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Abstract: Perivascular adipose tissue (PVAT) is a specialized type of adipose tissue that surrounds
most mammalian blood vessels. PVAT is a metabolically active, endocrine organ capable of regulating
blood vessel tone, endothelium function, vascular smooth muscle cell growth and proliferation, and
contributing critically to cardiovascular disease onset and progression. In the context of vascular tone
regulation, under physiological conditions, PVAT exerts a potent anticontractile effect by releasing
a plethora of vasoactive substances, including NO, H2S, H2O2, prostacyclin, palmitic acid methyl
ester, angiotensin 1-7, adiponectin, leptin, and omentin. However, under certain pathophysiological
conditions, PVAT exerts pro-contractile effects by decreasing the production of anticontractile and
increasing that of pro-contractile factors, including superoxide anion, angiotensin II, catecholamines,
prostaglandins, chemerin, resistin, and visfatin. The present review discusses the regulatory effect of
PVAT on vascular tone and the factors involved. In this scenario, dissecting the precise role of PVAT
is a prerequisite to the development of PVAT-targeted therapies.

Keywords: PVAT; vascular tone; anti-contractile; pro-contractile; endothelial dysfunction

1. Introduction

Blood vessels are comprised of three layers, namely tunica intima, tunica media, and
tunica adventitia, organized from the innermost to the outermost side and consisting mainly
of endothelial cells, vascular smooth muscle cells (VSMCs), and fibroblasts, respectively.
The majority of blood vessels, except cerebral and pulmonary arteries, are surrounded
by a fourth layer of adipose tissue called perivascular adipose tissue (PVAT) or tunica
adiposa [1,2].

Understanding the regulation of vascular tone is crucial to cardiovascular phys-
iopathology. Normal vascular tone is fine-tuned by the autonomic nervous system, hor-
mones, and by autocrine and paracrine factors produced by adjacent blood vessel layers,
i.e., endothelium and PVAT [3–5]. PVAT, a specialized type of adipose tissue surrounding
blood vessels, was traditionally thought to act merely as a mechanical support adhering
blood vessels to other tissues/organs; therefore, it is usually removed during in vitro vascu-
lar studies [6]. In the early 1990s, a pioneered study by Soltis and Cassis [7] showed that the
presence of PVAT surrounding thoracic rat aorta rings attenuated noradrenaline-induced
contraction; this effect was ascribed to catecholamine re-uptake into adrenergic nerves [7].
The anti-contractile effect of PVAT was later observed with other vasoconstrictors (i.e.,
serotonin, angiotensin II, and phenylephrine) and transferring the solution from the organ
bath of a PVAT-intact preparation (donor) to that of a PVAT-deprived preparation (recipient)
caused a noticeable relaxation of the vessel tone; eventually, the term adipocyte-derived
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relaxing factor (ADRF) was coined [8,9]. Several reports attempted to identify the nature of
ADRF and delineate the mechanisms underpinning its anti-contractile effect [10]. As a re-
sult, discrete factors such as gases (NO and H2S), small molecules [(H2O2, prostacyclin, and
palmitic acid methyl ester (PAME)], and proteins or peptides (leptin, apelin, angiotensin
1-7, adiponectin, and omentin) were associated with PVAT anti-contractile effect [11,12].

Meanwhile, several studies showed that PVAT, under certain pathophysiological
conditions such as obesity, hypertension or diabetes, loses its anti-contractile effect and
even potentiates blood vessel contraction, thus exerting deleterious effects on the vascula-
ture [13–16]. Similarly to the anti-contractile effect, PVAT pro-contractile effect seems to be
mediated by several factors, including superoxide anion, catecholamines, prostaglandins,
angiotensin II, chemerin, leptin, resistin, and visfatin [14]. PVAT is now well recognized
for its contribution to the regulation of vascular tone via outside-in signalling [3,5]. More-
over, PVAT is involved in all aspects of vascular pathophysiology because it modulates
inflammation-associated vascular pathologies such as vascular remodelling, atherosclerosis,
and obesity by secreting several adipokines, pro- and anti-inflammatory cytokines, and
chemokines (for a review, see [17–19]).

As a result of this double-edged sword nature, PVAT is considered a unique and, at
the same time, fundamental therapeutic target for the treatment of cardiovascular diseases.
This review aims at providing a comprehensive overview of the factors released from PVAT
and their role in the regulation of vascular tone in an attempt to highlight their potential as
drug targets/candidates. The role of PVAT in the regulation of VSMC growth (reviewed
in [18,20]) and in the pathogenesis of cardiovascular diseases (reviewed in [21–23]) is
beyond the scope of the present review and is not discussed.

2. Characteristics of Perivascular Adipose Tissues

PVAT displays several characteristics that distinguish it from other blood vessel layers
(intima, media, and adventitia) or adipose tissues. First, PVAT is not separated from the un-
derlying blood vessel by a physical layer or an elastic lamina being rather in direct contact
with the tunica adventitia [24]. This allows bioactive substances and adipokines released
from PVAT to directly affect blood vessels in a paracrine mode, though an endocrine mode
may also occur via the vasa vasorum present within PVAT itself [25]. Similarly, the signalling
molecules originating in the vasculature diffuse in an inside–outside manner toward PVAT,
where they modulate its secretory function [26]. In fact, the direct contact of PVAT with vas-
culature seems essential for its regulatory role as PVAT detached from blood vessels loses its
anti- and/or pro-contractile effect [11]. Second, unlike tunica intima and tunica media, which
are formed solely of endothelial cells and VSMCs, respectively, but likewise other adipose
tissues, PVAT hosts pre- and mature adipocytes, endothelial cells, mesenchymal stem
cells, and immune cells, including monocytes, macrophages, mast cells, eosinophils, and
lymphocytes (T and B cells), though adipocytes are the predominant cells (Figure 1) [27,28].
The cellular heterogeneity may be altered under certain pathological conditions, such
as inflammation, characterized by increased infiltration of macrophages [29–31]. Third,
PVAT displays phenotypic heterogeneity depending on the vascular bed, species, age, and
health/disease status. For instance, PVAT surrounding the rodent thoracic aorta exhibits a
brown adipose tissue phenotype, and PVAT surrounding the abdominal aorta and coronary
arteries is a mixture of white and brown adipose tissues, whereas that surrounding the
mesenteric, femoral, and carotid arteries resembles white adipose tissue [32,33]. This makes
white PVAT of crucial importance because small vessels play a major role in the regulation
of blood pressure compared to large vessels. Nevertheless, PVAT may either harbour beige
adipocytes or undergoes beiging under certain pathophysiological stimuli [19]. Conversely,
in adult humans, brown-like PVAT is nearly absent, and PVAT exhibits a white adipose
tissue phenotype [24]. Fourth, PVAT adipocytes may originate from different precursors
depending on their location [32]. For instance, periaortic arch adipocytes differentiate
from ectoderm-derived neural crest cells [34]. Aortic (both thoracic and abdominal) and
mesenteric PVAT was thought to originate from VSMC precursors since the deletion of
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peroxisome proliferator-activated receptor gamma (PPAR-γ, the master regulator of adi-
pogenic differentiation) in VSMCs results in a complete loss of PVAT in both thoracic and
abdominal aorta, as well as in mesenteric arteries [35]. Ye et al. [36] showed that anterior
thoracic aortic PVAT is derived from SM22α+ progenitor cells, whereas lateral (right and
left) aortic PVAT is from SM22α+ and Myf5+ progenitor cells. However, thoracic aorta
PVAT adipocytes were recently demonstrated to originate from fibroblastic progenitor cells
rather than VSMCs, thus challenging previous studies [37].

3. Perivascular Adipose Tissue Regulates Vascular Tone

Since the seminal study by Soltis and Cassis [7] demonstrating that thoracic aorta
PVAT attenuates the response to noradrenaline, several studies have shown that PVAT
decreases vascular contraction induced by various vasoconstricting agents in different
vascular beds and species [8,38–43]. This function was ascribed to the release of ADRFs [8].
In fact, transferring the supernatant from PVAT-intact vessels (donors) to preparations
deprived of PVAT (acceptors) caused a significant relaxation [44]. The release of ADRF
was dependent on extracellular Ca2+ as well as protein tyrosine kinase and protein kinase
A [45]. So far, it has been demonstrated that PVAT releases several anti-contractile and
pro-contractile factors to regulate vascular tone (Figure 1). Anti-contractile factors [also
known as PVAT-derived relaxing factors (PDRFs)] include gasotransmitters (NO and H2S),
small molecules [H2O2, PGI2, and PAME], and adipocytokine (leptin, angiotensin 1-7,
apelin, adiponectin, and omentin). These factors mediate the PVAT anti-contractile effect
via endothelium-dependent and -independent mechanisms [9]. At the VSMC level, cGMP-
dependent protein kinases (PKG) [46], as well as large-conductance Ca2+-activated [47],
ATP-sensitive [8], and XE991-sensitive voltage-gated K+ channels [48] play a critical role
in the regulatory activity of PVAT. In contrast, pro-contractile factors [(also known as
PVAT-derived contracting factors (PDCFs)] include superoxide anion, catecholamines,
prostaglandins, chemerin, angiotensin II, resistin, and visfatin (Figure 1). These factors,
released from PVAT under certain physiological or pathological conditions such as obesity,
hypertension, and diabetes, may directly or indirectly contribute to the pro-contractile
effect of PVAT [14] by activating VSMCs Rho-kinase [49], inhibiting K+ channels [49,50],
activating CaV channels [49,51], and increasing ROS generation. Noticeably, PVAT pro-
contractile and anti-contractile effects, as well as the underpinning mechanisms, depend on
the stimulus applied [38,44], vascular bed [52], gender [53], age [54], and health conditions
of the model used [55]. The following sections discuss PVAT-derived anti-contractile and
pro-contractile factors and briefly highlight their mechanism of action.
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Figure 1. Blood vessels are made up of three cellular layers, namely intima (endothelial cells), media 
(VSMCs) and adventitia (fibroblast), and are surrounded by a fourth layer of adipose tissue called 
PVAT. PVAT is characterized by cellular heterogeneity harbouring adipocytes, endothelial and 
immune cells. PVAT regulates vascular tone via the secretion of vasoactive substances and adi-
pokines. These factors, either anti-contractile or pro-contractile, decrease or increase the contractil-
ity of VSMCs, respectively. Ang 1-7, Angiotensin 1-7; PAME, palmitic acid methyl ester; PGI2, 
prostacyclin I2; VMSC, vascular smooth muscle cell. 

4. PVAT-Derived Anti-Contractile Factors 
4.1. Nitric Oxide 

NO, a gasotransmitter and potent vasodilator produced mainly by endothelial cells, 
regulates vascular tone and blood homeostasis [56]. Though Löhn et al. [8] showed that 
the anti-contractile effect of PVAT is not dependent on NO synthesis, numerous studies 
subsequently demonstrated that NO is produced within PVAT and contributes to its an-
ti-contractile effect in different vascular beds, particularly in small arteries [13,38,57–59]. 
Furthermore, endothelial NO synthase (eNOS) is expressed in PVAT adipocytes and 
endothelial cells of vasa vasorum within PVAT [60–62]. Interestingly, neuronal NOS 
(nNOS) is also expressed in PVAT and contributes to its anti-contractile effect [38,63]. 
NOS expression and its contribution to PVAT anti-contractile effect vary depending on 
the vascular bed considered [64]. In Wistar rats, for example, eNOS expression is signif-
icantly lower in the abdominal compared to thoracic PVAT [52]. In mouse second-order 
mesenteric and gracilis arteries, PVAT reduces the response of electrical field stimulation 
and noradrenaline in nNOS- and eNOS-dependent manner, respectively. This effect is 
blunted in obese mice and can be restored by non-specific activation of NOS [38]. Nora-
drenaline stimulation of adipocyte β3-adrenoceptors activates the Gαs signalling pathway 
leading to increased cAMP levels and the release of adipocyte-derived NO [38,44]. 
Moreover, thoracic PVAT from sedentary high-fat diet-fed rats shows a potent an-
ti-contractile effect toward serotonin that was associated with an increased expression of 
inducible NOS (iNOS) [39]. However, a loss of function analysis of iNOS must be carried 

Figure 1. Blood vessels are made up of three cellular layers, namely intima (endothelial cells), media
(VSMCs) and adventitia (fibroblast), and are surrounded by a fourth layer of adipose tissue called PVAT.
PVAT is characterized by cellular heterogeneity harbouring adipocytes, endothelial and immune cells.
PVAT regulates vascular tone via the secretion of vasoactive substances and adipokines. These factors,
either anti-contractile or pro-contractile, decrease or increase the contractility of VSMCs, respectively.
Ang 1-7, Angiotensin 1-7; PAME, palmitic acid methyl ester; PGI2, prostacyclin I2; VMSC, vascular
smooth muscle cell.

4. PVAT-Derived Anti-Contractile Factors
4.1. Nitric Oxide

NO, a gasotransmitter and potent vasodilator produced mainly by endothelial cells,
regulates vascular tone and blood homeostasis [56]. Though Löhn et al. [8] showed that
the anti-contractile effect of PVAT is not dependent on NO synthesis, numerous stud-
ies subsequently demonstrated that NO is produced within PVAT and contributes to its
anti-contractile effect in different vascular beds, particularly in small arteries [13,38,57–59].
Furthermore, endothelial NO synthase (eNOS) is expressed in PVAT adipocytes and en-
dothelial cells of vasa vasorum within PVAT [60–62]. Interestingly, neuronal NOS (nNOS) is
also expressed in PVAT and contributes to its anti-contractile effect [38,63]. NOS expression
and its contribution to PVAT anti-contractile effect vary depending on the vascular bed
considered [64]. In Wistar rats, for example, eNOS expression is significantly lower in the
abdominal compared to thoracic PVAT [52]. In mouse second-order mesenteric and gracilis
arteries, PVAT reduces the response of electrical field stimulation and noradrenaline in
nNOS- and eNOS-dependent manner, respectively. This effect is blunted in obese mice
and can be restored by non-specific activation of NOS [38]. Noradrenaline stimulation
of adipocyte β3-adrenoceptors activates the Gαs signalling pathway leading to increased
cAMP levels and the release of adipocyte-derived NO [38,44]. Moreover, thoracic PVAT
from sedentary high-fat diet-fed rats shows a potent anti-contractile effect toward serotonin
that was associated with an increased expression of inducible NOS (iNOS) [39]. However,
a loss of function analysis of iNOS must be carried out to explicitly clarify its role because
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iNOS overexpression in thoracic PVAT of obese mice is also associated with endothelial
dysfunction [65].

Mechanistically, PVAT-derived NO diffuses to VSMCs, where it elicits vasodilation by
directly activating KCa1.1 channels and/or indirectly activating the sGC-cGMP pathway,
thus causing membrane hyperpolarization (Figure 2) [66,67]. Additionally, adipocyte-
derived NO stimulates the secretion of the anti-contractile adiponectin [68]. PVAT eNOS is
also susceptible to uncoupling and hence reduced NO production under oxidative stress
conditions, e.g., when NADPH oxidase activity increases and/or ROS scavenging enzymes
decrease, as occurs in obesity [57,68]. In conclusion, NO is a bona fide PDRF that plays a
key role in the regulation of vascular tone, including small vessels suggesting a critical role
of PVAT-derived NO in the regulation of blood vessels. PVAT-based therapeutics strategies
targeting NOS activity and reducing its uncoupling should be considered in future studies.
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Figure 2. An overview of PVAT-derived anti-contractile factors and the mechanisms underpinning
their effects. PVAT synthesizes several factors, including gases (NO and H2S), small molecules
(H2O2, PGI2, and PAME) and proteins or peptides (adiponectin, angiotensin 1-7, leptin, and omentin).
These factors act directly on VSMCs or indirectly on ECs through various mechanisms, such as
activating K+ channels, soluble guanylyl cyclase, and prostacyclin I2 receptors or by activating eNOS,
ultimately reducing VSMC contraction. EC, endothelial cell; PVAT, perivascular adipose tissue;
VSMC, vascular smooth muscle cell; AdpR1, adiponectin receptor 1; BKCa1.1, Ca2+-activated K+

channel; IP2, prostacyclin I2 receptor; KATP, ATP-sensitive K+ channel; KV, voltage-gated K+ channel;
AC, adenylyl cyclase; CBS, cystathionine β-synthase; COMT, catechol-O-methyltransferase; CSE,
cystathionine γ-lyase; e/nNOS; endothelial or neuronal nitric oxide synthase; PGI2S, PGI2 synthase;
sGC, soluble guanylyl cyclase; SOD, superoxide dismutase; Ang 1-7, angiotensin 1-7; Arg, arginine;
Cys, cysteine; EDHF, endothelium-derived hyperpolarizing factor; NO, nitric oxide; PA, palmitic
acid; PAME, palmitic acid methyl ester; PGH2, prostaglandin H2; PGI2, prostacyclin I2.
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4.2. Hydrogen Sulfide

H2S is a gasotransmitter synthesized endogenously from L-cysteine by the action
of two pyridoxal 5-phosphate-dependent enzymes, namely cystathionine β-synthase
(CBS) and cystathionine γ-synthase (CSE) or by 3-mercaptopyruvate sulphurtransferase
(MPST) [69]. In the cardiovascular system, H2S, produced in the endothelium and VSMCs
mainly by CSE, causes vasodilation either by activating endothelial intermediate- and small-
conductance Ca2+-activated K+ channels, which hyperpolarize the underlying VSMC mem-
brane, or by directly stimulating VSMC ATP-sensitive K+ channels and inhibiting CaV1.2
channels [70–72]. PVAT expresses CSE and CBS capable of synthesizing H2S [73], which
exerts a potent anti-contractile effect in rat aorta [74,75], gracilis [76], and mesenteric arter-
ies [74,77]. This effect is mediated by ATP-sensitive K+ [75] or XE991-sensitive KCNQ chan-
nels [48,74,78] and significantly antagonized by the CSE inhibitors DL-propargylglycine
and β-cyano-L-alanine [69–73] (Figure 2). PVAT surrounding porcine coronary arter-
ies antagonizes the hypoxia-induced contraction and potentiates relaxation induced by
hypoxia through mechanisms involving the CBS-H2S pathway [79]. H2S mediates the
anti-contractile effect of nucleoside 5′-monophosphorothioates (AMPS and GMPS) in PVAT-
intact but not in PVAT-denuded aortic rings [80]. The loss of PVAT anti-contractile effect
in mesenteric arteries of rats fed a high-fat diet is restored by physical exercise, which
increases H2S production [81]. Moreover, the lipophilic atorvastatin augments PVAT anti-
contractile effect in rat aorta by decreasing the coenzyme Q9 level and hence mitochondrial
oxidation of H2S [82,83]. Taken together, H2S is a validated anti-contractile factor produced
in PVAT of both small and large vessels that crucially contributes to its anti-contractile
effect. Increasing H2S production or decreasing its metabolism can be exploited as a new
therapeutic strategy for the treatment of several cardiovascular comorbidities.

4.3. Hydrogen Peroxide

H2O2, a small, non-free radical member of reactive oxygen species (ROS), is recog-
nized as a pivotal mediator of oxidative signalling [84]. In vasculatures, H2O2 is produced
both in the endothelium and VSMCs by superoxide dismutases and plays a critical role
in cardiovascular physiology and pathology [85,86]. The effect of H2O2 on vascular tone
is controversial. On the one hand, H2O2 induces vasodilation in different vascular beds
via the activation of KATP and 4-aminopyridine-sensitive KV channels [87,88], increasing
PKG Iα dimerization and activation [89] and prostacyclin release [90,91]. On the other
hand, it can also trigger vasoconstriction by inducing thromboxane A2 (TXA2) generation in
VSMCs [92,93] and activating PKC and the IP3 pathway [94]. PVAT produces H2O2 that has
been associated with an anti-contractile effect in several experimental models. In this con-
text, Gao et al. [9] showed that PVAT anti-contractile effect against phenylephrine-mediated
contraction involves both an endothelium-dependent and -independent mechanism, the
latter being mediated by the H2O2 activation of the sGC-cGMP pathway [9]. In addition,
mitochondria-derived H2O2 contributes to PVAT anti-contractile effect in rat thoracic aorta
upon noradrenaline stimulation [95]. PVAT surrounding rat mesenteric arteries shows a
potent anti-contractile effect towards noradrenaline involving not only neurotransmitter
uptake and metabolism but also H2O2 release [96]. Additionally, nNOS-derived H2O2 is
critical for PVAT anti-contractile effect in Balb/mice thoracic aorta [63]. Of interest, a high
carbohydrate diet induces a potent anti-contractile effect of PVAT towards phenylephrine,
in which H2O2 appears to play a key role [97]. Similarly, PVAT-derived H2O2 protects
against vascular endothelial dysfunction caused by a single, high dose of ethanol [98].
The use of the H2O2 scavenger catalase provided indirect evidence of the involvement of
PVAT-derived H2O2 in the potentiation of propofol-induced relaxation of rat thoracic aorta
rings [99] and of proteinase-activated receptor-2 (PAR2)-active peptides SLIGRL-NH2 and
2-furoyl-LIGRLO-NH2-induced relaxation of both lean and obese mice aortic rings [100].
However, in diabetic rats [101] or obese mice [16], PVAT-derived H2O2 mediates a con-
tractile effect, thus increasing vascular tone. All the aforementioned studies suggest that
PVAT-derived H2O2, produced by either mitochondria or cytoplasmic pathways, diffuses
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down to VSMCs to mediate endothelium-independent PVAT anti-contractile effects, the
final effectors being sGC activation, and K+ channel stimulation (Figure 2). However, under
certain pathological conditions, H2O2 may contribute to PVAT contractile effect. Further
studies are needed to clarify the controversial role of H2O2 in PVAT regulation of vascular
tone and to quantify its contribution to PVAT anti-contractile effect in small vs. larger
arteries before any H2O2-based drugs can be appreciated.

4.4. Prostanoids

Prostanoids are a class of arachidonic acid-derived bioactive lipids that include
prostaglandins (PGE2, PGD2, PGF2α, and TXA2) and prostacyclin [102]. In the vascu-
lature, both PGE2 and prostacyclin PGI2, produced mainly by the endothelium, induce
potent vasodilation of the underlying VSMCs by activating the EP/IP receptors-adenylyl
cyclase-cAMP pathway (Figure 2) [103,104]. The involvement of prostacyclin in PVAT anti-
contractile effect is still a matter of debate. Prostacyclin synthesis inhibition by the nonspe-
cific cyclooxygenase (COX) inhibitor indomethacin and the selective blockade of the PGI2
receptor antagonist Ro1138452 reduce PVAT anti-contractile effect toward phenylephrine-
induced contraction in thoracic aorta of both male Wistar–Kyoto [105] and male Wistar
Hannover rats subjected to sepsis [106]. In the latter model, a high level of both superoxide
anion and 6-keto-PGF1α (a stable product of prostacyclin) was detected in PVAT [106].
These effects were also reproduced in the human saphenous vein, where indomethacin
blocked the increase in PVAT PGE2 levels and decreased PVAT anti-contractile effect toward
noradrenaline [107]. PVAT-derived prostacyclin prevents endothelial dysfunction in high-
fat diet-fed C57BL/6J mice [35]. In mesenteric arteries from spontaneously hypertensive,
obese and Wistar-Kyoto rats, PVAT shows a potent COX-2 activity and releases PGE2, PGI2,
and TXA2 (the latter is a pro-contractile factor) [108]. Moreover, endothelium-derived
prostacyclin partially contributes to PVAT anti-contractile effect toward noradrenaline in
mice mesenteric arteries [47]. However, other studies failed to detect a role for prostanoids
in PVAT-mediated anti-contractile effect both in experimental models [8] and human ar-
teries [41,108]. Taken together, these observations suggest that PVAT-derived prostanoids
contribute to its vasoregulatory activity. However, much effort is necessary to clarify the
discrepancies arising from the use of different animal models, vascular beds, health status,
and vasoconstricting agents.

4.5. Palmitic Acid Methyl Ester

Only a few studies have investigated PAME, a potent vasodilator released from the
sympathetic ganglion [109], which is synthesized by catechol-O-methyltransferase (COMT)
from palmitic acid. Both 3T3-L1 adipocytes and rat aortic PVAT express membrane-bound
and soluble-COMT. Noticeably, the levels of these enzymes are significantly reduced in
SHR, suggesting a role for PAME in hypertension [110]. PAME was first identified as
PDRF released spontaneously and Ca2+-dependently in aortic PVAT of Wistar–Kyoto rats,
where it induces vasodilation by the opening of KV channels [111]. Recently, Wang and
coworkers [112] showed that PVAT surrounding rat aorta exhibits a potent anti-contractile
effect against serotonin-induced contraction, which was abolished by the KV7 channel
blocker XE991. Further analysis showed that PAME is released from PVAT in response to
serotonin stimulation, thus challenging the hypothesis of spontaneous release of PAME
reported earlier [111]. These studies suggest that PAME is a PDRF, which contributes to
PVAT anti-contractile effect via stimulation of KV channels (Figure 2). However, due to the
limited evidence, the role of PAME in PVAT regulation of vascular tone requires further
studies, particularly in small blood vessels.

4.6. Angiotensin 1-7

Angiotensin 1-7 is a heptapeptide produced by the cleavage of angiotensin I or an-
giotensin II and counterbalances almost all physiological effects of angiotensin II [113].
PVAT contains all the actors involved in angiotensin 1-7 synthesis [angiotensin I, an-
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giotensin II, and angiotensin-converting enzyme 1/2 (ACE1, ACE2)] [114,115]. The role
of angiotensin 1-7 as PDRF has been demonstrated in rat aorta [116,117], rat inferior vena
cava [118], and mice aorta [63,119]. It is responsible for the endothelium-dependent compo-
nent of the anti-contractile effect of PVAT [116,117]. In fact, donor solution from PVAT intact
vessels induces relaxation only in recipient tissues with an intact endothelium, and this ef-
fect is abolished by the eNOS inhibitor L-NAME, NO scavengers, the Mas receptor blocker
A779, and the ACE2 inhibitor DX600 [116,117,119]. Angiotensin 1-7 exerts its effect by
activating the G protein-coupled receptor Mas [120], which is expressed in endothelial cells,
VSMCs, and PVAT [20,119,121]. The vasodilation induced by angiotensin 1-7 is mediated
either by endothelial cell Mas receptors that, in turn, activate eNOS via the PI3K/Akt path-
way to produce NO, which hyperpolarizes the underlying VSMCs through the activation of
KV channels [117–119] or by PVAT receptors leading to activation of eNOS and nNOS. The
latter produces NO and H2O2, both of which are known as PDRF (Figure 2) [63]. Whether
PVAT-derived angiotensin 1-7 acts directly on VSMCs is still unknown. In summary, there
is enough evidence proving the role played by angiotensin 1-7 in PVAT anti-contractile ef-
fect. Therefore, a fruitful therapeutic approach should develop drugs capable of increasing
angiotensin 1-7 production and stability or stimulating tissue-specific Mas receptors for the
treatment of PVAT dysfunction-associated diseases.

4.7. Adiponectin

Adiponectin, secreted mainly by adipose tissues, is an adipokine that regulates sev-
eral physiological functions, including metabolism and vascular tone. This is accom-
plished through the binding to and activation of adiponectin receptors AdipoR1 and
AdipoR2 [122,123]. Initially, Fésüs et al. [124] showed that exogenous adiponectin reduces
serotonin-induced contraction by activating KV channels. However, the anti-contractile
effect of PVAT in adiponectin gene-deficient mice is similar to that of wild-type animals, sug-
gesting that it cannot be considered a PDRF candidate, though other compensatory mecha-
nisms responsible for PVAT anti-contractile effect in adiponectin knockout mice should not
be ruled out. In fact, this hypothesis has been challenged by several studies showing that
this hormone is a local vasodilator and a PDRF [47,59,125]. For instance, Wither et al. [126]
observed that PVAT anti-contractile effect is lost in eosinophil-deficient mice and is restored
after eosinophil reconstitution. The anti-contractile effect was due to adiponectin and NO
released from adipocytes upon activation of adipocyte β3-adrenoceptors by eosinophil-
derived catecholamines. Indeed, under basal conditions, PVAT-intact mouse mesenteric
arteries release, upon β3-adrenoceptors stimulation, a hyperpolarizing factor, probably
adiponectin, capable of hyperpolarizing the underlying VSMCs via the opening of BKCa
1.1 channels and NO release from adipocytes [66]. Furthermore, in mice fed a high-fat diet,
AMPK phosphorylation and adiponectin secretion are reduced, and the anti-contractile
effect of aortic PVAT is lost, similarly to AMPK α1 knockout mice [127,128]. In addition, in
obese mice, the anti-contractile effect of femoral artery PVAT is markedly reduced, as is
the acetylcholine-induced relaxation. This effect was ascribed to a reduction in the level of
p-eNOSSer1177, Cu/Zn-SOD, and adiponectin levels as well as AdipoR1 expression along
with increased leptin and ROS production, and was reversed by exercise, suggesting a
crucial role of the adiponectin-AdipoR1 pathway in PVAT anti-contractile activity [129]. A
similar dysfunction was reported in obese rat models [130,131]. In fact, adult male offspring
of mice that experienced gestational intermittent hypoxia (GIH), for example, exhibit a
loss of PVAT anti-contractile effect in the abdominal aorta that was rescued by exogenous
application of adiponectin [132] or by the isoflavonoid calycosin through upregulation of
the adiponectin/AMPK/eNOS pathway [133].

Different mechanisms underlie adiponectin-induced vasodilation: stimulation of
eNOS activity and biosynthesis of its substrate tetrahydrobiopterin in endothelial cells [134];
stimulation of VSMCs directly by activating BKCa 1.1 or Kv channels or indirectly through
NO release from adipocytes [47,59,68,125]; and inhibition of VSMC NADPH oxidase via PI3K/Akt-
mediated block of Rac1 and down-regulation of p22phox gene expression (Figure 2) [135]. All the
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aforementioned studies suggest that adiponectin contributes to the anti-contractile effect of
PVAT. As its function is reduced in obese models, adiponectin-adipoR1/2 pathways can be
considered a potential target for the treatment of obesity-associated comorbidities.

4.8. Leptin

Leptin is a hormone produced mainly by adipose tissue to regulate appetite and energy
expenditure. Under physiological conditions, it stimulates the sympathetic nervous system
(indirectly causing vasoconstriction) and directly induces vasodilation: both processes are
generally balanced with no net change in vascular tone [136]. Leptin-induced vasodilation
may occur through either eNOS activation [137] or endothelium-derived hyperpolarizing
factor (e.g., H2S) release [138]; an endothelium-independent VSMC hyperpolarization has
also been observed (Figure 2) [139].

Though Löhn et al. [8] ruled out the involvement of leptin in PVAT-mediated anti-
contractile effect, several studies have demonstrated that this hormone is expressed and
released by PVAT of various vascular beds [140–143]. Gálvez-Prieto et al. [140] showed
that PVAT and exogenous leptin markedly reduce angiotensin II contraction in normal
but not in spontaneously hypertensive rats, an effect mediated by endothelial NO re-
lease. Interestingly, the enhancement of endothelium-dependent relaxation caused by
PVAT-derived leptin involves the downregulation of 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase 3 (PFKFB3)- mediated endothelial glycolysis [142,143]. An increase in
the NADPH oxidase subunit NOX1 expression and ROS generation seem to link glycoly-
sis to the impairment of endothelial-dependent relaxation [144]. Furthermore, electrical
field stimulation evokes a potent neurogenic relaxation in mesenteric arteries with intact
PVAT compared to their PVAT-denuded counterpart. This relaxation was ascribed to
leptin release from PVAT adipocytes and diminished upon low oxygen exposure [141].
Leptin levels increase during the early phase of diet-induced obesity and are linked to
NO overproduction and protection against endothelial dysfunction [57]. Similarly, in Dahl
salt-sensitive rats, aortic PVAT shows a potent anti-contractile effect toward phenylephrine,
which is blunted by PVAT removal and eNOS inhibition, and mimicked by the addition of
exogenous leptin [145].

In Ossabaw swine with metabolic syndrome, bradykinin-induced relaxation is reduced
in coronary arteries with intact epicardial adipose tissue compared to denuded vessels and
was linked to increased expression of leptin and its receptor along with protein kinase C
β stimulation [146]. Several studies suggest that in obesity, PVAT loses its anti-contractile
activity or even promotes endothelial dysfunction along with an increase in leptin levels.
This phenomenon has been observed in aortic and femoral artery PVAT of obese mice and
was associated with an increased expression of leptin, tumour necrosis factor α, iNOS,
and monocyte chemoattractant protein [65,147] or reduced adiponectin secretion [129].
Similar findings have been reported in PVAT of small subcutaneous arteries of obese
human subjects that were restored by bariatric surgery [148] and in small mesenteric
arteries of obese rats that were reversed by weight loss [62]. Leptin can contribute to
vascular dysfunction also by promoting VSMC phenotype switch [149,150] and neointima
formation [143]. In fact, adipocytes release a high amount of leptin upon treatment with the
hepatic fibroblast growth factor 21 (FGF21), suggesting the existence of a liver-PVAT-blood
vessel axis [151]. These heterogeneous studies suggest that PVAT-derived leptin, under
normal physiological conditions or during the early phase of obesity development, acts
as a PDRF. However, in the context of obesity, it causes a pro-contractile effect through
mechanisms that remain poorly studied. Further investigation is required to clarify the
factors that determine the anti-contractile or pro-contractile activity of leptin before any
therapeutic strategy is considered for the treatment of cardiovascular diseases.

4.9. Omentin

Omentin, a 34-kD adipokine produced mainly by visceral adipose tissues, exists
in two isoforms, omentin-1 and omentin-2, sharing an amino acid identity of 83%: the
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former is predominant in human plasma [152,153]. Omentin-1 is expressed in different
tissues, including epicardial fat, colon, thymus, small intestine, and ovary, and is identified
by different names: intelectin-1, intestinal lactoferrin receptor, endothelial lectin HL-1
or galacto-furanose-binding lectin [152,154]. Omentin, which exerts anti-inflammatory,
antioxidant, anti-atherogenic and cardioprotective functions [155,156], is expressed in
PVAT. Furthermore, human perivascular pre-adipocytes release omentin upon stimulation
with FGF21 [151]. Human epicardial adipose tissue surrounding large coronary arteries
expresses omentin, and its level is lower in patients with coronary artery disease than in
their healthy counterparts [157]. Similarly, PVAT of the human internal mammary artery
expresses omentin, which exerts an anti-atherosclerotic function [158]. Direct evidence
demonstrating the involvement of omentin in PVAT anti-contractile effect is still lacking, as
PVAT-specific omentin knockout animal models are not available yet. Nevertheless, human
recombinant omentin relaxes noradrenaline-induced contraction of both rat aorta and
mesenteric arteries in an endothelium-dependent manner via eNOSSer1177 phosphorylation
and independently of Akt or tyrosine kinase activation (Figure 2) [159]. In summary, the
contribution of omentin to PVAT anti-contractile effect awaits more experimental evidence,
particularly that involving animal models with omentin gene-specific deletion in PVAT.

4.10. Other Factors/Mechanisms

Besides those discussed above, there are several endogenous factors endowed with va-
sodilatory effects, including ghrelin [160], apelin [161], adrenomedullin [162,163], irisin [164,165],
vaspin [166], sulphur dioxide [167,168], and carbon monoxide [169,170], among others.
Whether they are produced in PVAT and contribute to its anti-contractile effect has not been
investigated yet. Other mechanisms have been claimed as potential contributors to the
anti-contractile effect of PVAT: for example, the re-uptake of catecholamines into PVAT may
underpin its anti-contractile effect by decreasing the amount of noradrenaline reaching
VSMCs and increasing the release of vasodilators (NO and adiponectin) by stimulating
β3-adrenoreceptors in PVAT [96,171,172]. Extracellular vesicles (small membraneous par-
ticles formed by cells and released to transfer biological messages to neighbouring cells
to influence their physiology and function) containing microRNAs, such as miR-221-3p
released from PVAT of obese mice, evoke an inflammatory response in VSMCs promoting
their proliferation and migration [173]. Whether these or other yet unidentified mecha-
nisms play a key role in PVAT regulation of VSMC tone has to be clarified with further
investigation.

5. PVAT-Derived Pro-Contractile Factors
5.1. Superoxide Anion

Superoxide anion is a free radical oxygen species involved in several patho-physiological
processes [174]. At the vascular level, it is produced in the endothelium, VSMCs, and adven-
titia by the action of NADPH oxidase, xanthine oxidase, and by the mitochondrial electron
transport chain [175]. Gao et al. [176] showed for the first time that superoxide anion is
responsible for PVAT potentiation of superior mesenteric artery response to electrical field
stimulation. Several pieces of evidence supported this hypothesis: fluorescent labelling
with dihydroethidium detected superoxide anion in PVAT-intact rings, isolated PVAT, and
PVAT-derived adipocytes; this potentiation was mimicked by the exogenous superoxide
donor pyrogallol and significantly reduced by SOD, NADPH oxidase inhibition, and in-
domethacin; and it was not observed in PVAT-denuded rings [176]. However, this result
should be considered with caution because the study employed electrical field stimulation,
a strong and not physiological stimulus. Nevertheless, in obese animal models, superox-
ide anion levels are high and contribute to the loss of PVAT anti-contractile effect, thus
promoting vascular dysfunction [16,147,177–180]. Increased superoxide anion generation
is also observed in PVAT of rats fed high-sugar diet for 12 weeks (a metabolic syndrome
model); this effect was accompanied by an increase of O-linked β-N-acetylglucosamine
(O-GlcNAc) modification of eNOS and by the loss of PVAT anti-contractile effect [181]. Of
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note, PVAT-intact aortic preparations stimulated by noradrenaline show an increased level
of superoxide anion that was hypothesized to modulate vessel contraction directly or after
dismutation to hydrogen peroxide [95]. Higher levels of superoxide anion are measured
in PVAT of old male C57BL6/N mice as compared to young counterparts; this ROS was
associated with enhanced arterial stiffness, though the contractile function was not directly
assessed in this study [182].

The pro-contractile effect of superoxide anion is ascribed to the activation of the
Rho-kinase pathway at the smooth muscle level [183], modulation of the arachidonic acid
pathway [184], and/or NO inactivation to form peroxynitrite, which uncouples eNOS at
the endothelial level [185]. Of note, PVAT eNOS uncoupling by superoxide anion has been
reported in several studies [58,60,186,187]. Tyrosine kinase and the MAPK/ERK pathway
are also involved as the inhibitors of both pathways (i.e., tyrphostin A25 and U0126,
respectively) suppress the pro-contractile effect observed in PVAT intact preparations
and attenuate the potentiation of the response operated by pyrogallol (Figure 3) [176].
Taken together, these studies suggest that NADPH oxidase and/or mitochondrial electron
transport chain, under certain pathophysiological conditions, generate superoxide anion
in PVAT that plays a pro-contractile function, thus potentiating the vascular response to
various stimuli and reducing NO bioavailability.
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and chemerin. These factors act directly via different pathways on smooth muscle cells or indirectly
by reducing the activity of eNOS, resulting in enhanced contractility of VSMCs. EC, endothelial cell;
PVAT, perivascular adipose tissue; VSMC, vascular smooth muscle cell; αAR, α adrenergic receptor;
AT1R, angiotensin II receptor type I; Ch23R, chemerin receptor 23; PGRs, prostaglandin receptors;
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catecholamine; PGF2α, prostaglandin F2α; TXA, thromboxane A2.
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5.2. Angiotensin II

Angiotensin II is a component of the renin–angiotensin system (RAS) capable of
eliciting potent vasoconstriction, thus increasing blood pressure [188]. Shortly after the
recognition of PVAT pro-contractile effect [176], PVAT was found to express complete RAS
elements, including angiotensinogen, angiotensin II, angiotensin 1-7, ACE1, ACE2, renin,
AT1R, and AT2R. PVAT RAS components vary across the vascular tree: angiotensin II level,
for example, is higher in mesenteric than in periaortic PVAT [115,189]. In mesenteric arteries,
PVAT-derived angiotensin II acts as a pro-contractile factor capable of potentiating the
response to electrical field stimulation. In fact, both inhibition of angiotensin II synthesis by
the ACE inhibitor enalaprilat and blockade of AT1R by candesartan blunted this effect [190].
The mechanism hypothesized involves PVAT-derived angiotensin II binding to adipocytes
and vascular wall AT1R, stimulation of superoxide anion production by NADPH oxidase,
and finally, vessel contraction through the activation of the tyrosine kinase-MAPK/ERK
pathway (Figure 3) [191].

In a spontaneously hypertensive mouse model lacking perilipin-1 (Plin-1), a protein
coating lipid droplets in adipocytes and regulating triglyceride storage and hydrolysis,
high levels of angiotensin II, AT1R expression, and macrophage infiltration were detected
in PVAT of both aorta and mesenteric arteries along with loss of anti-contractile effect
and increased vasoconstriction [192]. More recently, adipose-tissue specific knockout of
Bone Morphogenetic Protein 4 (BMP4) in apolipoprotein E (ApoE) knockout mice gave
rise to high levels of angiotensinogen, angiotensin II, and ROS, resulting in hypertension
development [193]. Furthermore, thiopental-induced relaxation of rat thoracic aorta is
reduced by PVAT in an angiotensin II-dependent manner [194]. The use of AT1R antag-
onists supported the involvement of angiotensin II in several experimental models of
diseases. For example, in high-fructose diet-fed rats, the AT1R antagonist losartan partially
restored the endothelium-dependent PVAT anti-contractile effect, suggesting the involve-
ment of angiotensin II in endothelial dysfunction [195]. In rat mesenteric arteries, the
AT1R antagonist telmisartan and the ACE2 inhibitor captopril restore the anti-contractile
effect of PVAT abolished by in vitro hypoxia, suggesting a role for angiotensin II in this
phenomenon [196]. Furthermore, the blockade of both AT1R and AT2R restores the loss
of PVAT anti-contractile effect in a rat model of heart failure caused by the overactivation
of ACE1/angiotensin II/AT1R and AT2R pathway in PVAT [197]. Finally, angiotensin II
has been linked to different pro-inflammatory phenotypes of PVAT that could be counter-
acted by PVAT browning [198]. Conversely, the contribution of angiotensin II to the loss
of PVAT compensatory vasodilation during metabolic syndrome progression was ruled
out as azilsartan, a potent AT1R antagonist, improves acetylcholine-induced vasodilation
independently of the presence of PVAT [199]. Together, these studies demonstrate that
PVAT, under certain pathophysiological conditions, synthesizes and secretes angiotensin II,
which sequentially contributes to the loss of its anti-contractile activity by binding to AT1R
expressed on adipocytes, VSMCs, and endothelium.

5.3. Prostaglandins

Prostaglandins, arachidonic acid-derived metabolites, are potent vasoconstrictors,
capable of inducing also pro- and anti-inflammatory effects [200]. In the cardiovascular
system, prostaglandins are produced not only by all blood vessel layers and cardiomy-
ocytes [201] but also by PVAT. In experimental models of obesity, they play a different
role. In obese mice, for example, prostaglandins significantly augment serotonin- and
phenylephrine-induced contraction of the aorta while leaving unaltered that of the lean
counterparts. This effect is blocked by COX inhibition or partially antagonized by inhibi-
tion of either COX-1 or COX-2 and is associated with elevated levels of TXA2 in periaortic
PVAT [202]. PVAT-derived prostaglandins also cause endothelial dysfunction in mesenteric
arteries of spontaneously hypertensive, obese rats but not in healthy controls. Again, this
dysfunction can be reversed by the blockade of COX-2, TXA2 synthase, or PGI2 and TXA2
receptors [108]. Furthermore, in Cafeteria diet-induced obese rats, PVAT not only loses
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its anti-contractile but also exerts a pro-contractile effect associated with increased COX-1
activity as well as ROS, TXA2, and PGE2 levels [203]. Finally, minced PVAT constricts
the thoracic aorta, carotid, and mesenteric arteries of C57BL/6J mice in an indomethacin-
dependent manner [204].

Though PGE2 is a potent vasodilator, it can also elicit vasoconstriction under cer-
tain conditions, probably due to the existence of multiple receptors (EP1-4) coupled to
different signalling pathways [205,206]. Ahmad et al. [207] showed that PVAT induces a
pro-contractile effect in porcine coronary arteries, which was abolished by the COX in-
hibitors indomethacin and flurbiprofen. Interestingly, this study highlighted sex differences
in PVAT function because the PGF2α receptor antagonist AL8810 attenuated PVAT-induced
contraction only in males, while the TXA2 receptor antagonist GR32191B was effective
only in female porcine coronary arteries. Furthermore, PGF2α levels were not statistically
different between the two sexes: however, PGF2α elicited a stronger contraction in arteries
from males compared to females, likely due to a higher prostaglandin F receptor expression.
Conversely, TXB2 levels, a stable metabolite of TXA2, were significantly higher in females
than males; however, neither the contraction evoked by the TXA2 agonist U46619 nor TP re-
ceptor expression were different between the two sexes [207]. Taken together, these studies
suggest that PVAT synthesizes prostaglandins that, under certain pathological conditions,
act as PDCFs, activating their receptors on VSMCs and counteracting its anti-contractile
effect and/or mediating its vasoconstricting activity (Figure 3).

5.4. Catecholamines

Catecholamines are monoamine neurotransmitters endowed with several functions,
such as regulation of metabolism and blood pressure [208]. Though these neurotransmitters
are mainly produced by the sympathetic nervous system and adrenal medulla, endothelial
cells are equipped with a complete system capable of synthesizing and secreting cate-
cholamines in both in vitro and in vivo settings [209]. PVAT (e.g., aortic and mesenteric
PVAT of male Wistar rats) also contains a reservoir of catecholamines, such as noradrenaline,
dopamine, and serotonin [121,210], which are releasable by the indirect sympathomimetic
tyramine, causing a greater contraction in arterial preparations with an intact PVAT as
compared to those devoid of PVAT [211]. This tyramine-induced contraction is antag-
onized by the noradrenaline transporter inhibitor nisoxetine, the vesicular monoamine
transporter inhibitor tetrabenazine, and the α-adrenoreceptor antagonist prazosin, but not
by dopamine and serotonin transporters inhibition, or celiac ganglionectomy, suggesting
that noradrenaline release does not occur in sympathetic neurons (Figure 3) [211].

The origin of catecholamines in PVAT is still a matter of debate. Indeed, PVAT may syn-
thesize catecholamine de novo from their precursors, as adipocytes express all the necessary
enzymes [212,213]. Alternatively, PVAT may take up catecholamine released from the sym-
pathetic nervous system and store them. The following evidence support this hypothesis:
accumulation in mesenteric PVAT is decreased by nisoxetine, by the serotonin transporter
inhibitor citalopram, and by the organic cation transporter 3 inhibitor corticosterone, as
well as by their combination [172]; PVAT surrounding mesenteric arteries of C57BL/6J mice
exhibits an anti-contractile effect toward electrical field stimulation-induced contraction
that is partially mediated by noradrenaline uptake into adipocytes [171]; PVAT adipocytes
of thoracic aorta, resistance and superior mesenteric arteries take up noradrenaline via vesic-
ular monoamine transporter 1/2, noradrenaline transporter, and corticosterone-sensitive
organic cation 3 transporter [210]. Once into PVAT of rat mesenteric arteries, noradrenaline
is metabolized by semicarbazide-sensitive amine oxidase and monoamine oxidase A;
therefore, catecholamine metabolism can also affect PVAT anti-contractile effect [96]. Fi-
nally, other cells colonizing PVAT, such as macrophages and lymphocytes, may contribute
to the pool, being capable of synthesizing catecholamines [214]. Eosinophils localized
into PVAT, for example, synthesize and release catecholamines that, in turn, activate β3-
adrenoreceptors on adipocytes, to release adiponectin and NO [126]. In conclusion, there is
enough evidence supporting the existence of a catecholamines reservoir in PVAT, particu-
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larly noradrenaline, that potentially play a key role in anti-contractile and pro-contractile
functions [211,215]. Whether PVAT catecholamines contribute to its pro-contractile effect
under pathophysiological conditions deserves further investigation.

5.5. Chemerin

Chemerin is a multifunctional inflammatory adipokine, initially identified as a retinoic
acid receptor response gene, which exerts its effect by binding to and activating the
chemokine-like receptor 1, also known as ChemR23 [216], widely expressed in different
organs and tissues, including vascular, endothelial, and smooth muscle cells [217]. PVAT lo-
calized to different vascular beds synthesizes and secretes chemerin [218–220]. Additionally,
PVAT-derived pre-adipocytes and differentiated adipocytes secrete chemerin in conditioned
media upon stimulation with FGF21 [151]. Chemerin and its active fragment chemerin-9
contract different vascular beds in a concentration-dependent manner [218,221–223]: this
contraction is potentiated by endothelium denudation or eNOS inhibition [218]. Similarly,
PVAT-derived chemerin potentiates phenylephrine-, prostaglandin F2α-, and electrical field
stimulation-induced contraction of rat thoracic aorta, superior, and resistance mesenteric
arteries: an effect blunted by the chemR23 antagonist CCX832 or in chemerin knockout
rats [218–220].

Chemerin-induced contraction occurs through Gi activation leading to increased L-
type Ca2+ channels opening and stimulation of Src kinase and Rho kinase activity [221,222].
PVAT-derived chemerin also contributes to obesity-induced endothelial dysfunction and
hypertension [224,225]. These studies suggest that chemerin is a PDCF that might con-
tribute to PVAT modulation of vascular tone (Figure 3). However, further studies are
needed to define its contribution to vascular diseases and understand whether chemerin
receptor antagonists might be valuable therapeutic weapons.

5.6. Resistin

Resistin, a small adipokine produced mainly by adipose tissues, is found in plasma
as a trimer or hexamer. Once bound to receptors such as Toll-Like Receptor 4 (TLR4) or
adenylyl cyclase-associated protein 1 (CAP1) [226,227], resistin triggers various intracellular
signalling cascades leading to vascular inflammation, lipid accumulation, and oxidative
stress [228]. Resistin was also found in the PVAT of different animal models under certain
pathophysiological conditions [229–232]. PVAT-derived resistin increases the susceptibility
to hypertension in males compared to female rats [233]. In this regard, PVAT-intact third-
order mesenteric arteries from stroke-prone spontaneously hypertensive male rats do not
relax to the KATP channel opener cromakalim as those from female counterparts: this effect
was ascribed to the overexpression of resistin found only in male [233]. In support of this
hypothesis, recombinant resistin impairs the response to cromakalim also in PVAT-intact
vessels of female rats [233].

Resistin per sé neither causes vasodilation nor vasoconstriction. However, it attenu-
ates insulin-induced vasodilation by inhibiting tyrosine/serine phosphorylation of insulin
receptor substrate-1 and its sequential interaction with phosphatidylinositol 3-kinase,
thus impairing Akt and eNOS phosphorylation [234,235]. Resistin also impaired the
endothelium-dependent bradykinin- but not acetylcholine-induced relaxation of coronary
artery rings, causing a reduction of NO and PGI2 synthesis and hence endothelial dys-
function [236]. Furthermore, resistin promotes the expression of endothelin-1, intercellular
adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) [237,238].
At the VSMC level, resistin significantly increases the phosphorylation of p42/4 mitogen-
activated protein kinase (MAPK) and c-fos expression and downregulates the expression
of cyclin-dependent kinases inhibitors (CDKIs) such as p53, p21, and p27 promoting cell
proliferation [239,240]. In this regard, VSMCs cultured with either PVAT from obese mice
or resistin alone show high levels of osteopontin, a key factor involved in VSMC prolif-
eration, migration, and remodelling [229]. Though plasma resistin is mainly produced
by monocytes and macrophages, at the cardiovascular level, PVAT resistin should not be
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underrated due to the proximity of PVAT to other vascular layers. Though the cellular
origin of PVAT-derived resistin has not been investigated in depth, there is evidence that
aortic PVAT of obese mice expresses high levels of visfatin and resistin, the latter being
co-localized with macrophages [232]. In summary, though resistin cannot be considered
as a standalone PDCF, it might contribute indirectly to PVAT pro-contractile activity or
to the loss of its anti-contractile effect by inducing endothelial dysfunction and VSMC
remodelling (Figure 3).

5.7. Visfatin

Visfatin is a multifunctional adipokine, produced mainly by visceral adipose tissues,
also known as pre-B cell colony-enhancing factor (produced by lymphocytes), or extracellu-
lar nicotinamide phosphoribosyl transferase (eNampt), the limiting enzyme in nicotinamide
adenine dinucleotide (NAD+) biosynthesis [241,242]. Visfatin, which can activate insulin
receptors [243], and Toll-Like receptors [244], is associated with several diseases such as
diabetes [245], obesity [246], and atherosclerosis [247], and its level increases during human
pregnancy [248]. PVAT produces visfatin, and plasma visfatin level has been correlated with
that of PVAT [232,249,250]. In addition, stimulation with FGF21 increases visfatin secretion
from human perivascular adipocytes [151]. PVAT-derived visfatin can induce endothelial
dysfunction and VSMC proliferation [232,249,250]. In this regard, Wang et al. [250] showed
that PVAT-derived visfatin is ineffective on vascular tone induced by serotonin but rather
acts as a growth-promoting factor for VSMCs. This notion, however, should be considered
with caution. First, PVAT anti-contractile and pro-contractile effects are known to be influ-
enced by the vasoconstricting agent used; in this study, serotonin was used [8,52]. Second,
several studies have highlighted different effects of visfatin on vascular tone. For example,
in rat aorta rings, visfatin antagonizes noradrenaline-induced contraction and induces
endothelium-dependent relaxation by stimulating eNOS activity via phosphorylation at
Ser1177 and de-phosphorylation of Thr495, independently of insulin receptor activation [251].
However, in rat endothelium-intact small resistance artery rings, visfatin does not alter nora-
drenaline response and markedly reduces the acetylcholine-mediated relaxation. This effect
is reversed by either the NAMPT inhibitor FK866 or by superoxide dismutase, supporting a
mechanism that involves ROS production and decreased NO bioavailability [249]. Similarly,
visfatin attenuates acetylcholine- but not sodium nitroprusside-dependent relaxation in
rat and human microvessels. This impairment is reversed by either the NADPH oxidase
inhibitor apocynin or by the nicotinamide phosphoribosyl transferase inhibitor APO866 but
not by an insulin receptor-blocking antibody, suggesting that visfatin-induced endothelial
dysfunction occurs via a NAMPT/NADPH pathway [252]. In conclusion, PVAT-derived
visfatin may contribute to its pro-contractile effect in small vessels: endothelial dysfunction
and increased VSMC proliferation seem to play a key role in small resistance arteries
(Figure 3). However, the evidence that, in large conduit arteries, visfatin may induce
vasorelaxation via an endothelium-dependent mechanism indicates that further studies are
necessary to clarify its interplay with PVAT function.

5.8. Other Factors/Mechanisms

Several other actors are believed to influence the contractile activity of PVAT. For
example, PVAT attenuates adenosine-induced vasodilation by inhibiting KCa and KV chan-
nels in lean Ossabaw swine and KATP channels in obese swine. Furthermore, exogenous
calpastatin inhibits adenosine-induced vasodilation in lean but not in obese swine [49],
likely as a consequence of the pro-contractile effect of coronary PVAT [50]. The role of
calpastatin as PDCF and its mechanism has not been sufficiently addressed and deserves
further attention.

Lipocalin-2, a pro-inflammatory adipokine upregulated during obesity and hyper-
tension, has been associated with endothelial dysfunction [253]. A few studies show that
PVAT expresses lipocalin-2, though the contribution to its pro-contractile effect has not
been assessed yet [254,255]. Neuropeptide Y is a potent vasoconstricting agent released by
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the sympathetic nervous system [256], produced by the adipose tissue, where it regulates
energy metabolism [257]. Whether PVAT can produce neuropeptide Y that contributes to
its pro-contractile effect remains poorly studied. Tumour necrosis factor-alpha (TNFα),
an inflammatory cytokine capable of potentiating VSMC contraction [258], is released
by PVAT and contributes to the loss of its function [60,259]. Interleukins such as IL-6
and IL-1β, produced by many tissues, exert both pro- and anti-inflammatory effects and
potentiate vessel contraction in diabetic and hypertensive rats [260,261]. PVAT secretes
IL-6 and IL-1β, but their contribution to its contractile regulatory function is poorly un-
derstood [262,263]. Other factors detected in PVAT under pathophysiological conditions
include platelet-derived growth factor-D [264], monocyte chemoattractant protein-1 [265],
complement system components [266], and aldosterone [267]. However, whether these
factors are involved in the PVAT pro-contractile effect or loss of anti-contractile function is
not known yet and deserves further investigation.

6. Conclusions and Future Perspectives

PVAT is regarded as a metabolically active, endocrine organ capable of modulating
vessel tone in many ways. Under physiological conditions, PVAT limits the contraction of
blood vessels in response to various stimuli, thus protecting against hypertension and car-
diovascular diseases. As this anti-contractile effect is mediated by a plethora of vasoactive
molecules, a unique consensus on the role played by each of these mediators has not been
reached yet, even in studies performed on the same blood vessel. This discrepancy may
arise from the different conditions used to perform the experiments, including stimulating
agents, age, sex, and health status of the animal model used. In addition, PVAT from
different vascular beds of the same organisms behaves differently, likely because PVAT of
different vessels exhibits different phenotypes and hence is definitively characterized by
a unique secretory profile [268], though other factors (age, sex, stimuli, and health status)
may also contribute. This problem might be circumvented by simultaneously assessing the
PVAT anti-contractile effect of multiple vascular beds of the same animal model.

Under pathological conditions, particularly during the early stage of hypertension [77],
obesity [97], and diabetes development [269], PVAT exerts a protective effect. However,
once the disease is established, PVAT shifts from an anti-contractile to a pro-contractile
phenotype by secreting numerous pro-contractile factors. In addition, in this context, a
consensus on the role of the factors contributing to the loss of the anti-contractile effect is
missing: standardization of the experimental conditions might help overcome this issue.

In this scenario of uncertainties, the precise role of PVAT-derived factors on vascular
tone regulation should be unambiguously defined before PVAT-targeted therapeutics can
be designed and developed. Therefore, future studies should systematically address the
following issues. First, whether the list of PVAT vasoactive substances is complete or other
factors/mechanisms are still to be discovered yet. Second, there is a need to investigate
variability in PVAT anti- and pro-contractile factors depending on the animal models and
vascular beds used, particularly in small vessels, which are known to play a key role in
blood pressure regulation and hence hypertension pathogenesis. In this sense, it is also
crucial to highlight the influence of stimuli, sex, age, and health status on the PVAT secretory
profile. Third, taking the cellular heterogeneity of PVAT into consideration, the cellular
origin of PVAT-derived factors needs to be clarified before any PVAT-target therapeutics
can be designed. Fourth, further studies should also address the synthesis and release
of PVAT anti- and pro-contractile factors and their regulation, as well as whether these
factors are released in response to physiological or pathological stimuli or are constitutively
produced. In addition, it is important to assess if these pathways work in vivo in the
same way. During disease onset and progression, it is critical to determine the stage and
mechanisms by which PVAT regulatory function shifts from an anti-contractile to a pro-
contractile function and whether it can be reversed. Encouragingly, several studies have
demonstrated the reversibility of PVAT function via weight loss [62], exercise [81,129],
bariatric surgery [148], or small molecules [133]. Finally, the interplay between PVAT
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and factors released from the endothelium, VSMCs (myokines) or other adipose tissues
(adipokines) under physiological as well as pathological conditions needs to be addressed.

Undoubtedly, the implementation of omic technologies is key to addressing these
questions. Analysis of the transcriptome, proteome, metabolome, lipidome, and secre-
tome of PVAT depots can identify the molecular hallmarks and the differences that may
explain the discrepancies existing in the literature. Furthermore, the use of genome editing
approaches such as knockout animal models for specific genes involved in biosynthetic
pathways of PVAT vasoactive factors will definitively help to quantify their contribution
to vascular tone regulation and identify any compensatory mechanism that may exist in
certain gene knockout animal models.
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23. Stanek, A.; Brożyna-Tkaczyk, K.; Myśliński, W. The Role of Obesity-Induced Perivascular Adipose Tissue (PVAT) Dysfunction in
Vascular Homeostasis. Nutrients 2021, 13, 3843. [CrossRef]

24. Gil-Ortega, M.; Somoza, B.; Huang, Y.; Gollasch, M.; Fernández-Alfonso, M.S. Regional differences in perivascular adipose tissue
impacting vascular homeostasis. Trends Endocrinol. Metab. 2015, 26, 367–375. [CrossRef] [PubMed]

25. Rajsheker, S.; Manka, D.; Blomkalns, A.L.; Chatterjee, T.K.; Stoll, L.L.; Weintraub, N.L. Crosstalk between perivascular adipose
tissue and blood vessels. Curr. Opin. Pharmacol. 2010, 10, 191–196. [CrossRef] [PubMed]

26. Margaritis, M.; Antonopoulos, A.S.; Digby, J.; Lee, R.; Reilly, S.; Coutinho, P.; Shirodaria, C.; Sayeed, R.; Petrou, M.; De Silva, R.;
et al. Interactions Between Vascular Wall and Perivascular Adipose Tissue Reveal Novel Roles for Adiponectin in the Regulation
of Endothelial Nitric Oxide Synthase Function in Human Vessels. Circulation 2013, 127, 2209–2221. [CrossRef] [PubMed]

27. Corvera, S. Cellular Heterogeneity in Adipose Tissues. Annu. Rev. Physiol. 2021, 83, 257–278. [CrossRef] [PubMed]
28. Kumar, R.K.; Jin, Y.; Watts, S.W.; Rockwell, C.E. Naïve, Regulatory, Activated, and Memory Immune Cells Co-exist in PVATs That

Are Comparable in Density to Non-PVAT Fats in Health. Front. Physiol. 2020, 11, 58. [CrossRef] [PubMed]
29. Farias-Itao, D.S.; Pasqualucci, C.A.; Nishizawa, A.; da Silva, L.F.F.; Campos, F.M.; Bittencourt, M.S.; da Silva, K.C.S.; Leite, R.E.P.;

Grinberg, L.T.; de Lucena Ferretti-Rebustini, R.E.; et al. B Lymphocytes and Macrophages in the Perivascular Adipose Tissue Are
Associated With Coronary Atherosclerosis: An Autopsy Study. J. Am. Heart Assoc. 2019, 8, e013793. [CrossRef] [PubMed]

30. Farias-Itao, D.S.; Pasqualucci, C.A.; Andrade, R.; da Silva, L.F.F.; Yahagi-Estevam, M.; Lage, S.H.G.; Leite, R.E.P.; Campo, A.B.;
Suemoto, C.K. Macrophage Polarization in the Perivascular Fat Was Associated With Coronary Atherosclerosis. J. Am. Heart
Assoc. 2022, 11, e023274. [CrossRef]

31. Qiu, T.; Li, M.; Tanner, M.A.; Yang, Y.; Sowers, J.R.; Korthuis, R.J.; Hill, M.A. Depletion of dendritic cells in perivascular adipose
tissue improves arterial relaxation responses in type 2 diabetic mice. Metab. Clin. Exp. 2018, 85, 76–89. [CrossRef] [PubMed]

32. Kim, H.W.; Shi, H.; Winkler, M.A.; Lee, R.; Weintraub, N.L. Perivascular Adipose Tissue and Vascular Perturba-
tion/Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2569–2576. [CrossRef] [PubMed]

33. Li, X.; Ma, Z.; Zhu, Y.Z. Regional Heterogeneity of Perivascular Adipose Tissue: Morphology, Origin, and Secretome. Front.
Pharmacol. 2021, 12, 697720. [CrossRef]

34. Fu, M.; Xu, L.; Chen, X.; Han, W.; Ruan, C.; Li, J.; Cai, C.; Ye, M.; Gao, P. Neural Crest Cells Differentiate Into Brown Adipocytes
and Contribute to Periaortic Arch Adipose Tissue Formation. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1629–1644. [CrossRef]

35. Chang, L.; Villacorta, L.; Li, R.; Hamblin, M.; Xu, W.; Dou, C.; Zhang, J.; Wu, J.; Zeng, R.; Chen, Y.E. Loss of perivascular adipose
tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation
and enhances atherosclerosis. Circulation 2012, 126, 1067–1078. [CrossRef]

36. Ye, M.; Ruan, C.C.; Fu, M.; Xu, L.; Chen, D.; Zhu, M.; Zhu, D.; Gao, P. Developmental and functional characteristics of the thoracic
aorta perivascular adipocyte. Cell. Mol. Life Sci. 2019, 76, 777–789. [CrossRef]

37. Angueira, A.R.; Sakers, A.P.; Holman, C.D.; Cheng, L.; Arbocco, M.N.; Shamsi, F.; Lynes, M.D.; Shrestha, R.; Okada, C.; Batmanov,
K.; et al. Defining the lineage of thermogenic perivascular adipose tissue. Nat. Metabol. 2021, 3, 469–484. [CrossRef]

38. Saxton, S.N.; Withers, S.B.; Heagerty, A.M. Perivascular Adipose Tissue Anticontractile Function Is Mediated by Both Endothelial
and Neuronal Nitric Oxide Synthase Isoforms. J. Vasc. Res. 2022, 59, 288–302. [CrossRef]

39. Araujo, H.N.; Victório, J.A.; Valgas da Silva, C.P.; Sponton, A.C.S.; Vettorazzi, J.F.; de Moraes, C.; Davel, A.P.; Zanesco, A.; Delbin,
M.A. Anti-contractile effects of perivascular adipose tissue in thoracic aorta from rats fed a high-fat diet: Role of aerobic exercise
training. Clin. Exp. Pharmacol. Physiol. 2018, 45, 293–302. [CrossRef] [PubMed]

40. Kociszewska, K.; Deja, M.A.; Malinowski, M.; Kowalówka, A. Vasorelaxing properties of the perivascular tissue of the human
radial artery. Eur. J. Cardiothorac. Surg. 2022, 61, 1423–1429. [CrossRef]

41. Malinowski, M.; Deja, M.A.; Gołba, K.S.; Roleder, T.; Biernat, J.; Woś, S. Perivascular tissue of internal thoracic artery releases
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