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Abstract: Heart failure is a worldwide health problem with important consequences for the overall
wellbeing of affected individuals as well as for the healthcare system. Over recent decades, numerous
pieces of evidence have demonstrated that the associated gut microbiota represent an important
component of human physiology and metabolic homeostasis, and can affect one’s state of health or
disease directly, or through their derived metabolites. The recent advances in human microbiome
studies shed light on the relationship between the gut microbiota and the cardiovascular system,
revealing its contribution to the development of heart failure-associated dysbiosis. HF has been linked
to gut dysbiosis, low bacterial diversity, intestinal overgrowth of potentially pathogenic bacteria and a
decrease in short chain fatty acids-producing bacteria. An increased intestinal permeability allowing
microbial translocation and the passage of bacterial-derived metabolites into the bloodstream is
associated with HF progression. A more insightful understanding of the interactions between the
human gut microbiome, HF and the associated risk factors is mandatory for optimizing therapeutic
strategies based on microbiota modulation and offering individualized treatment. The purpose of
this review is to summarize the available data regarding the influence of gut bacterial communities
and their derived metabolites on HF, in order to obtain a better understanding of this multi-layered
complex relationship.

Keywords: heart failure; gut microbiota; metabolites; dysbiosis; immune modulation

1. Introduction

Heart failure (HF) represents a worldwide health problem with significant associated
healthcare costs, morbidity and mortality [1]. It is the final stage that results from car-
diac structural and functional damage and subsequent imbalances in the compensatory
mechanisms and pathogenic processes [2]. HF can take an acute form, correlated with
several inflammatory markers and can also appears as a chronic disease, characterized
by an altered inflammatory status associated with pro-inflammatory mediators that are
considered essential in HF pathogenesis [3].

The bidirectional communication between gut microbiota and extra-intestinal organs
has been intensively studied during the last two decades, leading to a better comprehension
of the pathophysiological underlying mechanisms and offering a new characterization
of HF clinical features, novel risk factors to be taken into account, new diagnostic tools
and new therapeutic options [4–6]. A recent bibliometric study of Wu and colleagues [7],
investigating the relationship between the human gut microbiota and heart failure, identi-
fied a large number of 873 literature studies, published from 2006 to 2021 and indexed by
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SCIE. This included original articles in a proportion of 81.79% and 18.21% reviews, with
an additional number of 273 articles published between 1 January 2022 and 28 February
2023, identified by using a search query similar to the one used by Wu and colleagues [7].
The large number of scientific papers comes as proof of the researchers’ extensive efforts
to understand the relationship between HF and the GI microbiota [7]. However, most
studies available regarding this medical dyad are associative in nature and the subject
clearly requires further investigation [8–12]. The aim of this review is to analyze the current
evidence available in the literature regarding gut–heart interactions and the insights of
the “gut hypothesis” of HF, highlighting the importance of the gut microbiota and their
derived metabolites as a new frontier in HF research and a potential treatment target.

2. Gut-Associated Microbiome Composition and Function in Healthy Individuals

The human gut microbiome is considered to be an organ on its own with major in-
teractions within the human organism, playing an active role in various immunological,
neuronal, metabolic and endocrine responses [13]. The highest concentration and diver-
sity of microorganisms from the human body lies in the gastrointestinal tract, consisting
of more than 500 distinct species of bacteria, viruses, fungi and protozoa [14,15]. The
GI microbiota are represented by five primary bacterial phyla: the Firmicutes (synonym
Bacillota) and Bacteroides (synonym Bacteroidota) phyla predominate the microbiome and
represent more than 90% of total bacterial communities, while the Proteobacteria (synonym
Pseudomonadota), Actinobacteria (synonym Actinomycetota), and Verrucomicrobia phyla are
represented in smaller proportions [13,16]. Although the Bacillota phylum consists of more
than 200 different genera such as Bacillus, Lactobacillus, Enterococcus, Ruminococcus and
Clostridium, and the Clostridium genus represents 95% of the phylum. The Bacteroidota
phylum is predominated by the Prevotella and Bacteroides genera. The Actinomycetota
phylum is significantly less abundant than Bacteroidota phylum and the Bifidobacterium
genus is its main representative [17]. Table 1 illustrates examples of taxonomic human gut
microbial communities.

Table 1. Main representatives for taxonomic gut microbial composition, adapted from
Rinninella et al. [18].

Main GI
PHYLUM

CLASS
Examples

ORDER
Examples

FAMILY
Examples

GENUS
Examples

SPECIES
Examples

Actinomycetota
Actinobacteria

Actinomycetales Corynebacteriaceae Corynebacterium

Bifidobacteriales Bifidobacteriaceae Bifidobacterium Bifidobacterium longum
Bifidobacterium bifidumCoriobacteria Coriobacteriales Coriobacteriaceae Atopobium

Bacillota

Clostridia Clostridiales

Clostridiaceae
Faecalibacterium Faecalibacterium

prausnitzii

Clostridium Clostridum spp.

Lachnospiraceae Roseburia Roseburia intestinalis

Ruminococcaceae Ruminococcus Ruminococcus faecis

Negativicutes Veillonellales Veillenellaceae Dialister Dialister invisus

Bacili
Lactobacillales

Lactobacillaceae Lactobacillus Lactobacillus reuteri

Enterococcaceae Enterococcus Enterococcus faecium

Bacillales Staphylocaccaceae Staphylococcus Staphylococcus leei
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Table 1. Cont.

Main GI
PHYLUM

CLASS
Examples

ORDER
Examples

FAMILY
Examples

GENUS
Examples

SPECIES
Examples

Bacteroidota

Sphingobacteria Sphingobacteriales Sphingobacteriaceae Sphingobacterium

Bacteroidia Bacteroidales

Bacteridaceae Bacteroides

Bacteroides fragilis

Bacteroides vulgatus

Bacteroides uniformis

Tannerellaceae
Tanarella

Parabacteroides Parabacteroides diastonis

Rikenellaceae Alistipes Alistipes finegolddi

Prevotellaceae Prevotella Prevotella spp.

Pseudomonadota

Gamma
proteobacteria Enterobacterales Enterobacteriaceae

Escherichia Escherichia coli

Shigella Shigella flexneri

Delta proteobacteria Desulfovibrionales Desulfovibrionaceae
Desulfovibrio Desulfovibrio intestinalis

Bilophila Bilophila wadsworthia

Epsilon
proteobacteria Campylobacterales Helicobacteraceae Helicobacter Helicobacter pylori

Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Akkermansiaceae Akkermansia Akkermansia
muciniphila

The microbiome is not inherited, but acquired, and its composition is changing through
different stages of each individual’s life, with a unique composition and microbial diver-
sity [19,20]. Its development starts early, in prenatal life, and continues during birth and
through senescence [21,22]. The following interfere with microbiome composition, leading
the way to health or disease: sex; genetics; the mother’s influence during pregnancy and
birth; feeding practices in early childhood; dietary habits; antibiotics; tobacco and alcohol
use; a sedentary lifestyle associated with the socioeconomic conditions; household pets;
pollution; and geographical distribution [15,21–24].

Whereas each individual’s gut microbiota are characterized by a specific combination
of bacterial species, due to inter-individual and intra-individual variations throughout
human life, the human gut microbiota’s functions are highly preserved between individ-
uals [13]. In addition to one’s genetic susceptibility, the diversity of the microbiome’s
composition plays a key role in each individual’s personalized response to different envi-
ronmental exposures such as diet, xenobiotics and medical treatments [2].

The GI mucosa represents the site of the human–external environment interaction.
The GI microbiota and the intestinal barrier have bidirectional communication and form
a complex network influencing the human state of health and disease [14]. Besides its
function as an organ used for digestion and absorption, the GI tract acts as an immune organ,
the human body’s largest immune organ [25]. “Healthy” gut microbiota have the capacity
for: preserving the stability of the intestinal wall and its barrier function; tight epithelial
junctions and a normal mucosal immunity; and preventing pathogen proliferation [2].
The gut-associated microbiota can regulate the inflammatory response directly, inducing
either innate or adaptive immune responses, or it can alter the immune cells’ function
using active metabolites, including short-chain fatty acids (SCFAs), trimethylamine N-
oxide (TMA-O) and indoleacetic acid (IAA) [26–28]. It appears that dysbiosis of the
gut bacterial communities produces alterations to the microecological environment of
the gastrointestinal tract, becoming a pathogenic factor in a wide spectrum of diseases,
including gastrointestinal disorders, inflammatory, respiratory, metabolic, and neurologic
diseases [2,13].
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Although for a long period of time microbiome study was based mainly on culture-
based approaches, currently 16S rRNA gene sequencing is used for taxonomic classification
of microbial communities. In addition, for the identification of potential metabolic functions
of the associated microbiota, whole metagenome shotgun sequencing—which is required
for the identification of potential metabolic functions of the associated microbiota—is now
available, allowing in-depth study [29,30].

3. Impaired Gut Barrier Function and Inflammation in Heart Failure

The “gut hypothesis” in HF suggests that there is a strong relationship between the gut
microbiota, its metabolites and HF pathogenesis, as illustrated in Figure 1 [2,31]. Although
this bidirectional communication is not fully understood, evidence indicates that this
bacterial translocation appears in HF as a consequence of various mechanisms leading
to structural and functional alterations of the GI tract, from splanchnic congestion to the
host’s immunological defense system [7].
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Available data suggest that the alteration of the structure and the function of the gut
comes as a consequence of the microcirculatory perturbation that appears in HF patients [8].
In these patients, mainly in a decompensated form of the disease, the disruption of the
normal composition of the gut microbial communities comes as a result of the intestinal
hypoperfusion, that leads to changes in local pH and gut luminal hypoxia [32]. There is
evidence of a disrupted intestinal epithelial function associated with HF: an alteration that
seems to be the result of a reduced intestinal perfusion and ischemia [20,33]. A decreased
cardiac output leads to an adaptive re-distribution of the systemic circulation to several
end-organs [2]. Consequently, there appears to be an increase in intestinal wall edema,
with the bowel wall thickening being positively related to increased markers of intestinal
permeability, blood leukocytes and circulating levels of C-reactive protein [9].

Besides intestinal wall edema, HF is characterized by a reduction in the absorptive
capacity and an increase in the epithelial permeability of the gut, facilitating the passage of
several intestinal bacterial and/or endotoxins, such as lipopolysaccharides (LPS), from the
gut to the systemic bloodstream [9,34]. LPS is a biologically active constituent of the Gram-
negative bacterial wall with potential immunostimulatory activity by using the Toll-like
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receptor 4 (TLR4) pattern recognition receptor [35]. In HF patients, high LPS concentrations
found in the hepatic veins sustain the hypothesis of an intestinal translocation process
of gut microbes [36]. Moreover, it has been postulated that LPS itself can contribute to
mucosal barrier functional deterioration, leading to HF progression [6].

The endotoxin intestinal absorption stimulates an increase in systemic inflammatory
cytokines levels [20]. According to current data, HF appears to be correlated with a chronic
state of inflammation that can be induced or accelerated by this microbial translocation,
indirectly affecting cardiomyocytes’ normal function [37]. It seems that increased levels
of circulating cytokines correspond to more severe clinical symptoms and to a worse
prognosis in HF patients’ survival [38,39]. Serum levels of TNF-alpha, IL-1 and IL-6 of
HF patients are directly influenced by the amount of existing LPSs, currently thought to
be leading elements of a hyperinflammatory condition [25]. While in decompensated HF
patients, LPS levels appear to be directly associated with systemic inflammation markers,
and they decrease following HF recompensation. Treatment administration is not always
followed by a decrease in plasma cytokine levels, suggesting a sustained effect as the disease
progresses [20,40]. According to two large, randomized placebo-controlled trials, neither
of the TNF-alpha antagonists’ administration decreased the risk of hospital admission or
death in HF patients [41,42].

Another study in HF with reduced ejection fraction (HFrEF) patients with different
stages of disease severity or with an advanced intervention, such as heart transplantation
(HT) or a left ventricular assist device (LVAD), evaluated their blood and stool specimens.
All subjects, from New York Heart Association (NYHA) Class I to IV, displayed an increase
in their inflammatory marker levels. Following LVAD and HT, their levels decreased but
failed to achieve normal values. LPS, however, augmented its levels across all NYHA
classes and remained elevated in patients despite HT and LVAD intervention [43]. Similar
to LPS, raised serum levels of IL-6, IL-1β and TNF alpha also induced intestinal permeabil-
ity, promoting a vicious feedforward cycle of inflammatory cytokine augmentation and
endotoxin translocation [44–47].

4. Dysbiosis in Heart Failure

Gut microbiota, as the most important active components in the intestinal microe-
cosystem, have been shown to have a strong influence on HF. Besides the correlation
with inflammation and increased intestinal permeability, an analysis using fluorescence
in situ hybridization described the presence of bacterial overgrowth as mucosal biofilm
and an increased bacterial adhesion in the sigmoid colon mucus of HF patients. The in-
creased intestinal juxta mucosal bacterial biofilm has been correlated with an amplified
immunoglobulin A–anti-LPS response [20,33].

In stable chronic HF with reduced ejection fraction (HFrEF) patients, an increased level
of pathogenic bacteria such as Salmonella, Shigella, Campylobacter and Yersinia species, as well
as yeasts including Candida species, have been reported as assessed by microbial culture
methods; their levels being correlated with HF severity [10]. Consistent with these results,
there is evidence that the Escherichia/Shigella genus is increased in the same patient known
with HF, during its decompensated compared to the compensated phase of disease [48].
Indeed, pathogen overgrowth increases the risk of developing invasive gastrointestinal
infections in HF patients. A U.S. nationwide study of hospitalized patients, treated with
antibiotics, revealed that HF is more likely to develop an additional Clostridium difficile
(C. difficile) infection and have substantially worse in-hospital prognosis, in comparison to
non HF controls [49].

Using 16S rRNA gene sequencing Sun and colleagues [11] analyzed fecal samples of
patients with severe forms of chronic HF and compared the results with the one obtained
from healthy controls. They reported reduced alpha diversity in chronic HF patients and
important differences in beta diversity between the two groups. Bacillota phylum was
found to be dominating the chronic HF patient’s fecal microbiota, but in smaller levels
than the controls. Pseudomonadota and Actinomycetota, however, were reported to be more
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abundant than in the control samples. Moreover, Pseudomonadota phylum was the second
most abundant phylum found in severe chronic HF patients instead of Bacteroidota phylum.
Pseudomonadota phylum is composed of Gram-negative bacteria, mainly pathogens, and
is thought to be a microbial signature of dysbiosis in gut bacterial communities [11].
Zhang et al. [12] reported similar results, with reduced amounts of the Bacillota phylum
and an augmentation in the Bacteroidota phylum [12]. At the genus level, the microbiota
of chronic HF patients was found to be less abundant with Faecalibacterium and more
abundant with Escherichia, Shigella, Enterococcus and Klebsiella spp. than that in the healthy
controls [11]. The increased abundance of Gram-negative bacteria is responsible for the
amount of LPS translocated into the bloodstream, accelerating HF progression [50].

A recent study by Zhang and colleagues [12] focused on patients with chronic HF: classes
III and IV NYHA. They found important differences in alpha and beta diversity of the gut
bacterial communities between the HF patients and controls. Moreover, they measured
phenylacetylglutamine (PAGln), a metabolite produced by the intestinal microbiota, known
to have higher plasma levels in patients known with major adverse cardiovascular events.
They reported an increase in the PAGln concentration in HF patients in comparison to
controls, and its levels increased with the severity of HF. Moreover, the authors reported
the following: PAGln and brain natriuretic peptide (BNP), the most widely known bioac-
tive hormone used for the diagnosis of HF, were negatively associated with Bacteroides
and Parabacteroides; while Romboutsia and Blautia spp. were adversely correlated with
PAGln; BNP was positively associated with Klebsiella spp.; BNP and PAGln were positively
associated with Shigella and Escherichia ; Alistipes was not correlated with BNP, whereas
Parabacteroides was negatively associated with the left ventricular end-diastolic diameter
(LVEDD), a parameter known to reflect structural modifications in the left ventricle ejection
fraction (LVEF) [12]. Since the basic pathological mechanisms of HF are represented by
myocardial fibrosis and inflammation, these results fiercely sustain the strong association of
gut microbiota dysbiosis, its derived metabolites and HF pathogenesis [23]. In HF patients,
elevated PAGln levels could be used as indicators of renal dysfunction [51]. The levels
of PAGln—which has also been shown to favor thrombosis—tracks with the NT-proBNP
levels in chronic HF with reduced ejection fraction (HFpEF) patients, indicating a potential
relationship between them [4,52].

Yuzefpolskaya and colleagues [43] have evaluated the microbiome of HF patients
with different degrees of severity and reported that alpha diversity was reduced as disease
severity levels increased and remained low despite receiving interventional treatment such
as LVAD or HT, probably due to persistent inflammation. Alpha diversity seemed to be
negatively correlated with levels of inflammation and endotoxinemia (LPS and sCD14).
Therefore, as HF evolves into advanced stages, levels of endotoxinemia and systemic
inflammation increase and the gut diversity of bacterial communities decreases [43]. Several
studies of the intestinal bacterial profile in patients with acute decompensated or stable
HFrEF have reported that HF patients have a significantly reduced alpha and beta diversity
compared to healthy individuals, providing evidence for the HF-induced community
composition shifting of the gut microbiota [5,13,53–57]. Similarly, another small study
on HF patients reported a different microbiota composition between individuals with
congestive heart failure and healthy volunteers, although between ischemic and dilated
cardiomyopathy no noticeable differences could be identified [58].

In a much more comprehensive study, Jia et al. [59] reported elevated levels of several
Streptococcus species and genera of the Enterobacteriaceae family, and a decreased abun-
dance of Faecalibacterium prausnitzii and Roseburia intestinalis, known producers of the SCFA
butyrate [60]. Zhu and colleagues [61] reported an elevated abundance of Enterococcus,
Escherichia and Shigella spp. and a decreased abundance of Roseburia, Faecalibacterium and
Eubacterium rectale, known as butyrate producers [61].

Kamo and colleagues [8] reported reduced diversity of microbial communities in the
GI tract of HF patients, but also stated that HF-associated gut dysbiosis varied according to
the patient’s age. Compared to younger patients known with HF, older patients seemed
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to display decreased levels of Bacteroidota and elevated amounts of Pseudomonadota. Dorea
longicatena and Eubacterium rectale, members of the Lachnospiraceae family, were decreased in
all patients known with HF while Clostridium clostridioforme and Faecalibacterium prausnitzii,
members of the Ruminoccaceae family, were found in smaller amounts in older HF patients
compared to younger patients [8].

D. longicatena is a bacterium that produces acetic acid, an SCFA, as a fermentation
product. However, acetate can be further used as a substrate in order to generate bu-
tyrate [62]. Eubacterium rectale, another butyrate producer bacterium, was identified at
increased levels in gut mucosal biofilms of HF patients by Sandek and colleagues [33].
In contrast, another study by Kamo et al. [8] reported decreased levels of the bacteria as
characterizing HF [8]. Faecalibacterium prausnitzii, another butyrate-producing commensal
bacteria with anti-inflammatory properties, was found to be decreased in abundance in
HF patients, negatively affecting the intestinal permeability [58,63,64]. Butyrate-producing
bacteria are essential for the state of well-being of each individual, as butyrate is used as
an energy source for intestinal epithelial cells, and it regulates the integrity of the epithe-
lial barrier and suppresses the intestinal and extra-intestinal inflammation [65,66]. The
decreased levels of F. prausnitzii and increase in Ruminococcus gnavus were found to be
important characteristics of gut microbiota in chronic HF patients [60].

Kummen and coleagues [5], in their two-cohort study, also identified a reduced diver-
sity of the gut microbial communities with changes in fifteen core taxa. Moreover, they
reported the depletion of the Lachnospiraceae family in HF patients, and found that it was
inversely associated with soluble CD25 levels: that is a marker for T-cell and macrophage
activation [5]. The reduced abundance of the Ruminococcaceae genera and Lachnospiraceae
genera was also reported by other researchers [11,56,67]. As several members of Lach-
nospiraceae and Ruminococcaceae families are butyrate producers, the results of these reports
drew attention to the microbial modulation of inflammation through its metabolites includ-
ing short chain fatty acids (SCFAs). Cui and colleagues [58] also reported the depletion
of SCFA-producing bacteria; Ruminococcus spp. in particular. Another commensal bac-
terium known to have a significant role in SFCA production is Eubacterium hallii. Similar to
Lachnospiraceae family, their depletion in HF patients stool samples was correlated with an
increased level of soluble CD25 and: furthermore, with death or hearth transplant [68].

Sun et al. [11] reported a reduction in the genus Dialister and an augmentation in
the Enterococcus and Enterococcaceae genera, as notable features in chronic HF patients’
stool samples [11]. Luedde et al. [57], in their research work, discovered that HF patients’
GI microbiota were characterized by a significant reduction of the Collinsella and Blautia
genera, together with two unknown genera from the Ruminococcaceae and Erysipelotrichaceae
families. Furthermore, recent data from other inflammatory disease studies might lead
to the conclusion that the depletion of these genera can support HF underlying mecha-
nisms. Collinsella spp. has been linked to type 2 diabetes mellitus (T2DM) and systemic
atherosclerosis. Interestingly, Collinsella was found in increased amounts in patients with
atherosclerosis or T2DM, whereas Luedde and colleagues [57] reported that in HF pa-
tients Collinsella seemed to be depleted. Although abundant in atherosclerosis and T2DM,
Collinsella appears to be found in lower amounts in HF patients with ischemic heart disease
or DM, also, concluding that the depletion of Collinsella from the GI microbiota might be
considered to be highly specific to HF [57,69]. In Table 2 are summarized the studies about
the gut microbiota in patients with HF.
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Table 2. Gut microbiota composition studies in patients with heart failure (HF).

Study Patients Patients Age Sample size Method Gut Microbiota Profile

Kamo et al. [8]
Acute HF or
exacerbation of
chronic HF

47.4 ± 2.8 years
73.8 ± 2.8 years

n = 12 HF < 60 years
n = 10 HF > 60 years
n = 12 controls

16S rRNA

↓ Eubacterium rectale, Dorea
longicatena
Depletion of
Faecalibacterium in older
patients

Sandek et al. [9] Chronic HF 67 ± 2 years n = 22 Chronic HF
n = 22 control

Fluorescence in situ
hybridization

↑ Eubacterium rectale
Faecalibacterium

Pasini et al. [10] Chronic HF 65 ± 1.2 years n = 60 HF
n = 20 control

Traditional culture
techniques

↑ Campylobacter
Shigella
Salmonella
Yersinia enterolytica
Candida

Sun et al. [11] Chronic HF 60.69 years n = 29 HF
n = 30 controls 16S rRNA

↓ Ruminococcaceae
Lachnospiraceae
Dialister
↑ Enterococcus
Enterococcaceae

Zhang et al. [12] Chronic HF 65–86 years
n = 29 NYHA III HF
n = 29 NYHA IV HF
n = 22 controls

16S rRNA

↑ Escherichia and
Bifidobacterium (NYHA III)
↑ Klebsiella and Lactobacillus
(NYHA IV)

Luedde et al. [57]
Chronic HF: 70%
exacerbation, 30%
stable

65 ± 3.2 years n = 20 HF
n = 20 controls 16S rRNA

↓ Coriobacteriaceae,
Erysipelotrichaceae,
Ruminococcaceae
(family level)
↓ Blautia (genus level)

Kummen et al. [5] Chronic HF NA
n = 40 discovery
n = 44 validation
n = 266 control

16S rRNA ↓ -Lachnospiraceae family:

Cui et al. [58]
Stable chronic HF:
Ischemic or dilated
cardiomyopathy

58.1 ± 13.3 years n = 53 HF
n = 41 controls 16S rRNA ↑ Ruminococcus gnavus

↓ Faecalibacterium prausnitzii

Beale et al. [70] HFpEF 40–70 years n= 26 HFpEF
n = 67 control 16S rRNA ↓ Ruminococcocus spp.

Wang et al. [71] Chronic HF 65 ± 3.17 years n = 26 HF
n = 26 controls 16S rRNA

↑ Escherichia
Shigella
Ruminococcaceae,
Lactobacillus
Atopobium
Romboutsia
Streptococcus
Haemophilus
Klebsiella

Katsimichas et al. [72] Non-ischemic
HFrEF 18–70 n = 28 HFrEF

n = 19 controls 16S rRNA
↑ Streptococcus spp.
Veillonella spp.
↓ SMB53

Hayashi et al. [48]

De novo acute
decompensated
HF/acute
worsening of
chronic HF

72 ± 18 years n = 22 HF
n = 11 controls 16S rRNA

↑.Actinomycetota phylum
Bifidobacterium genus
↓.Megamonas genus

5. Risk Factors for HF and Gut Microbiota

It is known that people suffering from HF have various risk factors, but the majority
of them has either hypertension, obesity, dyslipidemia, diabetes, is genetically predisposed
to HF, is smoking, has a sedentary lifestyle or is making unhealthy dietary choices [73–76].
New evidence suggests that gut microbiota and its metabolites could have an impact on
HF risk factors as well.
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5.1. Dietary Choices

The Western diet (WD) is characterized by high sugar and refined carbohydrate in-
take with a high glycemic index; content that inhibits nitric oxide synthase, resulting in
myocardial oxidative dysfunction, cardiac hypertrophy and cardiomyocyte remodeling, all
known to be predisposing factors for HF [77]. This diet rich in fast-food aliments and glu-
cose leads to dysbiosis state characterized by elevated Pseudomonadota and Bacillota levels,
which increases the levels of TMAO and ceramides, promotes cholesterol accumulation in
macrophages and promotes atherosclerosis development [78]. The WD also leads to lipid
accumulation in the myocardium, chronic inflammation and obesity [79]. Increased levels
of salt and dietary additives used in fast-food alimentary processing, including nitrites
and phosphates, have been associated to an increased risk of HF. They alter the Bacillota to
Bacteroidota ratio [80]. Moreover, this diet alters gut barrier permeability, characterized by
the decreasing levels of Bacteroidetes spp., Bifidobacterium spp., Clostridiales spp., Lactobacillus
spp. and Akkermansia muciniphila, as well as all gut barrier-promoting bacteria. Further-
more, the intestinal wall integrity seems to be disrupted by an increase in Desulfovibrio spp.
and Oscillibacter spp. [80].

5.2. Obesity

Savji and colleagues [81] in their study reported that obesity and its associated dys-
metabolism, including hyperlipidemia, hyperglycemia and insulin resistance, are strongly
correlated with HF [81]. A pro-inflammatory environment characterized by elevated levels
of pro-inflammatory cytokines is promoted by obesity and its associated cardiometabolic
factors (insulin resistance, dyslipidemia and abdominal adiposity) [82]. The endothelial
dysfunction and the nitric oxide unavailability might lead to left ventricular hypertrophy
and systolic and diastolic dysfunction in HFpEF [82,83]. Furthermore, obesity can cause
modifications in vasculature and blood volume which, associated to the increased con-
sumption of oxygen, conducts to ventricular hypertrophy, increased mean pulmonary
arterial pressure and elevated left ventricular diastolic pressure [84].

In both animal and human studies, obesity seems to be associated to a modified ratio
between Bacillota and Bacteroidota phylum in most research, with a decrease in Bacteroidota
and an increase in Bacillota [85]. The amount of Bacteroidetes found the intestinal microbiota
has been reported to be relevant in obesity. Obese people that follow a calorie-restricted
diet and lose weight seem to have an elevated ratio of Bacteroidetes species in their gut
microbiota [86]. Specifically, Clostridium bartlettii, Akkermansia muciniphila and Bifidobacteria,
all SCFA producers, have been negatively associated with obesity induced by a high fat
diet and its metabolic complications [87,88].

5.3. Type II Diabetes Mellitus

Type II diabetes mellitus (T2DM) is a strongly associated risk factor for HF and
other CVD. Patients known to have T2DM present a decreased level of bacterial genera
such as Faecalibacterium, Bifidobacterium, Akkermansia, Bacteroides and Roseburia. Roseburia,
Bacteroides and Akkermansia have anti-inflammatory effects. Bacteroides and Akkermansia
in decreased levels lead to an under expression of tight junctions’ genes, elevated “leaky
gut”, and, in consequence, endotoxemia [89]. Furthermore, the reduced abundance of the
butyrate-producing Faecalibacterium prausnitzii and Roseburia intestinalis dysregulates the
metabolism of fatty acids, leading to oxidative stress and its associated cardiometabolic
adverse manifestations [90,91]. On the other hand, T2DM is positively associated with
bacteria from Fusobacterium and Ruminococcus genera, and the phylum Bacillota, all with
pro-inflammatory activity [92].

5.4. Hypertension

Persistently elevated blood pressure (BP) patients present a higher (up to five-fold)
Bacillota-to-Bacteroidota ratio in comparison to normotensive controls [93]. Moreover, the
intestinal microbiota is dominated by lactate-producing genera (e.g., Turicibacter and Strepto-
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coccus), while SCFA-producing ones appear to be reduced (such as Clostridiaceae, Bacteroides
and Akkermansia) when hypertension is present [94,95]. Some of these associated perturba-
tions in gut microbiota homeostasis are partially related to HF pathogenesis and increase
the risk of HF progression.

6. Gut-Derived Metabolites as Possible Biomarkers Related to Intestinal Dysbiosis in HF

A biomarker is defined as a biological compound that is easily accessible and measur-
able in the body. Biomarkers can be classified as molecular, cellular or imaging. Their role
is to help in identifying the disease or provide therapeutic guidance. Natriuretic Peptides
(NP), brain-type natriuretic peptide (BNP), N-terminal prohormone of BNP and cardiac
troponin measurements—classic HF biomarkers—have already been included in the guide-
lines for HF diagnosis and treatment by the European Society of Cardiology (ESC) [96]
and the American Heart Association (AHA) [97]. The addition of other diagnostic and
prognostic biomarkers that could be associated to such a complex disease would be of
benefit for both patients and medical practitioners.

Gut microbial-derived metabolites can also play a significant role in the pathogenesis
of HF. It appears that the gut microbiome acts similarly to an endocrine organ. By gen-
erating active biometabolites including short-chain fatty acids (SCFAs), trimethylamine
(TMA)/trimethylamine N-oxide (TMAO), and bile acids, the gut microbiome influences
the host physiology. Several studies described the association of the gut’s microbiome
metabolites and different pathologies including hypertension, atherosclerosis, HF, obesity,
chronic kidney disease, and T2DM [2,7,98–101]. These metabolites can be considered as
biomarkers of intestinal dysbiosis and can predict inflammation in patients known with
HF [101]. These patients with elevated plasma levels of phenylalanine display increased
levels of inflammatory cytokines (IL-8, IL-10), C-reactive protein (CRP) and associate higher
mortality [102], whereas glycine manifest anti-inflammatory effects and seem to offer pro-
tection to the cells and heart [103]. Furthermore, in an analysis of data gathered from the
FINRISK and PROSPER cohorts, phenylalanine was reported to be an independent predic-
tor of HF [104]. A recent study conducted by Hayashi and colleagues [105], used whole
genome shotgun sequencing for analyzing fecal samples and mass spectrometry-based
profiling of amino acids and identified a possible correlation between amino acid metabolic
disturbances and gut dysbiosis in patients diagnosed with HF [105].

Alterations of gut microbiota composition, especially elevated N-oxidetrimethylamine
(TMAO) levels are correlated with the risk of developing HF [106]. TMAO is a metabolite
produced by gut bacteria including Bacillota and Pseudomonadota, obtained from choline,
phosphatidylcholine, and L-carnitine fermentation [2]. Chen and colleagues [106] reported
that an elevated level of TMAO resulted from a diet high in saturated fat and sugar
can lead to fibrosis, myocardial inflammation and to impaired diastolic function [106].
Individuals with an increased abundance of Ruminococcus, Prevotella and Clostridium genera
and the Lachnospiraceae family, and decreased levels of Bacteroidota, revealed higher levels
of TMAO in their plasma [107,108]. HF–associated dysbiosis is characterized by high levels
of circulating TMAO, that are able to stimulate cardiac remodeling through promoting
myocardial fibrosis and pro-inflammatory effects [2,77,109,110]. Available evidence reports
that the overexpression of cytokines with pro-inflammatory action, including Il-1β, and
TNF-α and the attenuation of IL-10 and other cytokines with anti-inflammatory properties
are both stimulated by increased levels of TMAO [78,111].

HF patients display elevated plasma levels of TMAO when compared to healthy indi-
viduals. Increased TMAO levels can be used as a prognostic biomarker in both acute and
chronic HF, independently of B-type natriuretic peptide (BNP) and traditional risk factors,
as TMAO levels are predictive of an augmented risk of mortality in these patients [80,81].
Elevated TMAO plasma values correspond with advanced stages of left ventricular di-
astolic dysfunction [80]. TMAO can also be considered a prognostic predictor of HFeEF
and a marker of risk stratification for this particular category of patients [112,113]. As for
hospitalized acute decompensated patients with HF, increased TMAO levels are correlated
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with a diminished renal function and can be used as a predictor of an elevated risk of death
or readmission to hospital for a HF exacerbation [114]. Furthermore, TMAO level was also
associated with hemoglobin, creatinine, BUN, and NT-proBNP [115]. Another study on
gut-related metabolites with outcomes in HF reported that carnitine-related metabolites
showed associations with adverse outcomes in acute HF, in particular L-carnitine and
acetyl-L-carnitine for short-term outcomes (30 days after the acute event) and TMAO for
long-term outcomes (1 year following the acute episode) [51].

The SCFAs are represented by acetate, propionate and butyrate, and they are generated
by gut bacteria including Bacteroides, Bifidobacterium and Faecalibacterium spp. [53]. They are
the most important metabolites produced through colon bacteria fermentation of resistant
starch and dietary fibers [101]. Most evidence sustains the fact that SCFAs have a protective
role against HF and play a major role in maintaining the integrity of the intestinal barrier:
in mucus production and they are active in anti-inflammation protection [67]. However,
increased SCFA levels in fecal samples are considered to be a marker of hypertension,
central obesity and cardiometabolic disease subclinical measures [116]. There is evidence
that SCFAs are closely associated to atherosclerosis [117]. In a rodent model, butyric acid
supplementation through the diet inhibited the atherosclerotic lesions of apolipoprotein E
(Apo-E) by reducing the macrophage migration rate, and increasing the collagen deposition
and plaque stability [118].

In chronic HF patients, there was an increase in microbial genes responsible for
LPS biosynthesis, lipid metabolism, tryptophan, and particularly TMAO production [58].
On the other hand, microbial genes for butyrate-acetoacetate CoA transferase, a vital
enzyme for butyrate synthesis as well as SCFA-producing bacteria, were importantly
reduced in chronic HF patients [119]. Levels of ricinoleic acid, a gut microbiota metabolite
with anti-inflammatory proprieties, were found to be highly decreased in these patients’
plasma [119]. Moreover, ricinoleic acid levels were reported to be negatively associated
with the bacterial communities found to be enriched in chronic HF patients’ guts and
positively correlated to those dominating the microbiota of controls [58]. Elevated levels of
cardiovascular-harmful metabolites including sphingosine 1-phosphate and a diminished
value of beneficial cardiovascular metabolites such as orotic acid was also reported [58].
This functional alteration sustains the link between chronic HF and an imbalance of gut
microbial communities and their metabolites.

Another group of researchers concentrated their efforts on a small group of elderly
chronic HF patients. When evaluating the relationship between gut microbiota repre-
sentatives and its metabolites, Wang et al. [71] reported that Escherichia and Shigella spp.
were negatively associated with riboflavin and biocytin. Haemophilus spp. was negatively
associated with cellobiose, alpha-lactose, lactose, isomaltose, sucrose, melibiose, turanose
and trehalose. Klebsiella spp. was positively associated with ethylsalicylate and biliru-
bin, and negatively related to hexanoylcarnitine, citramalate, isovalerylcarnitine, inosine,
methylmalonate and riboflavin. The authors concluded that the gut microbiota alteration
in chronic HF is associated with various modifications of the serum metabolic map [71].

Luo et al. [120], in a two-sample mendelian randomized study, demonstrated that
Candida, Campylobacter and Shigella spp were not correlated with an increased incidence
of HF. However, when analyzing the genetic prediction it was suggerated that for every
1 unit increase in Shigella concentration, there is an increase of 38.1% in the relative risk
for myocarditis and an increase of 13.3% for hypertrophic cardiomyopathy. Moreover, for
every 1 unit increase in Candida concentration, there is an increase of 7.1% in the relative
risk of chronic kidney disease. As for intestinal metabolites, the genetic prediction report
suggested that the relative risk of myocardial infarction and HF increases by 1.4% and 1.7%
separately, for every 1 unit increase in betaine [120].

7. Interactions between the Gut Microbiome and Cardiovascular Drugs

Age, sex, nutritional status, disease states, along with genetic and environmental expo-
sures are factors that can explain how individuals will respond to drug therapies [121]. The
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human microbiome is known for its involvement in drug metabolism and pharmacological
efficacy, but among them there is bidirectional communication, as drugs can also influence
microbiota composition.

Drug absorption is an elaborate process, depending on many factors such as their sol-
ubility and stability in GI fluids, their pH, GI transit period, permeability through epithelial
membranes and the drugs’ interaction with the host and microbial enzymes [122]. The
human gut microbiota is genetically capable of producing enzymes involved in oral drugs’
metabolism, facilitating their absorption across the gut and through the bloodstream [121].
Dysbiosis of the gut’s bacterial communities can further alter drug pharmacokinetics; the
activation of prodrugs can contribute to the production of unwanted toxic metabolites and
the inactivation of drugs [123]. Variation in drug response can also be present in a “healthy”
gut, due to inter-individual differences in intestinal bacterial species [13].

Related to the cardiovascular medication used in HF patients, metagenomic sequenc-
ing of stool samples from HF patients revealed that the use of several pharmaceutical
agents such as statins, beta-blockers, angiotensin-converting enzyme inhibitors and platelet
aggregation inhibitors has an important influence on gut microbial composition [124]. De-
spite the fact that specific underlying mechanisms are unknown, partial results of this study
were reproduced by another British group of researchers [125]. Examples of microbial
biotransformations are listed in Table 3.

Table 3. Known and proposed mechanisms by which the gut microbiota may influence cardiovascular
drug outcomes, adapted from Tuteja et al. [121].

Drug Bacteria Mechanism(s) Outcome

Known drug-microbiota interaction

Digoxin [126] Eggerthella
lenta Inactivation by reduction Bacterial reductase activity reduces the

quantity of active drug reaching target tissues

Proposed drug-microbiota interaction

Simvastatin [127] Not known

Microbial derived bile acids competing
for host uptake transporters

Disruption in bacterial communities with
bile salt hydrolase (bsh) activity

Reduced amount of drug reaching
target tissues

FXR receptor signaling variability

Rosuvastatin [128] Not known

Disruption in host gene expression of bile
acid metabolism pathways

Disruption in bacterial communities with
bile salt hydrolase (bsh) activity

FXR receptor signaling variability

Atorvastatin [129] Not known Reduced quantity of secondary bile acids FXR receptor signaling variability

Amlodipine [130] Not known Pre-systemic metabolism by
dehydrogenation

Reduced quantity of active drug reaching
target tissues

Captopril [121] Not known Not known Improved villi length and reduced
intestinal permeability

Aspirin [131] Not known Bacterial communities alteration

Warfarin [132] Antibiotics eliminate vitamin K
producing bacteria Increased bleeding events

7.1. Cardiac Glycosides

Digoxin, a drug frequently recommended in HF is a good example of microbiota
influencing drug bioavailability. Some strains of Eggerthella lenta are responsible for con-
verting digoxin into an inactive microbial metabolite, limiting the quantity of active drug
absorbed into the systemic bloodstream in an important 10 percent of patients [126,133].
Recent studies offered proof that coadministration of digoxin together with antibiotics or an
arginine rich diet both resulted in elevated systemic digoxin levels and clinically relevant
fluctuations in drug levels [126,134].
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7.2. Blood Thinners and Gut Microbiota

Aspirin is a non-steroidal anti-inflammatory drug (NSAIDS) commonly used to de-
crease the risk of cerebrovascular and cardiovascular disorders [133]. Existing evidence
demonstrates its ability to disrupt the gut’s microbiota composition. Patients using aspirin
present variations of Ruminococcaceae, Prevotella, Barnesiella and Bacteroides bacterial levels
in comparison to individuals not using or using other types of NSAIDs. Furthermore, the
gut’s bacterial communities’ composition seems to exert influence on aspirin metabolism.
While oral antibiotic administration can decrease the gut microbiota’s metabolic activity by
slowing its degradation, increasing its bioavailability and prolonging its anti-thrombotic
action, probiotics containing Bifidobacterium breve Bif195 bacteria can protect against an
aspirin intake adverse reaction, such as intestinal wall damage and aspirin-induced gastric
ulcers [135,136].

Warfarin, a frequently used anticoagulant expresses its effect by inhibiting vitamin
K-dependent activation of clotting factors II, VII, IX and X. Bleeding episodes associated
with warfarin use increased when given together with antibiotics [137]. Two mechanisms
have been cited. Antibiotics can interfere with warfarin use through inhibition or induction
of CYP enzymes and can also alter the intestinal bacterial composition, eliminating vitamin
K-producing bacteria, such as the Bacteroides genus [132,138].

7.3. The Effects of Beta-Blockers, ACEi, and ARBs on Gut Microbiota

The effects of antihypertensive medications have been investigated on several occa-
sions, both in animal and human studies. Despite expectations, the association between the
use of beta-blockers, angiotensin receptor blockers (ARBs) and angiotensin converting en-
zyme inhibitors (ACE inhibitors) can modify the composition of gut microbiota. A positive
association was reported from a large metagenomics study, between calcium channel block-
ers, ACE inhibitors and bacterial composition of the gut [139]. Moreover, ACE inhibitors,
including captopril, have been shown to have beneficial effects on hypertensive rats by
diminishing gut dysbiosis, ameliorating the intestinal wall’s permeability and increasing
villi length [121,131].

7.4. Statins and Gut Microbiota

Statins are drugs used for their capacity to decrease low-density-lipoprotein-C (LDL-C)
and cholesterol levels. Inter-individual variations in the response to statin treatment are
well-known, and are not related to a specific statin agent or dose [124]. Studies have proven
their action on modulating gut bacterial communities’ composition [121,128]. Individuals
treated with atorvastatin presented an increased level of anti-inflammatory gut bacteria
such as Faecalibacterium prausnitzii and Akermansia muciniphila, whereas untreated patients
known with hypercholesterolemia displayed an increased level of bacterial species with
pro-inflammatory effects, such as Collinsella and Streptococcus [140]. LDL-C levels seem
to be negatively correlated to the phyla Bacillota and Fusobacteria, while Lentisphaerae and
Cyanobacteria spp. were positively associated with LDL-C [128]. Existing evidence suggests
that the LDL-C response to statin treatment can be influenced by bacteria containing bile
salt hydrolases (bsh). Administration of Lactobacillus reuteri, one of the gut’s bacteria with
elevated bsh activity, resulted in an important reduction of LDL-C levels [141]. The same
study reported that individual variations in LDL-C levels were inversely correlated with
circulating bile acids. The Bacillota phylum, previous negatively associated with LDL-C
levels, has also been associated with bsh activity [128,142]. Several animal models sustain
the beneficial effect of statin therapy on microbial communities of the gut [129,140,143].

However, an uncommon side effect has been reported with rosuvastatin use. Due to a
tertiary amine contained in rosuvastatin that competes with TMA for metabolism at the
liver level, there is an increase in serum TMA levels and its excretion in urine, resulting in
fish odor syndrome [144].
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8. Modulation of Dysbiosis as a Potential Target in Heart Failure

Considering that dysbiosis is a key factor in HF pathogenesis and disease progres-
sion, targeting the disrupted gut microbiota could be considered an effective therapeutic
objective. The possibility of characterizing each patient’s gut microbiota and his disease-
associated dysbiosis allows the initiation of a personalized, targeted therapeutic plan.
Although there are various ways to manage and modulate the dysbiotic intestinal micro-
biota, such as dietary interventions (which also include the use of prebiotics, prebiotics and
postbiotics) and fecal transplantation, several reports from the available literature place
diet modification and probiotic use as the main interventions for microbiota modulation.

Diet has always been considered a crucial factor in shaping the structure and function
of gut’s associated microbiota. A 5-day adjusted diet has been shown to produce beneficial
changes in the number and species of the gut microbiota [145]. Often cited in the medical
literature, the Mediterranean diet (MD) consists of elevated levels of polyunsaturated
fatty acids, dietary fiber, polyphenols, and a small quantity of red meat [77]. Among its
recognized benefits on human health, an MD provides an increased abundance of probiotics,
greater biodiversity, elevated SCFAs, and reduced TMAO [146,147]. Adherence to an MD
was associated with a decreasing HF incidence up to 74% [148]. Moreover, it seems that
the high compliance to MD is negatively associated with HF and improved the long-term
prognosis for HFpEF patients, as it results from a 10-year follow-up. The MD might have an
anti-inflammatory effect, as the beneficial action correlates with CRP levels [149,150]. The
Dietary Approaches to Stop Hypertension (DASH) eating plan represents a diet that is rich
in whole grain aliments, vegetables, fruit and low-fat dairy foods, and offers a significant
potential in decreasing the HF incidence [151,152].

A high-fiber diet has recently been demonstrated to improve gut dysbiosis (described
by the Bacilliota and Bacteroidota ratio), reduced blood pressure, improved cardiac func-
tion and normalized cardiac hypertrophy in a hypertension-induced HF experimental
model [153]. Additionally, fermentation of fiber results in augmented SCFA production,
with their beneficial actions on human health [150].

The World Health Organization defines probiotics as living microorganisms that have
positive effects on the host when given in the right amounts [154]. Among their beneficial ef-
fects, we recall their capacity of regulating the altered intestinal microbiota, the protection of
the integrity of the epithelial barrier, their capacity to inhibit the adhesion of pathogenic mi-
crobiota through competition, their encouragement of the production of B-cell-secreting IgA,
mucin, as well as SCFAs with immune modeling and anti-inflammatory effects [154–157].
The most used probiotics are different strains of bifidobacteria, yeasts, and lactic acid
bacteria [40,59].

In a rat model, oral administration of Lactobacillus plantarum 299v and Lactobacillus
rhamnosus GR-1 induced beneficial cardiac effects [158–160]. Lactobacillus supplementation
seems to promote SCFA-producing bacteria such as Eubacterium, Roseburia and Ruminococ-
cus in order to facilitate the dietary fiber-fermented byproduct SCFA, with critical roles
in maintaining a healthy cardiovascular activity [161,162]. Although most studies on
probiotic administration efficacy in HF are in animal models, there have also been a few
reports describing clinical improvement by gut microbiota-mediated therapy in patients
with HF [163]. In a small double-blind, placebo-controlled pilot study on HF patients
(NYHA class II or III, with LVEF < 50%), were randomized to probiotic treatment receiv-
ing Saccharomyces boulardii (1000 mg per day for 3 months) or placebo. HF patients that
followed probiotic treatment showed a reduction in total cholesterol levels and in uric
acid levels, reporting an improvement in cardiac systolic function when compared with
the placebo group [164]. Another three months’ treatment with rifaximin or S. boulardii
reported no clinically significant effect on LVEF, circulating levels of TMAO, microbiota
diversity and function or systemic inflammation in HF with reduced ejection fraction [165].

Related to antibiotic use in modulating the gut microbiota in HF patients, results are
controversial. In animal models, oral vancomycin use induced smaller left ventricular
infarct size, and improved recovery cardiac function following ischemia/reperfusion ex-
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periments in treated, compared to untreated, rats [166]. Rifamixin, besides its bactericidal
and bacteriostatic effect, also has the capacity to reduce translocation of bacteria and tox-
icity, has an anti-inflammatory effect and can positively regulate the composition of the
intestinal microbiota, promoting the growth of lactobacillus and bifidobacteria [167,168]. As
for human clinical trials, the results are contradictory. The use of a cocktail of tobramicyn
and polymixin B, in HF patients, normalized the level of intestinal Gram-negative bacilli,
significantly decreased pro-inflammatory cytokines and improved flow-mediated dilation:
evidence of endothelial dysfunction [169]. However, the results were limited to the treat-
ment administration period. Furthermore, when prescribing an antibiotic therapy, side
effects such as polymyxin B toxicity and macrolides’ increased risk of myocardial infarction
must be considered [170].

A recent study that evaluated the effect of symbiotic administration on left ventricular
hypertrophy and its effect on blood pressure and hsCRP as an inflammatory biomarker
in chronic HF patients reported that, after 10 weeks of daily administration, the level of
NT-proBNP, as a marker of left ventricular hypertrophy, decreased significantly in the
symbiotic group compared to the placebo group. No significant differences were noted on
hsCRP levels or blood pressure values [55].

Prebiotics are “a selectively fermented ingredient that results in specific changes in
the composition and/or activity of the gastrointestinal microbiota, thus conferring bene-
fit(s) upon host health” [171]. Prebiotics use could increase the amount of Bifidobacterium
and promotes a higher body weight loss, which decreased systolic and diastolic blood
pressure [172]. A recent study reported that prebiotic oligofructose reduces infiltration of
inflammatory cells in rats [173]. Prebiotic administration can promote the development of
beneficial bacteria, including Bifidobacterium and Lactobacillus spp, reducing body weight
and inflammation and an improving glucose and insulin tolerance [174], all associated to
better HF outcomes [75].

Regarding the regulation of the harmful metabolite production by the gut microbiota,
preclinical studies reported beneficial effects of DMB administration as well as both dietary
TMAO removal and administration of choline TMA lyase inhibitor, iodomethylcholine,
in decreasing serum TMAO levels, ameliorating cardiac remodeling and reducing the
expression of pro-inflammatory cytokines [175,176]. Resveratrol has also been shown to
stimulate the growth of beneficial bacteria in the intestinal tract through the reconstitution
of intestinal microflora, thus decreasing the production of TMAO [171].

Fecal microbiota transplantation (FMT) has been proven to be an effective method of
reconstructing normal intestinal function and treating microecological imbalance in several
disorders by introducing bacteria or metabolites from donor feces into diseased recep-
tors [59,177–180]. A recent study reported that FMT and tributyrin treatment improved
early cardiac dysfunction and increased the catabolism of branched chain amino acids
in a diet-induced pre-HFpEF rodent model [15]. On human subjects, FMT normalized
insulin sensitivity of obese individuals with metabolic syndrome, but the effects were short-
term [181]. Currently, there are no clinical studies available to evaluate FMT outcome in
HF patients, but FMT has great therapeutic potential and represents a promising direction
for future research [101,182]. According to ClinicalTrials.gov there are four clinical trials fo-
cused on the efficacy and safety of different strategies regarding gut microbiota modulation
in HF patients. Another 21 studies share the same objective but they include patients with
different CVD: two of them evaluating the effect of gut microbiome restoration via FMT.

The lack of uniformity in FMT’s clinical results and the increased efficiency associated
with some particular strains dominating the donor’s fecal microbiota raise the question
whether a more targeted therapy would have better results. A defined consortium of
bacteria or single strains that would have been rationally selected based on their mech-
anism of action are already subjects of interest and promising results are expected to be
published [15,50].

Until the present moment, several approaches such as the administration of antibiotics,
probiotics, prebiotics, symbiotic and fecal microbiota transplantation have been tried to
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diminish the dysbiosis associated with HF, without any clear evidence of their efficacy and
safety. These unsatisfying results might come as a result of these therapeutic approaches
being highly generic and non-specific. Bearing in mind that each individual’s specific gut
microbiota composition and the microbial signature associated with different disorders,
medical providers must concentrate on designing personalized medicine that focuses on
each individual’s characteristic gut microbiome features.

9. Limitations in the Study of Gut Microbiota and Their Implications in HF

Although an extensive characterization of the microbiome has been performed in
recent years, there are still limitations that need to be overcome in gut microbiome study.
Variation in study design as well as confounding variables in different studies frequently
result in discordant results. The available experimental and bioinformatics methods leave
space for bias and unreliable results [183]. There is also a lack of compatibility between
existing databases, mainly because there is not a correct scale to be used when comparing
the taxonomy and the functions associated with the human microbiome [184]. Currently,
there are no quantitative definitions regarding microbial dysbiosis available, as this concept
seems to be host-specific and disease-specific. There is a huge amount of data resulting from
human microbiome studies and artificial intelligence techniques, although not available on
a large scale, which would be useful after synthesizing them [185].

As for the research of the gut microbiome influence on HF, most studies are focused
on bacterial communities while other members in gut microbiota such as virus, fungal,
or archaea are not widely studied and thus their roles in human disease remain under-
appreciated. The exact microbial composition of HF patients in current studies is not the
same and a common microbiome associated with HF has not yet been established. The
great heterogeneity of HF populations has an important influence on common factors
influencing microbiota composition. Another negative aspect would be that most of the
existing research includes small size groups and the outcome is not adjusted for various
factors and medications that may affect the growth of the gut bacteria, thus offering results
with low statistical relevance. Moreover, HF risk factors vary depending on age, and the
composition of gut microbiota and metabolites may also change with age [186]. Therefore,
the critical role of age may affect the stability of the results.

10. Conclusions

The composition and function of the gut-associated microbiota and their pathophys-
iological role in human health have been active fields of research in recent decades. The
continuous advance of modern technology pushes the frontiers of HF research further
away, exploring new aspects of HF. The aim of this review was to summarize the available
data regarding the influence of gut bacterial communities and their derived metabolites
on HF and its associated risk factors. HF has been linked to gut dysbiosis, low bacterial
diversity, intestinal overgrowth of potential pathogenic bacteria and a decrease in SCFA-
producing bacteria. An increased intestinal permeability allowing microbial translocation
and the passage of bacterially derived metabolites into the bloodstream is associated with
HF progression.

Dysbiosis is a key factor in HF pathogenesis and disease evolution, and targeting the
disrupted gut microbiota could be considered an effective therapeutic objective. There are
many methods available in order to modulate the dysbiotic intestinal microbiota, such
as dietary interventions (which include prebiotics, probiotics, and postbiotics) and fecal
transplantation. Treatment results vary, however, as they highly depend on the baseline
characteristics of each individual, including genetic background, gut barrier function and
microbiome diversity. Development of personalized microbiome therapy, thus, is the key
to successful clinical treatment in HF.
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