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Abstract: Non-alcoholic fatty liver disease (NAFLD) refers to a range of conditions in which excess
lipids accumulate in the liver, possibly leading to serious hepatic manifestations such as steato-
hepatitis, fibrosis/cirrhosis and cancer. Despite its increasing prevalence and significant impact on
liver disease-associated mortality worldwide, no medication has been approved for the treatment
of NAFLD yet. Liver X receptors α/β (LXRα and LXRβ) are lipid-activated nuclear receptors that
serve as master regulators of lipid homeostasis and play pivotal roles in controlling various metabolic
processes, including lipid metabolism, inflammation and immune response. Of note, NAFLD pro-
gression is characterized by increased accumulation of triglycerides and cholesterol, hepatic de
novo lipogenesis, mitochondrial dysfunction and augmented inflammation, all of which are highly
attributed to dysregulated LXR signaling. Thus, targeting LXRs may provide promising strategies
for the treatment of NAFLD. However, emerging evidence has revealed that modulating the activity
of LXRs has various metabolic consequences, as the main functions of LXRs can distinctively vary
in a cell type-dependent manner. Therefore, understanding how LXRs in the liver integrate various
signaling pathways and regulate metabolic homeostasis from a cellular perspective using recent
advances in research may provide new insights into therapeutic strategies for NAFLD and associated
metabolic diseases.

Keywords: non-alcoholic fatty liver; liver X receptor; lipid metabolism; inflammation; pharmacological
intervention

1. Introduction

The liver is a key organ for maintaining systemic energy homeostasis, as it regulates
the cellular metabolism of various nutrients including lipids, glucose and proteins [1–3].
Hepatic lipid metabolism plays a crucial role in consistently supplying energy sources
to other organs by processing food- and adipose tissue-derived lipids and fatty acids
(FAs) [1,3]. In the fed state, dietary lipids absorbed from the intestine enter the liver,
where they are then metabolized, stored and circulated through the body in the form of
triglycerides and cholesterol to provide energy for other peripheral tissues [1,3]. Similarly,
under a fasting condition in which dietary energy intake is limited, the liver receives
FAs derived from adipose tissue to produce ketone bodies, which are then secreted into
circulation and delivered to the brain or heart, where they serve as alternative energy
sources to glucose. The net equilibration and homeostasis of the hepatic lipid metabolism
is maintained by the dynamic interactions between numerous cellular processes of lipids,
including (1) cellular uptake, (2) de novo synthesis of FAs, (3) storage in the forms of
triglycerides and/or lipid droplets, (4) mitochondrial FA oxidation and lipolysis and
(5) secretion of esterified FAs as triglycerides in the form of very low-density lipoproteins
(VLDLs). Disrupting any of these processes can dysregulate the lipid metabolism performed
in the liver, leading to the development of metabolic liver disease, such as non-alcoholic
fatty liver disease (NAFLD) [2,4,5].
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1.1. Overview of NAFLD

Recent studies have revealed that the global prevalence of NAFLD is approximately
25% [4,6,7]. Moreover, as a major cause of chronic liver disease, NAFLD has greatly at-
tributed to an increase in liver disease-associated mortality worldwide, imposing significant
health and socioeconomic burdens on patients and society [5,6,8–10]. NAFLD refers to
a series of liver abnormalities in which excess lipids accumulate within the liver in the
absence of excessive alcohol consumption, ranging from non-alcoholic fatty liver (NAFL),
non-alcoholic steatohepatitis (NASH), liver fibrosis/cirrhosis and hepatocellular carcinoma
(HCC) [4,5,8,11,12].

The initial progression of NAFLD arises from the abnormal accumulation of lipids in
hepatocytes, a parenchymal cell type of the liver, leading to steatosis (i.e., fatty liver) when
the percentage of fat in the tissue increases by more than 5% of total liver weight [4,5,12].
An aberrant increase in intracellular lipids is usually accompanied by an increase in de
novo lipogenesis and a decrease in FA oxidation, which results from mitochondrial dysfunc-
tion in conjunction with exacerbated oxidative stress. When hepatocytes are chronically
exposed to oxidative stress and high levels of lipid peroxidation, they are highly vulnerable
to lipotoxic stress-mediated death. In turn, tissue-resident macrophages and infiltrating
inflammatory cells are activated upon the release of danger signals from damaged hepa-
tocytes, triggering the secretion of proinflammatory cytokines, which further aggravate
hepatocyte damage and death (steatohepatitis). When the liver fails to abrogate accelerated
hepatocyte death, hepatic stellate cells are activated in order to compensate for the loss of
liver mass by promoting the synthesis and secretion of extracellular matrix molecules such
as collagen [4,5,12].

With respect to a theoretical hypothesis which may account for the pathogenesis of
NAFLD, the “two-hit theory” has been previously considered the most reliable model
capable of explaining the onset and progression of NAFLD. In this theory, excessive and
sustained accumulation of lipids in hepatocytes (first hit) triggers a lipotoxicity-inflicted
inflammatory response, hepatocellular death and fibrogenesis (second hit) [13,14]. How-
ever, presently the “multiple-hits theory” is gaining more attention, as it also takes into
consideration the contribution of extrahepatic tissues (e.g., the gut-liver-adipose tissue axis)
to hepatic manifestation as mediated by several signaling molecules, including gut-derived
molecules, cytokines, and adipokines [14]. Interestingly, recent studies have revealed
that dysregulation of lipid and/or inflammatory profiles occurs concomitantly during
the pathogenesis of NAFLD in various cell types in the liver and other tissues [4,9,11,15],
suggesting the importance of intercellular and/or inter-organ crosstalk in the context of
lipid and inflammatory signaling pathways in the progression of NAFLD and associated
metabolic complications.

Given the significant contribution of the hepatic lipid metabolism and inflamma-
tory signaling to whole-body energy homeostasis, the prevalence of various metabolic
complications, including obesity, insulin resistance, type 2 diabetes mellitus (T2DM), hy-
perlipidemia, hypertension and other cardiovascular diseases, is closely associated with
NAFLD. In line with this, it has been well demonstrated that the severity of NAFLD
is directly proportional to an increased risk for developing one or more components of
metabolic syndrome [10–12,16], implying that NAFLD may be a critical driving force of
systemic metabolic dysfunction. However, lifestyle modifications—including weight loss,
dietary restrictions and exercise—are the only reliable and safe therapeutic options for
treating NAFLD. No drugs have been approved for the treatment of NAFLD, owing to
limited efficacy and/or safety concerns [17–19]. Thus, the identification of novel therapeu-
tic targets and the development of effective and safe pharmacological interventions are
urgently needed.

1.2. Nuclear Receptors as Potential Therapeutic Targets for NAFLD

Among the numerous signaling molecules affected by metabolic stress, nuclear re-
ceptors (NRs) have drawn significant attention as potential therapeutic targets for chronic



Cells 2023, 12, 1292 3 of 20

liver disease [20]. NRs belong to a superfamily of ligand-regulated transcription factors;
they bind to response elements localized in the cognate promoters of downstream target
genes that, in tandem with co-activators and co-repressors, are involved in a variety of
intracellular signaling pathways [2,15]. Although several NRs were initially regarded as
‘orphan receptors’ with uncharacterized endogenous ligands, recent advances in molecular
biology have enabled us to identify new ligands and gain more insight into the role of
novel NRs in the progression of certain diseases.

While NRs are largely categorized into seven subfamilies (NR0-NR6), it is known
that some NRs belonging to the NR1 subfamily are implicated in nutrient control and
energy homeostasis [14,20,21]. Notably, the majority of NR1 receptors have been identified
as lipid-sensing receptors that control downstream target gene expression in response
to changes in lipid metabolite levels, such as oxysterols, FA, thyroid hormones, steroid
hormones and bile acids [15,20,22,23]. These NR1 receptors include liver X receptor (LXR),
peroxisome proliferator-activated receptor (PPAR) and farnesoid X receptor (FXR), and
most form a heterodimer with the retinoid X receptor (RXR) upon binding with their
cognate ligand [2,15,20].

The NR superfamily has long been regarded as one of the major classes of drug tar-
gets for human disease based on its capability of controlling a myriad of biological and
pathophysiological processes (e.g., development, metabolism, reproduction, etc.) [14,24]
and high feasibility of drug development by replacing small lipophilic molecules with a
drug of choice [25]. Notably, numerous studies have demonstrated that disturbances to
the hepatic lipid metabolism can be attributed to the dysregulation of lipid metabolism-
related signaling pathways driven by lipid-sensing NRs in metabolic diseases, including
NAFLD [21,23,26–28]. Considering the complicated nature of the etiology of NAFLD patho-
genesis, targeting novel NRs that encompass a wide range of cellular signaling pathways
related to lipid metabolism in a number of cell types may result in the discovery of promis-
ing candidates for developing novel and efficient therapeutic options for NAFLD [2,29,30].
The current review highlights the recent advances made in our understanding of the charac-
teristics and pathophysiological roles of LXRs in the progression of NAFLD from a cellular
perspective.

2. Liver X Receptor (LXR) as Master Regulator of Whole-Body Metabolism
2.1. Overview of LXRs

Cholesterol, a major component of lipids, is important in maintaining physiological
homeostasis; the liver plays a crucial role in controlling cellular and systemic cholesterol
levels by impacting the systemic metabolism of cholesterol [2,31]. Among the numer-
ous NR1 receptors, LXRs are the most well-known as master physiological regulators
of lipid and cholesterol metabolism, which sense and respond to endogenous oxysterol
levels [2,14,15,30]. In humans, there are two LXR isoforms—LXRα and LXRβ. In general,
LXRα is predominantly expressed in tissues with high metabolic capacity (e.g., the liver, adi-
pose tissue, intestine, kidney, etc.), whereas LXRβ is ubiquitously distributed [2,15,30,32].
However, exact evidence on the direct comparison as to the expression of which isotype of
LXRs is more abundant in each metabolic tissue is limited. Emerging evidence from recent
studies using LXRα KO and/or LXRβ KO mouse models has revealed that both LXRα
and LXRβ usually share their downstream target genes, and they compensate for each
other in the transcriptional regulation of certain genes; both LXRs regulate the expression
of cholesterol transporters in the same direction, inducing mRNA levels of ABCG5/8
and ABCA1 in the small intestine [33]. Similarly, ABCA1 and SREBP1c gene expression
were increased in a parallel manner in either LXRα KO or LXRβ KO mice treated with
a pan-LXRα/β agonist [34], suggesting that the identification of specific target genes of
either LXRα or LXRβ needs to be further investigated.

LXRα and LXRβ show approximately 77% sequence homology in the DNA-binding
domain (DBD) and ligand-binding domain (LBD) [2,15,30,32], indicating high structural
similarity. While both LXR isoforms are capable of binding with co-regulators, LXRα inter-
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acts more stringently with repressors (e.g., nuclear receptor co-repressor 1 (NCOR1)) [35],
whereas LXRβ exerts stronger interactions with the co-activator peptide than with NCOR1 [36].
This notion suggests that the ligand-dependent structural dynamics of the two LXRs are
distinct, and the two LXRs may possess different modes of action to release co-repressors
and attract co-activators for expressing their target genes [36]. These findings may, at least
in part, account for distinctly different phenotypes after selective activation of either LXRα
or LXRβ. For example, LXRβ activation increases the gene expression of ABCA1 and
SREBP1c in the liver and high-density lipoprotein (HDL) cholesterol levels without signifi-
cant changes in plasma triglyceride and VLDL content [34]. In line with this, both LXRs are
known to inhibit cholesterol uptake in the small intestine by inducing ATP-binding cassette
subfamily G number 5/8 (ABCG5/8) and ABCA1 gene expression, suppressing cholesterol
uptake into the body. However, selective activation of LXRβ in the small intestine rather
increases cholesterol uptake through an incompletely defined mechanism, which seems to
be counteracted by LXRα [33]. Collectively, these notions imply that the physiological roles
of the two LXRs may be better understood based on their differential tissue expression,
which may provide more insight into developing selective agonists of the two LXRs.

Similar to other NR1 receptors, LXRs form a heterodimer with RXRs and bind to an
LXR-responsive element (LXRE) in DNA-harboring direct repeats (DRs) of the core sequence
AGGTCA spaced by four nucleotides (DR-4) for transcriptional activation [14,15,20,32]. In the
absence of ligand binding, the LXR/RXR heterodimer resides within the nucleus, being
complexed with co-repressors, such as NCOR1, or silencing mediators of the retinoic acid
receptor and thyroid receptor (SMRT, also known as NCOR2), which inhibit transcription
by interacting directly with co-repressors or indirectly via histone deacetylase (HDAC)
and stress-activated MAPK interacting protein 3A (Sin3A) [15,32,35,37]. Similarly, poly
(ADP-ribose) polymerase-1 (PARP-1) was recently identified as another LXR co-repressor;
PARP-1-mediated PARylation of LXR affects interactions between the co-activator and co-
repressor at downstream target genes such as ABCA1 [36,38]. Upon binding with receptor
ligands, the LXR/RXR heterodimer undergoes a conformational change that leads to the
dissociation of co-repressors, resulting in the exposure of binding sites to co-activators,
such as E1A-associated protein p300 (EP300), and activating signal co-integrator 2 (ASC2;
also known as NCOA6) to trigger target gene activation [30,32,35,39]. LXRs are also capable
of inhibiting transcription from the promoters of several pro-inflammatory cytokines that
do not contain LXREs (i.e., trans-repression) by mediating the recruitment of SUMOylated
LXR monomers to target gene promoters [2,32,40,41].

2.2. Modulation of LXRs’ Transcriptional Activity

LXRs were initially classified as ‘orphan receptors’ [42,43] until several natural choles-
terol derivatives were identified as endogenous agonists [15,20,30]. These cholesterol
derivatives are subjected to hydroxylation at either the ring or side chain of their chemical
structure to form stronger agonists, including 24(S)-hydroxycholesterol (24-HC, present in
the brain and plasma), 24(S),25-epoxycholesterol (present in the liver) and 27(R)-
hydroxycholesterol (27-HC, present in macrophages and plasma) [20,30]. Moreover, sev-
eral intermediate cholesterol metabolites have been newly discovered to be endogenous
modulators for LXRs, including desmosterol, 4,4-dimethyl-5α-cholesta-8,14,24-trien-3β-ol
(FF-MAS) and dendrogenin A (Figure 1) [44,45]. Notably, while ligand-activated LXRs
regulate the expression of genes associated with cholesterol and FA metabolism, highly
unsaturated FAs (i.e., polyunsaturated FAs [PUFAs]) inhibit LXR transcriptional activity
more effectively than monounsaturated FAs [MUFAs] by competing with oxysterols for
receptor binding [46,47]. It has been demonstrated that the essential FA arachidonic acid
(20:4, n-6) is known to inhibit LXRα activity, but not LXRβ [47], indicating the varying
effect of FAs in modulating LXR activity in accordance with the FA chain length and the
degree of saturation.
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Figure 1. Structures of endogenous agonists for LXRs.

It has been demonstrated that residues within occupied ligand-binding pockets differ
between LXRα and LXRβ, which indicates the high conformational flexibility of the LXR
ligand-binding pocket [36]. The plasticity of the ligand-binding pocket of LXRs allows
for various synthetic ligands with varying chemical structures to successfully bind, such
as T0901317 and GW3965 [30,48–50]. Although they have been widely used as synthetic
pan-LXR agonists, T0901317 and GW3965 exhibit slightly different efficacies; T0901317 is
capable of activating both LXRα and the pregnane X receptor (PXR), while GW3965 serves
as selective LXRα/β dual agonist [20,30,51]. Several compounds that modulate LXR activity
in a receptor isoform- and/or tissue-specific manner have been identified [30], some of
which have been tested or evaluated in numerous clinical trials (Table 1). Notably, because
of the multifaceted roles of LXRs in a variety of cellular signaling pathways, both agonists
and antagonists of LXRs, such as RGX-104 (agonist), LXR-623 (agonist), SR9238 (inverse
agonist), GSK2033 (antagonist) and DUR-928 (larsucosterol, antagonist), exhibit significant
regulatory effects on metabolic processes [20,30,52–55]. While the beneficial effects of
LXR agonism are largely attributed to, at least in part, RCT and/or anti-inflammatory
functions of LXRs, antagonizing LXRs can be also effective in attenuating hepatic steatosis
and consequent fibrosis [20]. For example, DUR-928, a naturally occurring endogenous
sulfated oxysterol that antagonizes LXR activity, has been shown to suppress lipogenic
genes induction by inhibiting the LXR-SREBP1c axis [56–59]. Interestingly, several studies
have also found that DUR-928 attenuates inflammatory responses by decreasing nuclear
factor-κB (NF-κB) nuclear translocation via upregulation of the PPARγ/IκBα signaling
pathway [56–58,60], alleviating NAFLD. Therefore, further insights into the differential
roles of LXRs and their modes of action in each liver cell type are required for the application
of LXR modulators in the treatment of NAFLD.
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Table 1. Ongoing clinical trials of pharmacotherapies by targeting LXRs.

Primary Mechanism Agent (Trial Name) Structure Clinical Trials NCT Number
(ClinicalTrilas.gov)

Partial LXRα and full
LXRβ agonist

LXR-623
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Table 1. Cont.

Primary Mechanism Agent (Trial Name) Structure Clinical Trials NCT Number
(ClinicalTrilas.gov)

Potent LXR antagonist DUR-928
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In addition to ligand binding, it has been reported that the transcriptional activity and
the stability of LXRs can be controlled via post-translational modifications (PTMs) [30,61].
For instance, deacetylation of LXRs (at K432 in LXRα and K433 in LXRβ) by sirtuin 1
(SIRT1) triggers the ubiquitination-mediated proteasomal degradation of LXRs, which
facilitates their removal from target gene promoters, thereby initiating transcription [61–63].
Several upstream kinases have been found to phosphorylate LXRs on several Ser/Thr
residues; for example, protein kinase A (PKA) induces the phosphorylation of LXRα
Ser195/Ser196/Thr290/Ser91, causing receptor degradation and subsequent sterol reg-
ulatory element binding protein 1c (Srebp1c) gene repression. Moreover, although the
exact sites were not identified, LXRα transactivation was regulated in the opposite direc-
tion by AMP-activated protein kinase (AMPK) and p70 ribosomal S6 kinase-1 (S6K1) at
threonine and serine residues, respectively [64]. The AMPK activator suppressed Srebp1c
expression and pro-opiomelanocortin (POMC) protein levels mediated by direct phos-
phorylation of threonine residue(s); [64,65] this regulation was abrogated by S6K1, which
induces phosphorylation of serine residues and consequently increases transactivation
of downstream target genes of LXRα [64]. In addition, physiological concentrations of
glucose activate LXRs in the liver through O-GlcNAcylation, which induces the expression
of genes involved in lipid and cholesterol metabolism [66,67]. O-GlcNAc moieties are
attached to serine/threonine residues by O-GlcNAc transferase (OGT) [68], indicating that
O-GlcNAcylation and phosphorylation may act in tandem to control LXR activity. LXRs
can inhibit pro-inflammatory gene expression (termed ‘trans-repression’) via SUMOyla-
tion [30,69]. SUMOylation is promoted by binding endogenous LXR ligands, including
22(R)-hydroxycholesterol, 24(S),25-epoxycholesterol and 24(S)-hydroxycholesterol, leading
to interaction with the NCOR co-repressor [30,69].

2.3. Regulation of Cellular Processes by LXRs: An Overview

Decades of studies have revealed that LXRs serve as master regulators of multiple
signaling pathways, such as lipid metabolism, inflammation and immunity, which shows
the multifaceted functionality of LXRs in the regulation of overall metabolic processes.
In particular, hepatic lipid content is directly proportional to the severity of a variety
of metabolic diseases in the context of overnutrition [70,71]. Likewise, it is noted that
LXR expression positively correlates with the degree of fat disposition, inflammation
and fibrosis in the liver of NAFLD patients [72], suggesting a significant impact on liver
pathophysiology. Furthermore, given the pivotal contribution of NAFLD progression in
systemic metabolic disorders, LXRs may play crucial roles in human health and disease by
modulating not only the hepatic lipid metabolism, but also numerous metabolic signaling
pathways.

2.3.1. Roles of LXRs in FA Metabolism

At the cellular level, the net amount of fat is largely determined by the complex
interplay between a variety of cellular processes associated with lipid metabolism, including
de novo lipogenesis, FA oxidation, lipolysis and the import/export of lipid species [73]. The
onset of NAFLD generally begins with abnormal fat accumulation in hepatocytes, where
a large amount of FFAs derived from either excess dietary lipids or increased lipolysis
in adipose tissue enter via fatty acid translocase (FAT/CD36) [74]. In addition, it is also
reported that CD36 is a shared downstream target of LXRα, PXR and PPARγ [74], and that
LXRα-mediated CD36 induction is responsible for T0901317 treatment-mediated hepatic
steatosis, which was abrogated in CD36 KO mice [74].

LXRs have been established to play an essential role in controlling lipogenic genes
in the liver [75–78], as supported by the observation that administrating T0901317 (a
synthetic pan agonist of LXRs) to mice increased triglyceride levels in both liver tissue
and plasma through enhanced FA biosynthesis [76,78]. The stimulation of lipogenesis
by LXRs largely occurs through the transcriptional induction of lipogenic target genes,
such as SREBP1c, fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC) and stearoyl-
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CoA desaturase-1 (SCD1) [15,76,77,79]. Interestingly, the transcriptional activity of most
lipogenic genes is induced via the LXR-SREBP1c axis; however, LXRs can also increase
target gene expression by directly binding to LXRE sites in their promoter regions. A
recent study showed that hepatic de novo lipogenesis was significantly upregulated in
obese patients with NAFLD compared to obese individuals without NAFLD, whereas
the proportion of hepatic triglyceride synthesis from either dietary fat or plasma free
fatty acids (FFAs) was comparable [80,81]. In mice, LXR agonist-mediated increases in
hepatic triglyceride levels were not fully ameliorated by the co-administration of a PPARα
ligand [82], implicating the significant contribution of lipogenesis in the development of
fatty liver disease.

Recent studies have found that LXRs modulate FA catabolism in various tissues via
distinct mechanisms. LXRα-knockout (KO) mice fed a high-fat and high-cholesterol diet
(HFHC) showed increased energy expenditure and UCP expression in muscle and adipose
tissue [78,83]. Furthermore, in vivo results from wild-type mice subjected to long-term
treatment of GW3965 demonstrated the inhibitory effect of LXRs on energy expenditure
and UCP1 expression in brown adipose tissue, which was also confirmed in LXRα/β
double KO mice fed a high-carbohydrate diet [84]. More recently, LXRα activation in
hepatocytes was shown to suppress mitochondrial β-oxidation by inhibiting autophagy
and lipophagy, leading to excessive fat accumulation in the liver [85]. On the contrary, it
has been also reported that LXRα activation indirectly facilitates mitochondrial β-oxidation
and lipolysis in white adipose tissue by transcriptionally inducing pyruvate dehydrogenase
kinase 4 (PDK4) expression, which in turn switches from pyruvate dehydrogenase complex-
dependent glucose oxidation to lipid oxidation [86]. Collectively, LXRs contribute to the
regulation of lipid homeostasis in various metabolic tissues by balancing the anabolism
and catabolism of FAs.

2.3.2. Roles of LXRs in Cholesterol Metabolism

Initial studies delineating the regulatory role of oxysterol as an LXR physiological
ligand have demonstrated its possible involvement in maintaining cholesterol homeosta-
sis [32,87,88]. A marked increase in cholesteryl ester levels in the livers of LXRα-KO
mice fed a high-cholesterol diet further confirmed the significant contribution of LXRα to
cholesterol metabolism [79]. The excessive accumulation of hepatic cholesterol due to the
loss of LXRα, but not LXRβ, was attributed to a lack of cytochrome P450 7A1 (CYP7A1)
expression, the rate-limiting enzyme responsible for the conversion of cholesterol to bile
acid [32,78,89]. This step is critical for clearing cholesterol from the body, as it cannot
be catabolized by animal cells [15]. Subsequently, bile acid, which is synthesized from
cholesterol, is subjected to biliary excretion via ABCG5 and ABCG8 [15,90]. LXRs induce
ABCG5/G8 expression in both the canalicular membrane of hepatocytes and the apical
membrane of enterocytes, facilitating biliary excretion and inhibiting the intestinal absorp-
tion of cholesterol, respectively [15,30,32,91]. Similarly, loss of either LXRs or ABCG5/8
impairs biliary sterol trafficking and fecal sterol excretion [90,92,93], further demonstrating
the important role of LXRs in cholesterol absorption and excretion in vivo.

In order to excrete excess cholesterol out of the body, surplus cholesterol in peripheral
tissues needs to be transferred to the liver for ultimate clearance through biliary excretion,
the overall process of which is called ‘reverse cholesterol transport (RCT)’ [32,78]. LXRs
participate in the initial steps of RCT through upregulating the expression of a cluster of
transporter genes, such as ABCA1 and ABCG1, favoring the transfer of free cholesterol to
pre-HDL [78,94,95]. ABCA1 and ABCG1 are direct LXR target genes that work together in
lipid-laden macrophages on the efflux of cholesterol to apolipoprotein A1 (ApoA1) and
HDL, respectively [2,32,96,97]. A lipid-poor ApoA1 becomes nascent HDL when being
complexed with cholesterol derived from macrophages through ABCA1, which can further
develop into mature HDL after being loaded with cholesterol exported from macrophages
via ABCG1 [31,78,94]. HDL cholesterol is then taken up by the liver through direct binding
to the scavenger receptor class B type 1 (SR-B1) that selectively removes cholesteryl ester
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from HDL [2,32]. LXRs also regulate ADP-ribosylation factor-like protein 7 (ARL7), which
promotes the transport of excess cholesterol across the membrane through ABCA1 [2,98].
Additionally, LXRs are capable of inducing the expression of a subset of genes associated
with apolipoproteins (i.e., ApoE and ApoC1) and lipoprotein remodeling (e.g., cholesteryl
ester transfer protein [CETP] and lipoprotein lipase [LPL]) [15,91,99,100], suggesting that
the integrated regulation of these genes by LXR activation facilitates RCT from the cell
periphery to the liver (Figure 2).
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Figure 2. The control of cholesterol uptake, transport and excretion by LXRs. The fine-tuned
regulation of cholesterol levels in the body is a consequence of integrated interaction among various
cell types and tissues, such as macrophage, liver and intestine, and LXRs play a pivotal role in these
processes, termed as reverse cholesterol transport (RCT). Some, but not all, target genes that are
directly regulated by LXRs are highlighted in rectangles colored in light blue. (1) LXR agonism
inhibits cholesterol uptake in the liver and macrophages via upregulating the inducible degrader of
the LDL receptor (IDOL), which degrades the low-density lipoprotein receptor (LDLR). (2) In parallel,
LXR activation also promotes cholesterol efflux from macrophages by inducing ATP-binding cassette
subfamily A member 1 (ABCA1) and ADP-ribosylation factor-like protein 7 (ARL7), facilitating
cholesterol transport to lipid-poor apolipoprotein A1 (ApoA1) or pre-β high density lipoprotein
(pre-β HDL). (3) Similarly, ABCG1, another direct target of LXR, also promotes cholesterol transport
to ApoA1-containing lipoprotein to form mature HDL. (4) In line with this, LXR activation in the liver
suppresses cholesterol biosynthesis by transcriptional induction of E3 ubiquitin protein ligase RING
finger protein 145 (RNF145) and liver-expressed, LXR-induced sequence (Lexis). (5) Moreover, hepatic
LXR induces cytochrome P450 7A1 (CYP7A1) expression, which promotes cholesterol clearance via
conversion of cholesterol into bile acids. (6) Bile acids derived from cholesterol are then subjected to
biliary excretion through ABCG5 and ABCG8, both of which are another direct target of LXR.

Following the RCT procedure, cholesterol bound to low-density lipoprotein (LDL) is
transported to the liver, where LDL receptors (LDLR) are expressed, indicating that the
regulation of LDLR expression is also essential for cholesterol uptake. LXRs participate in
the regulation of cholesterol uptake by upregulating the expression of inducible degrader of
LDLR (IDOL), an E3 ubiquitin protein ligase responsible for the degradation of LDLR and
the VLDL receptor (VLDLR) [101–103]. Of note, the modulation of IDOL expression by LXR
activation shows differential responses in a species-dependent manner; decreased hepatic
LDLR expression in conjunction with increased plasma cholesterol levels was observed
by LXR activation in primates and humans, while such regulation was not confirmed in
rodents [104,105]. Additional investigation is required to determine whether the LXR-
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IDOL pathway could be a promising therapeutic target for modulating plasma lipid levels
in humans.

In addition to cholesterol transport and elimination, recent studies have demonstrated
that LXRs can modulate cholesterol biosynthesis in concert with SREBP2 in response to
changes in cholesterol levels [78]. LXRs and SREBP2 work dynamically together to maintain
cellular levels of cholesterol. SREBP2 triggers the uptake and synthesis of cholesterol
when cholesterol levels are low and positively regulates ABCA1 gene transcription by
producing oxysterol ligands of LXRs [78,106]. In contrast, LXRs suppress cholesterol
biosynthesis by inhibiting the protein maturation of SREBP2 and its transport to the Golgi
apparatus via induction of the RING finger protein 145 (RNF145), an E3 ubiquitin protein
ligase [107]. In parallel, LXRs also increase non-coding RNA LXR-induced sequences
(Lexis), resulting in the inhibition of the transcriptional activity of genes involved in
cholesterol biosynthesis [108]. Collectively, LXRs play a crucial role in managing cholesterol
at both cellular and systemic levels.

2.3.3. Roles of LXRs in Inflammatory and Immune Responses

In addition to their role in the management of lipid metabolism, LXRs have been
shown to inhibit a set of pro-inflammatory signaling pathways upon bacterial infection or
exposure to numerous cytokines in macrophages [30,32,109]. Both isoforms of LXR exert
anti-inflammatory properties, as supported by research showing the inhibition of a subset
of pro-inflammatory genes (e.g., inducible nitric oxide synthase (iNOS), metalloproteinase-9
(MMP-9) and cyclooxygenase-2 [COX-2]) by LXR ligands in macrophages derived from
wild-type, LXRα-KO and LXRβ-KO mice, but not from LXRα/β double-KO
mice [30,32,109–111]. The anti-inflammatory activity of LXRs is largely mediated by the
transcriptional suppression of NF-κB, the key transcription factor that governs proinflam-
matory signaling pathways; however, LXREs have not been found in the promoter-proximal
regions of these proinflammatory genes [30,32]. Emerging evidence has further indicated
that LXRs primarily exert anti-inflammatory activity in several different cell types, including
the liver, where acute phase response protein expression is inhibited by LXRs [30,112,113].
As such, long-term activation of LXRs suppress graft-versus-host inflammatory reactions,
chronic damage and immune responses in kidney allografts in rodents [30,114]. It has been
demonstrated that reciprocal regulation exists between Toll-like receptor 3/4 (TLR3/4)
signaling by microbial ligands and LXR-dependent cholesterol metabolism [32,115]. LXR
activation has been found to blunt the TLR-dependent inflammatory response by inducing
ABCA1, whereas activation of TLR3/4 during bacterial or viral infection of macrophages
significantly suppressed LXR and downstream target gene expression via induction of
interferon regulatory factor 3 (IRF3) [32,116,117]. Cumulative evidence has also found that
LXRs play an important role in the pathogen type-dependent immune response [30,32].
Notably, LXRα exhibits a protective function in macrophages against bacterial or viral
infection by inducing the expression of anti-apoptotic factors (e.g., Spα), and numerous
studies have shown that LXRα-KO macrophages are more vulnerable to bacterial infection-
mediated inflammatory responses and/or cell death [118–123]. As such, these studies
together highlight the crucial regulatory functions of LXRs at the crossroads of metabolism,
inflammation and immunity.

3. LXRs in the Progression of NAFLD

Emerging studies have demonstrated how NAFLD is a major hepatic manifestation of
various metabolic disorders, some of which constitute metabolic syndrome [20]. It is well
known that the progression from a healthy liver to NAFL, NASH and fibrosis/cirrhosis
develops as a consequence of integrated metabolic alterations that occur concurrently and
dynamically in a variety of liver and other tissue cell types. In particular, a growing body
of evidence has revealed that hepatic LXRs hold a critical position in NAFLD progression,
based on the significant roles of LXRs in lipid metabolism and inflammatory signaling.
According to a previous study, hepatic LXR expression is highly correlated with disease
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severity in patients with NAFLD, as assessed by hepatic lipid content, hepatic inflammation
and fibrosis [72]. However, this finding may need to be carefully interpreted, as the ob-
served LXR expression noted in the study is the integrated gene expression of multiple liver
tissue cell types, which exhibit common but differential functions of LXR. It is noteworthy
that, as previously mentioned above, the anti-inflammatory function of LXRs may not en-
tirely account for the positive correlation between hepatic LXR expression and the severity
of clinical manifestations of NAFLD (i.e., hepatic steatosis, inflammation and fibrosis). This
seemingly contradictory notion can be partially explained by some recent evidence; while
the anti-inflammatory role of LXRs is primarily executed in macrophages and immune
cells, inflammatory signaling is capable of promoting LXRα transcriptional activity in
hepatocytes through c-Jun N-terminal protein kinase 1 (JNK1)-dependent LXRα phospho-
rylation, inducing fat accumulation in the liver [124]. In line with this, this triglyceride
accumulation is known to protect cells against FA-induced lipotoxicity [125], suggesting
that hepatic LXR expression can be upregulated as an adaptive response following lipotoxic
and inflammatory stimuli in the course of NAFLD progression. Taken together, the diverse
and complicated functions of LXRs and their expression profile need to be understood in a
cell type- and pathological condition-dependent manner.

Although the increased accumulation of cholesterol and triglycerides in the liver
is frequently observed in the setting of NAFLD [2], the overall signaling pathways that
regulate either cholesterol or FA levels by LXRs show highly divergent and complex
patterns depending on the primary function of LXRs in each cell type. For instance, when
LXR signaling is impaired, the pool of cholesterol accumulated within macrophages might
not be properly excreted due to diminished expression of ABCA1/ABCG1, triggering the
development of lipid-laden macrophages (i.e., foam cell) and the detrimental inflammatory
response [30–32]. Similarly, defects in LXR signaling in hepatocytes are also attributed
to increased accumulation of cholesterol due to decreased CYP7A1 activity, promoting
hepatocellular injury and the secretion of chemokines and inflammatory cytokines [30–32].
Instead, the impaired LXRs-SREBP1c axis in hepatocytes inhibits FA synthesis which
ameliorates hepatic steatosis, indicating that LXRs can differentially control cholesterol and
FA metabolism in the context of NAFLD progression.

Several studies have recently suggested the role of LXRs as a gatekeeper in the pro-
gression from steatosis to steatohepatitis/fibrosis. While increased accumulation of free
cholesterol in hepatic stellate cells induces trans-differentiation into myofibrogenic pheno-
types, which exacerbates liver fibrosis [126,127], LXRβ activation in hepatic stellate cells
largely exerts antifibrogenic and anti-inflammatory properties [128], possibly preventing
the progression to liver fibrosis. Similarly, LXR activation in hepatocytes suppressed the
transactivation of a subset of NASH-promoting genes by destabilizing the TAZ (WWTR1)
protein level, halting the progression from steatosis to steatohepatitis [129]. Likewise, when
mice carrying a phosphorylation mutant of LXRα at the Ser196 residue (Ser198 in humans)
were subjected to HFHC diet feeding, the progression to hepatic inflammation and fibrosis
was abrogated while hepatic non-esterified fatty acids (NEFA) and triglycerides were sig-
nificantly elevated [130]. Collectively, these findings imply that LXRs pose an attractive
therapeutic target for NAFLD, possibly enabling the reversal of progression toward more
severe forms of disease.

Considerations of Targeting LXRs for the Treatment of NAFLD

Given their multifaceted activities in numerous cellular processes, LXRs are regarded
as promising therapeutic targets for various human diseases, including NAFLD. Oxysterols
are oxidized cholesterol derivatives that are generated during the early stages of cholesterol
metabolism and bile acid synthesis [131], and as already described above, they exert
numerous metabolic functions through binding to numerous NR1 receptors, including
LXRs [20,22,23]. Emerging evidence has shown that hepatic and/or serum levels of several
oxysterols are elevated in patients with NAFLD, and some of them are known to serve as
LXR modulators, including 4β-hydroxycholesterol (4β-HC), 25-hydroxycholesterol (25-HC)
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and 27-HC [131,132]. Although it has long been well established that oxysterols play a key
role in various metabolic processes (e.g., lipid metabolism, RCT, cholesterol metabolism and
others), their precise roles in NAFLD pathogenesis remains unclear [131]. For example, 4β-
HC has been shown to promote lipogenic gene induction in an SREBP1c-dependent manner
in hepatocytes [133], while 27-HC inhibits SREBP1c activation and concomitant suppression
of lipogenic genes, alleviating hepatic lipid accumulation in mice [134]. More interestingly,
the effect of 25-HC on cellular lipid accumulation has shown contradictory outcomes
via different mechanisms; 25-HC was found to inhibit SREBP maturation through direct
interaction with the SREBP cleavage-activating protein (SCAP) [135], while other studies
reported that 25-HC serves as a ligand for DNA methyltransferase-1 (DNMT1), mediating
high glucose-induced lipid accumulation [56,136]. Overall, these findings suggest that
further investigations need to be conducted to elucidate the exact role of oxysterols in the
pathogenesis of NAFLD.

In line with this, owing to LXRs’ divergent functions, synthetic modulators of LXRs
can cause undesired outcomes or ones that might interfere with other intended therapeutic
efficacies. For example, although first-generation synthetic agonists of LXRs showed bene-
fits in cholesterol clearance (i.e., RCT), hepatic de novo lipogenesis and plasma triglyceride
levels were also significantly increased [78,137]. Of note, T0901317 treatment in LXRα KO
mice showed marked anti-atherogenic efficacy as opposed to a mild effect on plasma triglyc-
eride levels, suggesting the potential of LXRβ activation in dissecting anti-atherogenic and
lipogenic action in response to treatment with a pan-LXR agonist.

In spite of the high degree of sequence homology in the ligand-binding domain be-
tween the two LXRs, many studies which develop selective LXRβ agonists have been
performed [2,138–140]. As briefly mentioned above, LXRβ is ubiquitously distributed
throughout the body, which makes it difficult to selectively modulate LXRβ activity rather
than LXRα under comparable pharmacokinetic profiles. Thus, another hypothesis has been
proposed to bypass undesirable effects of LXR agonists with regard to increases in hepatic
lipogenesis. As part of these efforts, several selective LXR agonists have been developed
and examined. For example, based on the knowledge that the RCT procedure is facilitated
by multiple tissues and cell types (e.g., macrophage, liver and intestine), GW6340, an
intestine-selective LXR agonist, has shown an enhanced efficacy on cholesterol efflux by in-
ducing intestinal ABCG5/ABCG8, with no such changes in hepatic lipogenesis in mice [92].
Likewise, other pharmaceutical interventions such as desmosterol, LXR-623, CS-8080 and
BMS-779788 have also been examined, although they have been used less frequently in the
treatment of NAFLD and some of these agents have been dropped from clinical trials owing
to unexpected adverse results such as neurological effects (e.g., confusion, drowsiness,
diminished comprehension, etc.), elevated plasma and hepatic lipids, decreased circulating
neutrophils and other undisclosed safety concerns [2,78,104,141–146]. Moreover, recent
studies have identified potential benefits of targeting LXRs in combination with other
reagents, including glucocorticoids [147]. Thus, further optimization of the development of
tissue-selective LXR agonists may provide a better therapeutic option to acquire potent,
safe and specific efficacy without any unintended side effects.

4. Conclusions

Given the complicated etiology of NAFLD progression, the identification of novel
targets, the activity of which potentially shows significant correlation with respect to the
severity of NAFLD, will be of great value in developing therapeutic strategies to overcome
metabolic disorders. Emerging evidence from recent preclinical and clinical studies has
now demonstrated the crucial role of LXRs in a variety of cellular processes involved in
maintaining metabolic homeostasis. However, our understanding of the comprehensive
role of LXRs in the context of cell type-specific and cell-to-cell communication is still
incomplete, and there are some setbacks and limitations in the current pharmacological
intervention strategy. A tissue- and/or isoform-selective modulation of LXR pathways
with minimized side effects may pose a promising potential to achieve beneficial clinical
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outcomes, which will be of great value in developing therapeutic strategies against NAFLD
and associated metabolic complications.
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