPN) from peripheral adipose tissue,
which potentially contributes to cardiac aging [191].

When activated by injury, resident cardiac fibroblasts (CFs) may transition into being
myofibroblasts with α-smooth muscle actin expression, possibly helping to attenuate
injury due to increased production of extracellular matrix (ECM) components. During
and after repair, these myofibroblasts may mature into matrifibroblasts or return to their
initial state. With continuous stress, CFs can undergo apoptosis or develop a senescent-
like state with increased cell cycle-arresting proteins and SASP expression. Senescent
CFs and myofibroblasts have been suggested to drive pathologic fibrosis and can be
identified through their increases in platelet-derived growth factor, vimentin, and α-smooth
muscle actin co-localized with senescence markers. Senescent CFs may contribute to
cardiomyocyte senescence through paracrine signals and extracellular matrix modulation
(ECM) [192]. Senescent fibroblasts also secrete IL-33, which attenuates cardiomyocyte
senescence after hypoxic injury [193]. Fibroblasts normally express integrins, crucial for
immune cell adhesion and surveillance and, through paracrine signaling to the ECM and
the actin cytoskeleton, may contribute to ECM homeostasis [194]. Senescent fibroblasts and
myofibroblasts are abundant within fibrotic areas and are involved in fibrotic myocardial
pathologies. Interestingly, inducing senescence prematurely by CCN-1 decreases fibrosis in
murine models [188]. This is in line with another finding demonstrating that a transient
rise in the number of senescent fibroblasts reduces the fibrotic response after cardiac
injury [195]. This may be due to senescent cells suppressing non-senescent fibroblast
proliferation. Another explanation may be that senescent fibroblasts cannot proliferate
and therefore cannot enlarge fibrotic areas. Oxidative stress may also be a contributor
to AF development [196] and SASP factor release from senescent fibroblasts may worsen
this condition.

5. Therapies Targeting Senescent Cells

The senescent cells that accumulate with increasing age are damaged, dysfunctional
cells without the proliferating capacity needed to repair tissue. These cells can promote
chronic inflammation by producing SASP factors. The geroscience hypothesis is that target-
ing “hallmarks of aging”, such as cellular senescence, may delay, prevent, alleviate, or treat
multiple chronic diseases [197]. Furthermore, since cellular senescence and other underly-
ing causes of these age-associated chronic diseases (the hallmarks of aging) are interlinked
with each other, intervening against any one of them may affect most or all of the other
aging processes, as expressed in “The Unitary Theory of Fundamental Aging Mechanisms”,
built on the Geroscience Hypothesis [197]. This theory is strengthened by the observation
that about 80 percent of older adults have at least one chronic disease and 68 percent
have at least two [198]. In addition to these diseases, multiple physical and mental health
conditions, the geriatric syndromes, are associated with advanced age, including frailty,
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sarcopenia, cognitive impairment, and urinary incontinence. Advanced biological age is
also associated with loss of physical resilience, such as against infection [199,200], injury,
or surgery or dampened vaccination responses. Many or most of these syndromes might
be alleviated by targeting the hallmarks of aging [201]. Novel strategies, such as senolytic
agents (Figure 2), may therefore allow targeting aging mechanisms that contribute to caus-
ing multiple age-associated diseases. Studies are needed to test if senescence-targeting
drugs added to existing disease-specific treatment regimens are effective in a potentially
more than additive manner.

5.1. Elimination of Senescent Cells (Senolytics)

We tested if senescent cells with DNA damage and a pro-apoptotic SASP avoid under-
going apoptosis due to activation of senescent cell anti-apoptotic pathways (SCAPs) [47].
Bioinformatics analyses of proteomic data from different types of senescent and non-
senescent human cells led to identification of such SCAPs. Key SCAP nodes were then
inhibited using small interfering RNAs (siRNAs). This resulted in the 30 to 70% of senes-
cent cells that are pro-apoptotic and tissue-damaging being eliminated through apoptosis.
Different types of human pro-apoptotic senescent cells depend on different SCAPs for
survival. Among others, these pro-survival signals in different senescent cell types include
ephrin-(EFNB1 or 3) dependent SRC kinases, the phosphatidylinositol-4,5-bisphosphate
3-kinase delta catalytic subunit (PI3KCD), cyclin-dependent kinase inhibitor 1A (CDKN1A;
p21CIP1/WAF1), BCL-xL, mitochondrial pathways, and plasminogen-activated inhibitor-
2 (PAI-2) [42,202–204]. Next, bioinformatics approaches were used to search for small
molecules that target these SCAPs. The SRC kinase inhibitor dasatinib (D) blocks SRC
kinase/EFNB1/3-dependent suppression of apoptosis [205,206]. D, which has been ap-
proved by the FDA for use in humans since 2006 for treating hematologic cancers, elimi-
nated the 30–70% of senescent human fat cell progenitors (MSCs) that are pro-apoptotic [47].
Quercetin (Q), a natural flavonol that interferes with PI3K and other SCAP pathways, in-
duced death of tissue-damaging senescent ECs [47]. Combining dasatinib and quercetin
(D+Q) reduced senescent cell burden in chronologically aged mice [47]. Mouse models
have also been developed permitting elimination of some types of senescent cells, e.g.,
INK-ATTAC mice, from which highly p16Ink4a-expressing cells can be targeted for apoptosis
using an agent, AP20187, that does not target cells without high expression of p16Ink4a [207].
However, it should be noted that since senolytics are based on targeting that subset of
senescent cells with a pro-apoptotic SASP, while in INK-ATTAC mice it is those cells with
high p16Ink4a expression that are targeted, the effects of senolytics could differ from those in
INK-ATTAC mice treated with AP20187.

Transplanting small numbers of senescent cells into middle-aged mice is sufficient
to cause frailty, physical dysfunction, and premature onset of most or all of the diseases
found in older non-transplanted mice [208]. It was also shown that transplanting senes-
cent cells can cause some of the recipients’ own cells to undergo senescence, even at a
distance. Hence, senescence can spread not only by paracrine means, but also distantly in
an “endocrine” fashion. Additionally, intermittently eliminating senescent cells alleviated
physical dysfunction after senescent cell transplantation, all pointing toward a causal role
of senescent cells in aging phenotypes and diseases [208]. These findings support the
potential for targeting senescent cells as a therapeutic strategy to delay, prevent, alleviate,
or treat multiple age-related pathologies [209]. Based on the BCL-xL siRNA studies in
the first article about senolytics, two groups subsequently found that the BCL-xL/BCL-
2/BCL-w inhibitor, navitoclax (ABT263), also exhibits senolytic activity [210,211]. Many
more senolytic molecules were subsequently identified using the original hypothesis-based
drug discovery approach and later by high-throughput screening. Examples include the
specific BCL-xL inhibitors A1331852 and A1155463 [212], the flavonol fisetin [212,213],
piperlongumine [203], procyanidin C1 [214], FOXO4-related peptide [215], and several
dozen other small molecules [197]. Tissue-damaging senescent cells can take from 1 to
6 weeks to reaccumulate after senolytic administration in vitro. Hence, senolytics can be
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administered once or, if there is continued generation of senescent cells (e.g., sustained
high-fat feeding), intermittently, once every couple of weeks or once a month. In mouse
models, this “hit and run” approach appears to be effective [10,197,216]. Administering
senolytics with short elimination half-lives may also reduce off-target or side effects com-
pared to drugs that are administered continuously or drugs that have long half-lives, since
intermittently administered senolytics have less opportunity to exert sustained effects on
off-target receptors or enzymes. Potentially, this may also result in less benefit in vivo, as
many senolytic compounds have been shown to exhibit effects that are possibly indepen-
dent from their senolytic properties when administered continuously (e.g., flavonols can
reduce ROS).

A new senolytic drug of interest is digoxin, a cardiac glycoside that has been used
for many years for cardiac disease. Transplanted senescent cells are eliminated by digoxin
administration in mouse models [217,218]. Repurposing existing drugs such as digoxin can
hasten clinical translation. The results of clinical trials showing that chronic digoxin treat-
ment reduced the rate of hospitalization of patients with heart failure but did not reduce
overall mortality are well known [219]. Digoxin has a narrow safety window, especially in
the elderly and patients with impaired renal function, and side effects such as bradycardia
and lethal arrhythmia are often observed in long-term use. Senolytic therapy with digoxin,
similarly to many other senolytic regimens, could be administered in an intermittent, hit-
and-run fashion that may lead to better clinical outcomes. Glutaminase 1 (GLS1) is an
amidohydrolase upregulated by a kidney-type glutaminase (KGA) that neutralizes the
intracellular acidosis caused by lysosomal damage in senescent cells. Treatment with its
inhibitor, BPTES [bis-2-(5-phenyl- acetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide], appears
to reduce senescent cell accumulation in obese and atherosclerotic mice [220]. As senescent
cells sometimes have elevated activity of lysosomal β-galactosidase, galactose-modified
cytotoxic prodrugs might be senolytic. Treatment with a galactose-modified duocarmycin
(GMD) reduced senescent cell burden in adamantinomatous craniopharyngioma (ACP)
model mice [221]. Progress has also been made in developing anti-senescent cell antibodies
and vaccines. Screening of repurposed drugs and natural products and development
of new molecules targeting senescent cells is ongoing. Immunotherapies developed as
anti-cancer treatments, such as chimeric antigen receptor T cell (CAR-T) cells, cytotoxic T
lymphocyte (CTL) therapy, natural killer (NK) cell therapy, and dendritic cell (DC) therapy,
which are already in clinical application could be repurposed as senolytics by targeting
senescent cell-specific antigens (seno-antigens). A potential advantage of such therapies is
that, once a target molecule is identified, specific treatments can be developed even if the
physiological function of the molecule is not understood or effective inhibitors have not
been discovered. This approach could reduce off-target effects. GPNMB (glycoprotein non-
metastatic melanoma protein B) is a molecule that acts to maintain lysosomal homeostasis
in senescent cells and was identified as a senescence marker by comparing young cells with
replicative senescent cells [222]. GPNMB is upregulated in the aorta and adipose tissues
of aged and obese mice, as well as in the aortae of an atherosclerosis mouse model. GP-
NMB expression is high in patients with atherosclerotic diseases. Interestingly, a senolytic
vaccine targeting GPNMB alleviated diabetes and atherosclerosis-related complications in
mouse models. This vaccine also improved physical function in aged mice and increased
lifespan in progeroid mice [223]. Another senolytic vaccine targeting CD153, which has
been reported as a marker of obesity-related T cells in adipose tissue, reduced accumulation
of senescent T cells [83]. Glucose tolerance and insulin resistance were also improved. Both
vaccine therapies were effective for several months. β2 microglobulin (B2M) is a component
of the MHC class I molecules expressed on the cell surface and levels of this protein increase
progressively with age in the brain and skin of mice. An antibody-drug conjugate (ADC)
against B2M clears senescent cells through releasing duocarmycin near senescent cells [224].
Urokinase-type plasminogen activator receptor (uPAR) was identified by RNA sequencing
as an antigen expressed on the cell surface of some types of senescent cells. CAR-T therapy
has been tested against this antigen for senescent cell elimination. uPAR-specific CAR-T
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cells aggregated around uPAR-positive senescent cells and eliminated them, alleviating
non-alcoholic steatohepatitis and drug-induced liver fibrosis in mouse models [225].
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5.2. Other Strategies

Adipocyte-specific or EC-specific high-fat fed p53 knockout mice have improved
metabolic function [43,95,226]. p53 antagonists are available [227]; however, systemically
reducing the expression of the p16Ink4a or p53-p21Cip1/Waf1 pathways would likely increase
risk of cancer [228–231], because inhibiting the ability to form senescent cells appears to
allow DNA-damaged cells to continue to proliferate. Even a small number of such cells
could cause tumor formation. Hence, inhibiting the capacity to form senescent cells may
therefore not be viable because senescence is a mechanism for preventing tumorigenesis.

Another possible strategy is to reprogram cells using the Yamanaka factors, Oct4,
Sox2, Klf4, and c-Myc (OSKM), a discovery for which the Nobel prize was awarded in
2012 [232]. This approach allows cells, potentially including senescent cells, to be brought
into a state akin to pluripotency [233–235]. In vitro experiments have indicated lengthening
of telomeres and resetting of the gene expression profile to a “younger state” in cells from
centenarians and patients with Hutchinson–Gilford progeria syndrome (HGPS). Interest-
ingly, Yamanaka factor activation increases senescent cell formation, and a high senescent
cell burden at the start of OSKM treatment has been linked to greater impact on cellular
phenotypes. This increased senescent cell formation seems to require Ink4a/Arf locus activ-
ity. The same pathway is involved in IL-6 production and makes cells more receptive to
OSKM factors [236]. A problem related to cellular reprogramming is the potential develop-
ment of cancers such as teratomas and teratocarcinomas, since reprogramming may allow
cancer-harboring senescent cells to reacquire proliferative potential. Attempts are being
made to such circumvent cancer development [237–240]. This area is new, and it remains
to be seen if reprogramming can be made safe and if causing cancers can be avoided.
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SASP inhibitors, “senomorphic” drugs, do not eliminate senescent cells directly(Figure 2).
They act by modifying aspects of the senescent cell secretome that cause chronic inflam-
mation and tissue destruction. Some of these drugs act by targeting the transcription
factor NF-κB [241,242], Janus kinases, or STAT signaling pathways. Other targets are
the mTOR pathway, p38 mitogen-activated kinase (MAPK) and related kinases, mito-
chondrial complex 1-related or 4-related molecules, heat shock protein 90 (HSP90), and
NAD+/NADH metabolism [243]. The effectiveness of senomorphic drugs was indicated
in p21Cip1/Waf1-Cre mice in which removal of those cells highly expressing p21Cip1/Waf1 can
be induced. Inactivating the NF-κB pathway in cells with high p21Cip1/Waf1 expression
yielded the same results as removing the cells, and both methods attenuated insulin re-
sistance in obese mice [11,80]. There are several FDA-approved medications that have
senomorphic effects. For example, metformin, an established anti-diabetes medication,
improves cardiovascular diseases [244] and cognitive dysfunction [245], attenuates cancer
formation and resistance [246,247], and might increase lifespan [248]. Rapamycin, used
clinically as an immunosuppressant, improved heart failure [249], cognitive decline [250],
immune dysfunction [251], frailty [252], and possibly lifespan [253]. Ruxolitinib, in clinical
use for various disorders (e.g., polycythemia rubra vera, myelofibrosis, and graft vs. host
disease) [106] alleviated age-related adipose tissue dysfunction [15] and frailty [254]. After
these encouraging findings, the American Federation for Aging Research (AFAR) and
others are planning the TAME (Targeting Aging with Metformin) trial. This will test if
metformin delays appearance of a second age-related disease in patients who already have
an age-related condition. As it will not enroll patients with diabetes, the trial will also
test the geroscience hypothesis [255,256]. A challenge in using certain senomorphic drugs,
however, is modulating potential off-target effects, such as suppressed inflammation in
the case of some diseases or tissue repair. Since, unlike senolytics, senomorphic drugs do
not directly eliminate the senescent cells that are the cause of tissue-damaging SASP factor
release, continuous treatment is potentially more necessary than is the case with senolytics.

6. Cardiovascular Diseases That Senotherapeutics May Potentially Alleviate

Several preclinical studies have tested senotherapies, including senolytics for car-
diovascular dysfunction and diseases (Table 3). For example, Sunderland et al. showed
that co-culture of human senescent cells with human iPSC-derived cardiomyocytes and
endothelial cells leads to decreased survival and cell cycle activity [257]. Moreover, the
endothelial cells exhibited impaired tube formation and migration. D+Q, by eliminating
senescent cells, improved human iPSC-derived cardiomyocyte survival and DNA synthesis.
D+Q also improved human endothelial cell survival, migration, and tube formation. The
mechanism of action appears to involve abrogation of SASP factors by D+Q treatment,
especially IL-6 and IL-8. A connection between senescence and fibrosis involving fibroblasts
and cardiomyocytes has been made. In vitro, senescent fibroblasts can secrete profibrotic
enzymes [23]. The first clinical trial in which the benefit of senolytics was reported in
humans was in patients with idiopathic pulmonary fibrosis (IPF) [258]. Cardiac fibrosis,
in which contractile heart muscle is replaced with connective tissue, is frequently seen in
aged hearts. D+Q administration improves cardiac function in aged mice by attenuating
senescence in post-mitotic cardiomyocytes [47,54]. In high-fat diet-treated mice and rats
used as diabetic cardiomyopathy models, Q reduced cardiac fibrosis, normalized heart
size, and attenuated cardiac systolic dysfunction [8,259]. Navitoclax also decreased cardiac
fibrosis, hypertrophy, inflammation, and cardiac dysfunction in mice with doxorubicin-
induced heart failure, a chemotherapy-induced cardiomyopathy mouse model [260,261],
and in mice with Ang II-induced heart failure, which is a model for heart failure in elderly
people [262]. These findings suggest that senolytics may be effective against some forms
of heart failure, especially fibrotic subtypes. HFpEF, characterized by abnormal diastolic
function due to stiffness of the left ventricle, is a common problem in elderly patients, for
which an effective treatment has not yet been discovered. Senolytics could be a promising
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treatment in addition to other heart failure drugs such as ACE inhibitors, ARBs, and the
newer sodium-glucose transport protein 2 (SGLT2) inhibitors.

In atrial fibrillation (AF), the most common arrhythmia worldwide affecting aged
individuals, pathological fibrosis is theorized to disrupt electrical conductance through
cardiomyocyte gap junctions in the atrium [263,264]. Senescent cell accumulation in the
atrium has been observed in rodents and humans with AF and heart failure [265,266], and
senolytic treatments have been shown to attenuate atrial senescent cell accumulation in
rodents. There are other preclinical studies using quercetin or fisetin that suggest potential
for alleviating atrial fibrosis and fibrillation in rodents, although these drugs were used as
anti-fibrotic drugs and effects on senescent cells were not explored. Quercetin alleviated
fibrosis in the atrium in isoproterenol (ISO)-induced tachycardia rat models, the suggested
underlying mechanism being increased miR-135b expression inhibiting the TGF-β/SMAD
pathway [267]. Fisetin improved left atrial fibrosis in an MI-induced AF rat model related to
increased levels of phosphorylated AMPK (p-AMPK) and decreased NF-κB p65, p38MAPK,
and smad3 phosphorylation [268]. However, AF is one of the diseases that has discordances
between humans and rodents; rodent hearts do not develop AF naturally [268]. In the
fisetin study, the median duration of AF measured in an ex vivo perfused rat heart was
only 6.96 s in the non-fisetin treated control group [268]. More research is needed to test
effects of senolytic treatments using larger animals that better reflect human arrythmias.

While fibrotic diseases are a promising target for senotherapies, there are a few reports
that cellular senescence suppresses fibrosis. In the human atrium, p16INK4a expression and
SA-β-gal are positively correlated with fibrotic lesions [269]. This finding was replicated in
mice deficient in the senescence-driving kinase upstream of p53, ataxia-telangiectasia mu-
tated (ATM) [187]. While fully formed senescent cells are profibrotic, senescent fibroblasts
do not proliferate, and therefore in some circumstances, cellular senescence itself might also
be anti-fibrotic. In many cases, pathological fibrosis is an adverse consequence in disease,
but it is important to recognize that physiological fibrosis can be protective. For example,
fibrosis after myocardial infarction replaces necrotic myocytes and maintains cardiac wall
integrity, and the fibrous cap of atherosclerotic plaques prevents plaque rupture. Unlike
antifibrotic drugs, senolytics and senomorphics only target dysfunctional senescent fibrob-
lasts and do not appear to inhibit physiological fibrosis by non-senescent fibroblasts, and
thus may be therapeutic candidates for fibrotic diseases, an area deserving of further study.

Ischemic heart disease, also known as coronary artery disease, causes myocardial
necrosis leading to heart failure and other sequelae due to the low regenerative capacity of
the adult heart. D+Q has been shown to activate approximately 10% of cardiac resident
CPCs in aged mice [7] and in high-fat diet-induced heart failure model in mice [185]. In
mouse and rat models of ischemia reperfusion, navitoclax appeared to alleviate myocar-
dial fibrosis and hypertrophy [270,271] and improved left ventricular ejection fraction
with increased survival in aged mice [54,272,273]. These findings suggest that senolytic
treatment may be effective in restoring cardiac regenerative capacity by activating CPCs
and increasing new cardiomyocyte and blood vessel formation. Accumulating evidence
suggests that cellular therapy, in which several types of cells are injected, may alleviate
cardiac disease [274,275]. Potentially, treating cells before they are transplanted with anti-
senescence drugs may be useful for promoting direct cardiogenic differentiation due to
removal of senescent CPCs.

Advances in treatments have improved survival rates in cancer patients, and side
effects of cancer treatments, particularly in the cardiovascular system, have become an
important issue for cancer survivors [276,277]. The field of cardio-oncology has received
increasing attention in recent years. However, many aspects of both radiation-induced and
cancer drug-induced CVDs have yet to be fully elucidated. Doxorubicin, used for treating
leukemias as well as breast, gastric, lung, liver, and kidney cancers, stops DNA replication
by inhibiting topoisomerase II. The most common side effect is cardiomyopathies. Doxoru-
bicin is also known to cause cellular senescence by disrupting DNA replication. Therefore,
senescent cell accumulation may be associated with these toxic side effects, as indicated
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in vivo by increased p16INK4a positive CPCs being found in heart tissue biopsies from pa-
tients treated with doxorubicin and increased cardiac p53 expression in doxorubicin-treated
mice [278]. Radiation therapy may also increase senescent cell burden due to off-target
DNA damage. Senolytic therapies could alleviate side effects of cancer treatments, and
possibly allow use of more aggressive anti-cancer treatments.

In atherosclerotic diseases, senescent ECs, VSMCs, fibroblasts, and inflammatory cells
cause or worsen plaque buildup and destabilize existing plaques. Senolytics such as navi-
toclax [162,279], anti-GPNMB vaccination [222], digoxin [217,218,280], BPTES [220], and
17-DMAG (alvespimycin) [281], reduce atherosclerotic plaque formation and inflammation
in atherosclerotic model mice. Fibrous capsule thinning, a risk factor for thrombosis, is
decreased by senolytic administration in LDL receptor (Ldlr) knockout (KO) mice [130].
Senolytic treatment may reduce vascular calcification by removing senescent VSMCs [282],
a major problem in coronary artery angioplasty and bypass surgery, and potentially may
increase the success rates of these operations. A catheter-based procedure, percutaneous
transluminal coronary angioplasty (PTCA), percutaneous coronary intervention (PCI), or
endovascular therapy (EVT) can be used in sclerotic arteries to widen the narrowed or
blocked artery and improve blood flow. A stent (a small, metal mesh tube) is placed inside
the artery to help keep it open and prevent the artery from narrowing again. Potentially
fatal restenosis can occur following the treatment due to neointimal hyperplasia, caused
mainly by the excessive growth of VSMCs in the blood vessel wall. Interestingly, coating
stents with navitoclax had a protective effect against restenosis in rabbits treated with a
high-cholesterol diet [283]. D+Q has been shown to decrease senescent cell burden in arteri-
ovenous fistulae allowing hemodialysis in chronic kidney disease model mice [284]. Aortic
dissections and aneurysms are other conditions with high mortality. They are both tied to
senescent cell accumulation, evidenced by high numbers of SA-ßgal, p53, and p21 CIP1/WAF1

positive cells in patients with thoracic aortic aneurysms and dissections. Senescent VSMCs
seem to cause the vessel wall to be weakened against hemodynamic pressure, contributing
to aneurysm formation. D+Q reduces Ang II-induced abdominal aortic aneurysm (AAA)
size in aged mice [285]. UBX1967, a BCL-xL small molecule inhibitor, appears to reduce
ischemic retinopathy in an oxygen-induced mouse retinopathy model [286].

Pulmonary arterial hypertension (PAH) is caused by thickening of the muscle (medial)
layer in pulmonary arteries and arterioles. PAH can lead to irreversible and detrimental
cardiac changes as the right ventricle adapts to high pressure and medial thickening in the
arteries also becomes irreversible over time. There is no cure for PAH so far; treatments
can only alleviate symptoms, and in some cases, lung transplantation is necessary. A
recent study has brought attention to senescent VSMC accumulation as a potential cause
of irreversible PAH, and senolytic treatment successfully alleviated the condition in a
monocrotaline- and shunt-induced PAH rat model [108]. However, anti-p53 senescent
smooth muscle cell senolytic therapy did not attenuate declines in right ventricular func-
tion [135]. More evidence is needed. It is difficult to develop accurate PAH animal models
due to anatomic differences between rodents and humans.

Peripheral artery disease (PAD), also known as vascular claudication, is caused by
narrowing of the arterial lumen due to atherosclerotic plaque buildup in the extremities.
Critical limb ischemia is a serious consequence of PAD in which there is inadequate blood
flow to the extremities, causing ischemic tissue damage that can eventually necessitate
amputation in 10 to 40% of cases and may even cause death from necrosis and infection. In
addition to atherosclerosis, reduced angiogenetic capacity to allow bypassing the narrowing
vessels due to EC dysfunction and senescence may be an important contributor. In a murine
model of induced limb ischemia, old mice exhibited increased senescence markers, such
as p16Ink4a and p21Cip1/Waf1, in the ischemic limb along with reductions in factors such as
VEGF-A, HIF1α, and PPARγ coactivator 1α. Targeting EC senescence using EC-p53 KO
mice improved vasodilation and angiogenesis [95,96]. Advances in regenerative medicine
have enabled the development of cell-based therapies that promote the formation of new
blood vessels, “therapeutic angiogenesis” [287–289]. As mentioned, senolytic treatment
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may enhance these cell transplant strategies by reducing senescent progenitor cell burden
prior to transplantation. Heart transplantation is a treatment option for severe heart disease.
In hearts to be transplanted, D + Q reduces senescent cell burden, alleviates age-associated
inflammation, and prolongs survival of cardiac allografts from old mice [261], suggesting
that senolytics may be useful for increasing transplanted organ viability and reducing
transplant rejection.

Systolic hypertension, characterized by high systolic blood pressure and normal di-
astolic blood pressure, is a common problem in the elderly [290]. It is associated with
a two- to fourfold increase in the risk of myocardial infarctions, left ventricular hyper-
trophy, kidney dysfunction, stroke, and cardiovascular mortality [291,292]. D+Q may
alleviate hypertension in the elderly as it improves vasorelaxation and vasomotor function
in aged mice [47,282]. Cellular senescence caused by macromolecular damage, inflamma-
tion, deregulated nutrient sensing, and telomere modification is associated with systolic
hypertension [293,294]. D+Q improved both endothelial and vascular smooth muscle cell
dependent vasorelaxation in aged mice [47,282].

The aging lung is prone to low-grade chronic inflammation, with inflammatory SASP
factors such as IL-6 being present at greater abundance in bronchoalveolar lavages from
elderly compared to young patients. Factors such as cigarette smoke exposure and other
inhaled toxins can drive senescence and increase release of SASP factors. Senescent cells
can express many inflammatory and pro-fibrotic factors, such as MMPs, that disrupt tissues
and the extracellular matrix and induce replacement of functioning organ tissue by fibrotic
tissue. Senescent cell accumulation increases susceptibility to infections, disrupts alveolar
gas exchange, and impairs repair after pulmonary injury. Senescent pulmonary cells secrete
SASP factors that can accelerate malignancies [295–297]. Fibrotic pulmonary diseases such
as COPD and IPF have been linked to senescent cell accumulation [23,108,217,298,299].

Finally, preeclampsia, a hypertensive disorder that can occur during pregnancy, has
been shown to be associated with pathological senescent endothelial cell and syncytiotro-
phoblast accumulation [300]. Increased senescent cell burden and high local SASP factors
in the uterus have also been connected to preterm birth [301]. Senolytics may improve
the health of mothers and newborns; however, whether senolytics would be safe during
pregnancy is highly questionable.

Table 3. Cardiovascular diseases alleviated by senolytics in preclinical models.

Model Type Senescent Cell
Removal Model Senolytic Drug Result of Senolytic Therapy Reference

Aging (mouse)

D+Q Improved left ventricular
ejection fraction [47]

INK-ATTAC D+Q
Activated resident cardiac
progenitor cells and
cardiomyocyte formation

[7]

INK-ATTAC Navitoclax Alleviated myocardial hypertrophy
and fibrosis [54]

D+Q Prolonged survival of old
cardiac allografts [261]

D+Q Improved vascular relaxation [47]

INK-ATTAC D+Q Reduced aortic calcification and
improved vasomotor function [282]

High-fat diet-induced heart
failure (rat) Q Attenuated high-fat diet-induced

cardiac systolic dysfunction [259]

High-fat diet-induced heart
failure (mouse) Q Normalized heart size and reduced

cardiac fat and fibrosis [8]
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Table 3. Cont.

Model Type Senescent Cell
Removal Model Senolytic Drug Result of Senolytic Therapy Reference

High-fat diet-induced heart
failure (mouse) D+Q Improved CPC proliferation and

cardiac repair [185]

Angiotensin II (Ang II)-induced
heart failure (mouse) Navitoclax Improved left ventricular

ejection fraction [262]

Doxorubicin (DOX)-induced heart
failure (mouse) Navitoclax Improved cardiac function [260]

Ischemia–reperfusion
injury (mouse) Navitoclax

Alleviated myocardial hypertrophy
and fibrosis, improved left
ventricular ejection fraction,
increased myocardial
vascularization

[272]

Aged mice of following
MI (mouse) Navitoclax Increased survival after

myocardial infarction [273]

Ischemia and
reperfusion-injury (rat) Navitoclax Improved cardiac function and

increased angiogenesis [270]

Myocardial infarction (mouse) D+Q Improved cardiac function,
increased regeneration [271]

AF after acute myocardial
infarction (rat) Fisetin

Attenuated atrial fibrosis and AF
duration following acute
myocardial infarction

[268]

Isoproterenol induced AF (rat) Q Alleviated fibrosis and collagen
deposition in atrial tissues [267]

Atherosclerosis (Ldlr KO) (mouse)

INK-ATTAC
p16-3MR Navitoclax Reduced atherosclerotic plaque

formation and instability [162]

INK-ATTAC
p16-3MR Navitoclax Improved fibrous cap thickness [130]

Atherosclerosis (ApoE
KO) (mouse)

p16-3MR Navitoclax Reduced atherosclerotic plaque size
and inflammatory cell count [279]

GPNMB vaccine Reduced atherosclerotic plaque
formation and inflammation [223]

Digoxin Reduced atherosclerotic lesion
formation and plasma lipid levels [280]

17-DMAG
Reduced atherosclerotic lesions and
induced a more stable
plaque phenotype

[281]

BPTES Reduce atherosclerotic
plaque formation [220]

Dialysis arteriovenous fistula
(mouse) D+Q Decreased senescent cells in dialysis

arteriovenous fistula mice [284]

MCT and shunt-induced PAH (rat) Navitoclax
Improved hemodynamic and
structural changes associated with
severe PAH

[108]

Oxygen-induced retinopathy
(mouse), eye tissue (human) INK-ATTAC UBX1967 Ameliorated ischemic retinopathy [286]

Angiotensin II (Ang II)
administrated, aged (mouse) D+Q Reduced AAA size [285]

Cholesterol diet (rabbit) Navitoclax Reduced stenosis area of
senolytic-coated stent [25]
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7. Conclusions

Increasing senescent cell burden in the cardiovascular system with aging parallels the
increasing prevalence of cardiovascular diseases in elderly patients. Senescent cell accumu-
lation can be detected in virtually every cardiovascular tissue and organ. Anti-senescent cell
therapies, along with other strategies targeting the fundamental aging mechanisms, have
potential to increase the healthy years of our lives. Besides pharmaceutical interventions,
lifestyle modifications such as caloric restriction and exercise may enhance healthspan
due to multifactorial effects, including but not limited to reduced senescent cell burden.
According to The Unitary Theory of Fundamental Aging Mechanisms that builds on the
Geroscience Hypothesis, senotherapies could have effects like those of these interventions
because their effects on fundamental aging processes may interact. Cardiovascular dis-
eases lead to high morbidity and mortality burden and are a primary target for strategies
targeting fundamental aging mechanisms. Challenges include lack of long-term clinical
studies evaluating the effects of systemic senescent cell elimination. Even in the case of
senomorphics, while some drugs such as metformin appear to be well studied and safe,
long-term effects on systemic and local tissue homeostasis are not fully understood. For
example, some senomorphic compounds might be immunosuppressive. Cell type-specific
senolytics might provide information about different forms of senescent cells and their
contribution to cardiovascular diseases. Several dozen new senolytic agents have been
discovered and are currently being tested extensively. When targeting senescent cells
in vivo, it is important to recognize that cellular senescence is a mechanism that prevents
tumorigenesis and is important during embryogenesis, possibly wound healing (although
removing senescent cells appears to enhance healing of chronic wounds [302,303], and host
immunity. The distinction between physiological, beneficial senescence and pathological
senescence is crucial, especially the impact of persistent senescent cells that have evaded
removal by the immune system. For example, inhibition of senescent cell formation by
suppressing p53 and other proteins can increase risk for malignancies so the prevention
of formation of senescent cells may be detrimental, while removing persisting senescent
cells appears to decrease tumorigenesis and cancer spread [304–306]. It is important to
proceed with clinical trials carefully, taking these points into consideration. Local delivery
methods that can act on specific senescent cardiovascular cells or tissues, along with further
studies to optimize the dosage, mode of administration, and drug combinations, may
enable optimization of anti-senescence treatment regimens. Since these therapies targeting
the underlying etiology of aging have also been shown to have effects on risk factors such
as hypertension and diabetes, if promising data are obtained, these therapies could be used
as monotherapy for cardiovascular diseases and prevent polypharmacy, the use of multiple
medications, which is one of the problems of elderly care. They may offer an alternative
to patients who, due to very advanced biological age, cannot tolerate established drugs.
To evaluate the effect of these novel agents, clinical gerodiagnostic composite scores are
needed. There are currently no highly sensitive and specific individual markers for senes-
cent cardiovascular cells in vivo [68]. This is mainly due to the heterogeneity of senescent
cells. With accumulating evidence in preclinical studies, some therapies targeting senescent
cells have progressed to the point of early clinical trials. Studies using animals other than
rodents, such as rabbits, dogs, pigs, and monkeys, may provide much insight into the effect
of targeting senescence in the cardiovascular system and could facilitate translation to
patients. While the field is still new and needs much refinement, targeting senescent cells
could transform cardiovascular disease treatment and markedly improve patient quality of
life, not to mention potential systemic effects against a range of diseases beyond those of
the cardiovascular system.
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53BP1 Tumor suppressor p53-binding protein 1
ACE Angiotensin-converting enzyme
ARBs Angiotensin receptor blockers
AFAR American Federation for Aging Research
AKT1 Threonine protein kinase
ALP Alkaline phosphatase
AMPK AMP-activated protein kinase
Ang II Angiotensin II
ANGPTL2 Angiopoietin-like protein 2
ApoE Apolipoprotein E
BCL-xL B-cell lymphoma-extra large
BMP-2 Bone morphogenetic protein 2
BPTES Bis-2-(5-phenyl- acetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide
CABG Coronary artery bypass graft
CAR-T Chimeric antigen receptor T cell
CCL3 Chemokine (C-C motif) ligand 3
CCN1 CCN family member 1
CCR2 C-C motif chemokine receptor 2
CF Cardiac fibroblasts
CMV Cytomegalovirus
COPD Chronic obstructive pulmonary disease
CPC Cardiac progenitor cell
CPT1 Carnitine palmitoyltransferase I
CVD Cardiovascular disease
D Dasatinib
DAMP Damage-associated molecular pattern
DNA Deoxyribonucleic acid
DNA-SCARS DNA segments with chromatin alterations reinforcing senescence
EC Endothelial cell
ECM Extracellular matrix
Edn3 Endothelin 3
EFNB1 Ephrin B1
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eNOS Endothelial nitric oxide synthase
EPCs Endothelial progenitor cells
ET-1 Endothelin 1
FAS TNF receptor superfamily member 6
FGF Fibroblast growth factor
FOXO Forkhead box protein O
GDF15 Growth differentiation factor 15
GH Growth hormone
GHRH Growth hormone–releasing hormone
GLS1 Glutaminase 1
GPNMB Glycoprotein nonmetastatic melanoma protein B
HF Heart failure
HFpEF Heart failure with preserved ejection fraction
HGPS Hutchinson–Gilford progeria syndrome
HIF Hypoxia-inducible factor
HMGB-1 High mobility group box 1
hs-CRP High sensitivity C-reactive protein
HSP Heat shock protein
HSP90 Heat shock protein 90
ICAM-1 Intercellular adhesion molecule-1
ICD International Classification of Diseases
IFN- γ Interferon-gamma
IGF-1 Insulin-like growth factor 1
IGFBP Insulin-like Growth Factor-binding Protein
IL Interleukin
KGA Kidney-type glutaminase
Ki-67 Marker of proliferation Ki-67
KO Knockout
LDL Low-density lipoprotein
MAPK Mitogen-activated protein kinase
MCP-1 Monocyte chemoattractant protein-1
MI Myocardial infarction
miRNAs MicroRNAs
MMP Matrix Metallopeptidase
mTOR Mammalian target of rapamycin
NAD+ Nicotinamide adenine dinucleotide
NADPH Nicotinamide dinucleotide phosphate
NAFLD Non-alcoholic fatty liver disease
NK Natural killer
NO Nitric oxide
NOXs Nicotinamide dinucleotide phosphate oxidases
OIS Oncogene induced senescence
OPG Osteoprotegerin
OPN Osteopontin
OSKM The “Yamanaka factors”, Oct4, Sox2, Klf4, and c-Myc
p16Ink4a Cyclin-dependent kinase inhibitor 2A
p21CIP1/WAF1 Cyclin-dependent kinase inhibitor 1 (Cdkn1a)
p38MAPK p38 mitogen-activated protein kinase
p53 Cellular tumor antigen p53
PAH Pulmonary arterial hypertension
PAI-1 Plasminogen activator inhibitor-1
PDGF Platelet-derived growth factor
PI3K Phosphoinositide 3-kinases
PPARα Peroxisome proliferator-activated receptor α
Q Quercetin
RAAS Renin-angiotensin-aldosterone system
RNA Ribonucleic acid
ROS Reactive oxygen species
Runx-2 runt-associated transcription factor 2
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SADs Senescence-associated distention of satellites
SAHF Senescence-associated heterochromatin foci
SASP Senescence-associated secretory phenotype
SA-βgal Senescence-associated beta-galactosidase
SCAPs Senescent cell anti-apoptotic pathways
scRNA-seq Single cell RNA-sequencing
SGLT2 Sodium-Glucose Transport Protein 2
SIRT Sirtuin
SM-MHC Smooth muscle myosin heavy chain
SOD Superoxide dismutase
TAFs Telomere-associated foci
TAME Targeting Aging with Metformin
TEM Transmission electron microscopy
TGFβ Tumor growth factor-beta
TIS Therapy-induced senescent cells
TNFR1 TNF receptor 1
TNF-α Tumor necrosis factor alpha
uPAR Urokinase-type plasminogen activator receptor
VEGF Vascular endothelial growth factor
VSMC Vascular smooth muscle cell
X-Gal X-galactosidase
α-SMA α-smooth muscle actin
γ-H2AX Phosphorylated H2A histone family member X
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