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Abstract: Oxidative stress regulates many physiological and pathological processes. Indeed, a low 
increase in the basal level of reactive oxygen species (ROS) is essential for various cellular functions, 
including signal transduction, gene expression, cell survival or death, as well as antioxidant capac-
ity. However, if the amount of generated ROS overcomes the antioxidant capacity, excessive ROS 
results in cellular dysfunctions as a consequence of damage to cellular components, including DNA, 
lipids and proteins, and may eventually lead to cell death or carcinogenesis. Both in vitro and in 
vivo investigations have shown that activation of the mitogen-activated protein kinase kinase 5/ex-
tracellular signal-regulated kinase 5 (MEK5/ERK5) pathway is frequently involved in oxidative 
stress-elicited effects. In particular, accumulating evidence identified a prominent role of this path-
way in the anti-oxidative response. In this respect, activation of krüppel-like factor 2/4 and nuclear 
factor erythroid 2-related factor 2 emerged among the most frequent events in ERK5-mediated re-
sponse to oxidative stress. This review summarizes what is known about the role of the MEK5/ERK5 
pathway in the response to oxidative stress in pathophysiological contexts within the cardiovascu-
lar, respiratory, lymphohematopoietic, urinary and central nervous systems. The possible beneficial 
or detrimental effects exerted by the MEK5/ERK5 pathway in the above systems are also discussed. 
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1. Introduction 
The extracellular signal-regulated kinase 5 (ERK5), also referred to as big mitogen-

activated kinase 1 (BMK1), is the last discovered member of the canonical mitogen-acti-
vated protein kinase (MAPK) [1–3]. As is the case with other MAPKs, a kinase cascade 
leads to ERK5 activation via a specific upstream dual-specificity kinase, MEK5. The 
MEK5/ERK5 pathway is involved in survival, antiapoptotic signalling, proliferation and 
differentiation of many cell types [3] and plays a role in the onset and progression of can-
cer [4]. 

Several lines of evidence point to an important role for ERK5 during oxidative stress 
in cells. In this review, we summarize: i. The molecular mechanisms through which oxi-
dative stress influences MEK5/ERK5 activation; ii. The known downstream targets in-
volved in biological outcomes following oxidative stress-dependent effects on 
MEK5/ERK5 activity; iii. Whether the MEK5/ERK5 pathway plays a protective or detri-
mental role in both physiological and pathological processes when cells are undergoing 
oxidative stress. The latter point is central, since targeting MEK5/ERK5 signalling, alone 
or in combination with chemotherapeutics or targeted drugs, is increasingly being con-
sidered as a possible treatment for cancer and inflammatory diseases [5]. 
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2. Oxidative Stress 
Oxidative stress occurs when the redox state is altered due to an imbalance between 

the produced reactive oxygen species (ROS) or reactive nitrogen species (RNS) and the 
endogenous antioxidant defence mechanisms [6–8]. ROS production relies on both enzy-
matic and non-enzymatic reactions. The superoxide radical (O2•−) can be generated from 
the mitochondrial electron transport chain, which is the main source of O2•− and many 
enzymes, including nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, 
xanthine oxidase, lipoxygenase, cyclooxygenase and cytochrome P450 reductase [9]. Once 
formed, O2•− is involved in several reactions, which, in turn, may generate other ROS/RNS 
such as hydrogen peroxide (H2O2), hydroxyl radical (•OH), peroxynitrite (ONOO−) and 
hypochlorous acid (HOCl). Of note, O2•− generated in the mitochondria is not able to cross 
the inner mitochondrial membrane, thus it is confined to the matrix where it reacts rapidly 
with the enzyme manganese superoxide dismutase (MnSOD) to form H2O2. H2O2, a non-
radical ROS, is the only freely diffusible form of ROS able to penetrate membranes, and is 
also produced by other oxidases, including amino acid oxidase and xanthine oxidase. 
Thus, on the basis of subcellular compartmentation, mitochondrial ROS (mROS) accumu-
lation is predicted to elicit different signals from H2O2 stimulation. •OH, the most reactive 
among all free radical species, is generated by the reaction of O2•− with H2O2 in the pres-
ence of Fe2+ or Cu2+ in the Fenton reaction [10]. Regarding non-enzymatic reactions, free 
radical production may occur when oxygen reacts with organic compounds or when cells 
are exposed to ionizing radiation. Moreover, as stated above, non-enzymatic free radical 
production can occur also during mitochondrial respiration [7]. 

RNS refer to a number of nitrogenous products such as nitric oxide (NO), nitroxyl 
(HNO), nitrosonium cation (NO+), higher oxides of nitrogen, S-nitrosothiols (RSNOs), 
ONOO− and dinitrosyl iron complexes. NO is synthesized through arginine-to-citrulline 
oxidation by NO synthases (NOS) [11]. Three NOS isoforms have been identified and are 
named according to the cell type or the condition under which they were first described: 
endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS) [11]. NO is 
generated by iNOS under many pathological conditions, and can rapidly react with O2•− 
to generate the more toxic ONOO− and the highly reactive •OH, which may then react 
with DNA, RNA, proteins and membrane lipids. ONOO− is a key factor in protein tyrosine 
nitration of important structural and functional domains, causing changes in protein func-
tions [12].  

The generation of ROS from molecular oxygen is a natural and indispensable part of 
aerobic life. Indeed, basal levels of ROS are essential for the exploitation of various cellular 
functions via the modulation of signal transduction pathways that regulate gene expres-
sion, support cell proliferation or induce cell death [13]. However, excessive levels of ROS 
induce cellular dysfunction and cause damage to cellular macromolecules such as DNA, 
lipids and proteins, eventually leading to cell death. Regarding ROS-dependent DNA 
damage, only ROS species produced within the nucleus or those capable of entering the 
nucleus, such as H2O2, can lead to DNA damage. In contrast, high O2•− levels in the mito-
chondria or lysosomes do not. Along this line, many studies have demonstrated that in-
creased ROS/RNS production supports the progression of inflammatory diseases [14–16] 
and promotes carcinogenesis as well as cancer progression [6,17,18]. Additionally, oxida-
tive stress-mediated chronic inflammation is a key risk factor for tumorigenesis [19,20].  

At the cellular level, ROS/RNS production is supported by the onset of an antioxidant 
detoxification response that is central to controlling and/or adapting to increased 
ROS/RNS levels [21,22]. The endogenous antioxidant detoxification system is a very com-
plex response that relies on: (i) enzymatic antioxidants such as copper-zinc superoxide 
dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), glutathione peroxi-
dases (GPxs) and catalase. CuZnSOD is widely distributed in the cytosol and nucleus, 
while MnSOD is present in the mitochondrial matrix. Both are able to efficiently scavenge 
for O2•− and generate H2O2 [23–25], which, in turn, can be neutralized by GPxs and perox-
iredoxins (thioredoxin-dependent peroxidases) [26,27]. (ii) Non-enzymatic antioxidants, 
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such as vitamin E, vitamin C, carotenoids, flavonoids, selenium, thiol antioxidants (thi-
oredoxin, lipoic acid and glutathione). (iii) Multiple regulatory factors, including the tran-
scription factor nuclear factor erythroid 2-related factor 2 (NRF2) that induces gene ex-
pression by binding to the antioxidant responsive elements (ARE), nuclear factor-kB (NF-
kB) and activator protein-1 (AP-1), which collectively regulate the expression of genes in-
volved in the detoxification response [21,22]. The abnormal activity of the above enzy-
matic and non-enzymatic antioxidants is associated with the development of various hu-
man diseases, including cardiovascular, neurodegenerative and metabolic disorders as 
well as cancer [6,14,26,28–30]. 

3. The MEK5/ERK5 Signalling Pathway 
The MAPK ERK5 is encoded by the MAPK7 gene [1,2] and is involved in survival, 

anti-apoptotic signalling, proliferation and differentiation of several types of cells [3]. In 
response to extracellular stimuli, such as growth factors [31–34] and cellular stresses [35–
37], the Ser/Thr kinases MEKK2 and MEKK3 activate MEK5, a dual-specificity protein 
kinase that has ERK5 as its only known substrate. Once activated, MEK5 phosphorylates 
ERK5 at T219 and Y221 in the conserved threonine-glutamic acid-tyrosine (TEY) motif of 
the catalytic domain [38]. MEK5-dependent phosphorylation stimulates ERK5 nuclear 
translocation, which has been proposed as a key event in the regulation of cell prolifera-
tion [39–41]. Despite sharing high homology in the kinase domain with ERK2 and pos-
sessing a TEY motif identical to that of ERK1/2/8 in the activation loop, ERK5 has a long 
C-terminal tail that is unique among all MAPKs. The C-terminal tail includes a nuclear 
localization sequence (NLS) important for ERK5 nuclear shuttling, two proline-rich (PR) 
domains (PR1 and PR2) that are considered potential binding sites for src-homology 3 
(SH3)-domain-containing proteins, a nuclear export sequence (NES) and a myocyte en-
hancer factor 2 (MEF2)-interacting region [42]. The C-terminus of ERK5 also possesses a 
transcriptional transactivation domain (TAD) [43] that undergoes autophosphorylation of 
serine and threonine residues, thereby enabling ERK5 to directly regulate gene transcrip-
tion [44]. A number of C-terminal residues are also known to be phosphorylated by cyclin-
dependent kinase (CDK) 1 and/or ERK1/2 [45–49]. Among the known substrates of ERK5 
are the transcription factors c-FOS, c-MYC, SRF accessory protein-1a (Sap-1a), myocyte 
enhancer factor 2A (MEF2A), C and D, as well as other kinases such as ribosomal S6 kinase 
(RSK) and serum/glucocorticoid-regulated kinase (SGK) [50]. Several reports support the 
view that the kinase and transactivation activities of ERK5 can be uncoupled under certain 
circumstances. For example, it has been shown that the nuclear localization of an ERK5 
mutant devoid of kinase activity results in the activation of transcription through the TAD 
located at the C-terminus [51]. On the other hand, some ERK5 inhibitors such as XMD17-
109 and AX15836 have been reported to drive nuclear translocation of ERK5, leading to 
paradoxical activation of ERK5 transcriptional activity, despite effectively inhibiting its 
kinase activity [52]. On the other hand, some ERK5 inhibitors (e.g., AX15836 and BAY-
885) do not show anti-proliferative or anti-inflammatory effects [53,54]. This fact may be 
due to the above-mentioned paradoxical ERK5 activation, or to the possibility that kinase-
independent activities of ERK5 may play crucial roles in ERK5-elicited signals. However, 
several reports have clearly demonstrated inhibitory effects on cell proliferation upon 
ERK5 knockdown or knockout [3,4]. At variance with the above reports, Cook’s group 
observed that siRNA-mediated ERK5 knockdown had no effect on the proliferation of 
colon rectal cancer cell lines with either KRAS or BRAF mutations [55]. Moreover, it has 
been recently reported that INY-06-061, a potent and highly selective heterobifunctional 
degrader of ERK5, did not induce anti-proliferative effects in multiple cancer cell lines nor 
suppress inflammatory responses in primary endothelial cells (ECs) [56]. 
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4. Activation of the MEK5/ERK5 Pathway by Oxidative Stress 
The first evidence that ERK5 is a redox-sensitive kinase came from Abe and col-

leagues, who showed that H2O2 is a potent stimulus of ERK5 activation, as determined 
using a kinase assay (Figure 1). ERK5 activation following exposure to H2O2 turned out to 
be calcium-dependent, because depletion of intracellular calcium using thapsigargin pre-
vented H2O2-induced ERK5 activation. These effects were observed in different cell types, 
including human umbilical vein endothelial cells (HUVECs), arterial smooth muscle cells 
and skin fibroblasts [35]. In a later study, the same authors demonstrated that SRC sup-
ports H2O2-induced ERK5 activation in mouse fibroblasts. Indeed, H2O2 failed to stimulate 
ERK5 activity in the presence of the src family kinase inhibitors (SFKi) herbimycin A and 
PP1, as well as in src-/- mouse embryonic fibroblasts [57]. The involvement of SFK in H2O2-
induced ERK5 activation has also been reported in rat aortic smooth muscle cells, in which 
src inhibition using either SFKi PP2 or src specific siRNA attenuated H2O2-induced ERK5 
activation [58]. We can include the lack of SFK inhibition by phosphatases such as the low 
molecular weight protein phosphatase, which is inactivated by H2O2, among the upstream 
mechanisms that may be responsible for SFK activation by H2O2 [59]. Additional SRC-
dependent mechanisms may also be involved in ERK5 activation. Indeed, among the 
known upstream activators of MEK5/ERK5 signalling, a number of oncogenic signalling 
molecules and pathways are activated by SRC, including Abelson murine leukaemia viral 
oncogene homolog 1 (ABL1), PI3K/AKT, RAS/RAF/MEK/ERK and STAT3 [60,61]. A study 
conducted using pheochromocytoma 12 (PC12) cells later reported that treatment with 
the SFKi herbimycin A or PP2 or overexpression of a kinase-inactive SRC mutant (K297R) 
prevented H2O2-induced ERK5 activation, further supporting the involvement of SFK in 
this event. While studying upstream ERK5 activators, Sun and colleagues found that H2O2 
caused significant activation of MEKK2, and that MEKK2’s interaction with the adaptor 
protein LAD is necessary for H2O2-induced ERK5 activation in CCL64 mink epithelial 
cells. Pre-treatment of the same cells with the SFKi PP1 prevented MEKK2 and ERK5 ac-
tivation, indicating that H2O2 stimulates an SFK/LAD/MEKK2/MEK5/ERK5 cascade [62]. 
A recent study confirmed the involvement of MEKK2 in H2O2-induced ERK5 activation 
as H2O2-induced phosphorylation/activation of ERK5 was impaired in MEKK2-/- intesti-
nal stromal cells [63].  

Regarding additional mechanisms involved in ERK5 pathway activation by oxida-
tive stress, it has been reported that exposure to H2O2 increases PI3K/AKT [64] and c-ABL 
activation [65,66]. On the other hand, H2O2 was reported to modulate specific cysteine 
residues within redox-sensitive proteins such as EGFR [67,68] and to stimulate the induc-
tion of VEGF, which, in turn, binds to and activates VEGFR [69]. Both PP1 and PP2A 
Ser/Thr phosphatases are involved in H2O2-induced ERK5 activation, since PP1/PP2Ai 
okadaic acid and calyculin A prevent this activation in HeLa and PC12 cells [70]. Besides 
the activation of ERK5 kinase activity, an additional mechanism that may be responsible 
for the activation of the MEK5/ERK5 pathway relies on the increase in ERK5 mRNA levels 
upon oxidative phosphorylation (OXPHOS) following pyruvate dehydrogenase kinase 
(PDK) inhibition by dichloroacetate (DCA) [71]. Finally, a recent study showed that lami-
nar shear stress (LSS)-induced mtROS production leads to activation of the 
MEK5/ERK5/KLF2 pathway in ECs [72]. Interestingly, ionizing radiation, which is known 
to generate ROS, has been shown to cause sustained ERK5 activation and MEK5/ERK5 
knockdown combined with irradiation markedly sensitizes one to radiotherapy by induc-
ing strong inhibition of tumour growth in mouse xenografts [73,74]. 
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Figure 1. Overview of the mechanisms of activation and downstream effectors of the MEK5/ERK5 
pathway in response to oxidative stress. The rising in oxidative stress triggers MEK5/ERK5 activa-
tion, which, in turn, promotes an antioxidant response. (1) Laminar shear stress (LSS) induces 
mtROS production, which, in turn, leads to activation of the MEK5/ERK5/KLF2 pathway [72]. (2) 
H2O2 stimulation may activate the ERK5 pathway via SRC [36,57,58,62], MEKK2/3 [63] or MEK5 
[75,76] activation. Continuous arrows indicate direct activation mechanisms and dashed arrows in-
dicate demonstrated, but not direct, mechanisms. eNOS, endothelial nitric oxide synthase; NQO1, 
NAD(P)H quinone dehydrogenase 1; HO-1, heme oxygenase-1; TXN-1, thioredoxin-1; GPx-1, glu-
tathione peroxidase (created using Biorender.com accessed on 23 March 2023). 

5. Role of the MEK5/ERK5 Pathway in ROS-Dependent Effects on Human Diseases 
5.1. Pathophysiology of Blood Vessels 
5.1.1. Endothelial Cells 

ECs play a critical role in cardiovascular homeostasis by regulating vascular tone and 
blood fluidity, fibrinolysis, angiogenesis as well as leukocyte and platelet adhesion [77]. 
NO has an important role in the regulation of vascular tone [78,79] and its deficiency, as 
much as excessive ROS (mainly O2•−), may promote endothelial dysfunction [80–82]. EC 
damage is associated with aging and the development of various cardiovascular disor-
ders, including hypertension, atherosclerosis, heart failure and diabetes [83–85]. 

Erk5 knockout mice display cardiovascular defects, in particular those affecting heart 
development, vessel maturation, angiogenesis and endothelial integrity, which 
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collectively lead to embryonic lethality at around stage E10 [86–89]. Analogous effects 
have been observed in mice in which Erk5 was selectively knocked out in ECs [87], thus 
confirming the critical role of ERK5 in normal cardiovascular development and vascular 
integrity. In this regard, in vitro studies have revealed that ERK5 is required to prevent 
apoptosis and mediate shear stress signalling in normal ECs, as well as to regulate tumour 
angiogenesis [90]. However, small molecule inhibitors of ERK5 do not seem to alter the 
vasculature in adult mice [91], leaving open the possibility of targeting ERK5 in human 
diseases. 

The fact that ERK5 is activated by oxidative stress (i.e., H2O2) in ECs has been re-
ported using HUVECs [39,75]. A later study provided evidence that ERK5 activation plays 
a protective role when ECs experience oxidative stress. Indeed, activation of ERK5 by 
overexpression of a constitutively active MEK5 mutant (MEK5-DD, S313D/T317D) pro-
tected HUVECs from H2O2-induced cell death. Depletion of NRF2 by specific siRNA ab-
rogated these effects, pointing to the existence of an ERK5–NRF2 pathway. The same 
study also demonstrated that laminar flow induces ERK5–NRF2 pathway activation in 
HUVECs. Indeed, blocking MEK5/ERK5 using either siRNA (specific for ERK5) or 
BIX02189 (MEK5i [92]) inhibited laminar flow-induced upregulation of NRF2-dependent 
genes such as heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 
(NQO1). Additionally, MEK5-DD-induced activation of ERK5 increased the transcrip-
tional activity and nuclear translocation of NRF2, whereas BIX02189 strongly suppressed 
the latter. Immunoprecipitation analysis showed that ERK5 binds to NRF2 and that this 
interaction is diminished by a mutant form of ERK5 (ERK5-AEF, T218A/Y220F) that can-
not be phosphorylated by MEK5 [76]. Interestingly, using the osteoblastic MC3T3-E1 cell 
line, Xia and colleagues demonstrated the involvement of ERK5/NRF2 signalling in the 
protective effect of mangiferin, a naturally available polyphenol found in both mango and 
papaya [93], in response to ROS. Indeed, genetic inhibition of ERK5 using specific siRNA 
abolished the anti-apoptotic effect of mangiferin upon H2O2 treatment, pointing to the in-
volvement of ERK5 in the protective effect of mangiferin [94]. Another study reported that 
sustained activation of ERK5 following the overexpression of MEK5-DD suppresses the 
generation of ROS/RNS caused by growth factor deprivation in HUVECs. The same study 
also demonstrated that shear stress-activated ERK5 signalling restores the redox state of 
ECs by reducing ROS production and increasing NO bioavailability [95]. Additional evi-
dence of the protective role of ERK5 in HUVECs was provided by showing that two nat-
ural antioxidants, the stilbenes resveratrol and pterostilbene, activate MnSOD expression 
through the ERK5/HDAC5 pathway, thus alleviating mitochondrial oxidative stress in 
ECs that may be eventually associated with cardiovascular disease [96]. 

Overall, the above studies established that ERK5 plays a protective role against oxi-
dative stress-induced damage of ECs. 

5.1.2. Atherosclerosis 
Atherosclerosis is a chronic inflammatory disease that is associated, in its early phase, 

with dyslipidaemia, increased expression of inflammatory factors and endothelial dys-
function, which collectively drive atherosclerotic lesion development in arteries [97,98].  

Sugars have antiproliferative and proatherogenic effects on ECs and increase the risk 
of cardiovascular disease [99]. In order to better understand the mechanisms underlying 
hyperglycaemia-induced proatherogenic changes in ECs, Liu and colleagues found that 
glucose, and to a lesser extent raffinose, increase ERK5 activity in bovine pulmonary ar-
tery ECs. The involvement of ROS in glucose-induced ERK5 activation was proven by 
showing that N-acetylcysteine (NAC), a free radical scavenger, prevents the increase in 
ERK5 activation induced by glucose [100]. Another study conducted using ECs reported 
that despite activating ERK5 kinase activity, both H2O2 and advanced glycation end prod-
ucts (AGE) inhibited LSS-induced ERK5/MEF2/KLF2 and the subsequent eNOS expres-
sion through ERK5 SUMOylation. More importantly, ERK5 SUMOylation was increased 
in the aortas of diabetic mice in vivo. On that basis, the authors proposed that inhibiting 
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ERK5 SUMOylation might be a new therapy for diabetes-mediated endothelial dysfunc-
tion and inflammation [101]. By contrast, Coon and colleagues found that LSS-induced 
mtROS production leads to activation, rather than inhibition, of the MEK5/ERK5/KLF2 
pathway in ECs, pointing to the involvement of ERK5 in the anti-inflammatory response 
to LSS-dependent mtROS in ECs [72].  

In another study conducted using human aortic ECs (HAECs), Wu and colleagues 
found that tumour necrosis factor-α (TNF-α) [102] plays a causal role in atherosclerosis 
by increasing intracellular ROS through the small GTPase Rac-1, which, in turn, stimulates 
the expression of VCAM-1 and ICAM-1—which play a major role in the initiation of early 
atherosclerosis—in HAECs via NF-kB. All these effects were reverted by treatment with 
atorvastatin, which was found to activate ERK5 in these cells in line with the well-known 
role of ERK5 in vasoprotection and the maintenance of endothelial integrity [86-89,103]. 
Moreover, inhibiting ERK5 using ERK5i XMD8-92 [91] or specific siRNA ablated the ef-
fects of atorvastatin and increased ROS production [104], further supporting the protec-
tive role of ERK5. Another study reported that TNF-α increases oxidative stress in HU-
VECs through generation of 4-hydroxy nonenal, a lipid peroxidation end product, and 
NADPH oxidase 4 (NOX4), which is involved in ROS production. TNF-α increased the 
levels of VCAM-1 and E-selectin, which, when overproduced, fuel the atherogenic pro-
cess. Additionally, TNF-α reduced ERK5 phosphorylation and krüppel-like factor 2 
(KLF2) mRNA and protein levels. Interestingly, butyrate, a short-chain fatty acid that has 
been shown to exert antioxidant, anti-inflammatory and other protective effects in ather-
osclerosis [105], prevented the proatherogenic effects of TNF-α (i.e., the increase in 
VCAM-1, E-selectin and oxidative stress) by reducing the levels of ROS—measured by 
quantifying 4-Hydroxynonenal (4-HNE)—and rescuing the activation of the ERK5/KLF2 
pathway [106]. 

Lipopolysaccharides (LPSs) can stimulate immune cell activation and initiate inflam-
matory responses, contributing to endothelial dysfunction, an early event in atherosclero-
sis. Zhong and colleagues demonstrated that the antimalarial drug halofuginone sup-
pressed LPS-induced oxidative stress in HUVECs, while stimulating the expression of the 
key atheroprotective transcription factor KLF2, a positive regulator of the antioxidant 
transcription factor NRF2 [107]. The latter effects were mediated by ERK5 because block-
ing ERK5 with XMD8-92 abolished the effect of halofuginone on KLF2 mRNA and protein 
[108]. Sun and colleagues showed that oscillatory shear stress (OSS), which is known to 
support the production of proinflammatory mediators in HUVECs, stimulates the pro-
duction of mtROS (O2•−) and reduces the level of the lactate receptor GPR81, ERK5 phos-
phorylation and KLF2 mRNA and protein. Activation of GPR81 using physiological doses 
of lactate reduced oxidative stress by inhibiting the production of ROS and rescued OSS-
induced reduced expression of KLF2, which was mediated by ERK5. Indeed, XMD8-92 
abolished the rescue of KLF2 induced by lactate-mediated GPR81 activation [109]. 

Several lines of evidence indicate that hyperglycaemia enhances the proliferation of 
vascular smooth muscle cells (VSMCs), a critical step in the pathogenesis of atherosclero-
sis [110–112]. In this respect, Yu and colleagues found that intermittent high glucose en-
hances the proliferation and migration of primary rat VSMCs. The antioxidant rutin, a 
flavonoid found in many plants, inhibited the proliferation and migration of VSMCs by 
suppressing the phosphorylation of MEK1/2, ERK1/2, PI3K, NF-κB and ERK5, and the 
production of ROS under fluctuating glucose levels [113]. A later study identified the link 
between ERK5 and hyperglycaemia-related effects. Indeed, fluvastatin, the first fully syn-
thetic statin that is effective at reducing total and low-density lipoprotein cholesterol [114], 
increased the mRNA and protein levels of NRF2 and NQO1 in VSMCs. This effect was 
dependent on MEK5/ERK5 because it was reduced upon MEK5 (BIX02189) or ERK5 
(siRNA) inhibition. Treatment of VSMCs with fluvastatin suppressed AGE-dependent 
proliferation and this suppression was prevented by pre-treatment with BIX02189. Mech-
anistically, fluvastatin suppressed cyclin D1 and CDK4, and these effects were prevented 
by BIX02189 pre-treatment. In addition, overexpression of MEK5-DD diminished AGE-
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induced proliferation, while NRF2 depletion using specific siRNA restored AGE-induced 
proliferation. This study, therefore, showed that fluvastatin decreases AGE-dependent 
proliferation via the ERK5–NRF2 axis [115]. Another study conducted using primary rat 
VSMCs [116] reported that the ERK5 pathway may be involved in oxidant stress-stimula-
tion of early growth response gene–1 (Egr-1), which has a key role in atherogenesis [117]. 
Indeed, insulin and oxidant stress, both as single agents and in combination, significantly 
increased the level of Egr-1 protein. In particular, inhibition of the ERK5 and ERK1/2 path-
ways with MEK1/2/5i UO126—but not inhibition of the ERK1/2 pathway alone with 
MEK1/2i PD98059—completely blocked the effect of oxidative stress on Egr-1 protein lev-
els, thus suggesting that the MEK5–ERK5 pathway may be involved in oxidant stress 
stimulation of Egr-1 [116].  

Altogether, the above studies point to a protective role for ERK5 against atheroscle-
rosis. 

5.1.3. Hypertension 
Hypertension is a primary risk factor for cardiovascular diseases such as stroke, heart 

attack, heart failure and aneurysm, and increased oxidant stress is strongly implicated in 
the pathogenesis of hypertension. Angiotensin (Ang) II and endothelin-1 (ET-1) are two 
potent vasoconstrictors that mediate pleiotropic vascular actions through distinct recep-
tors [118,119]. The activation of MAPK by Ang II and ET-1 in VSMCs plays an important 
role in the vascular changes associated with hypertension [120–122]. Touyz and colleagues 
showed that Ang II stimulated NADPH oxidase activity, and increased intracellular H2O2 
production as well as p38MAPK and ERK5 phosphorylation in primary rat VSMCs in a 
dose-dependent manner [123]. These phosphorylation events were reduced by IGF-1Ri 
and EGFRi (AG1024 and AG1478, respectively), and were almost abolished by the 
NADPH oxidase inhibitor diphenyleneiodonium or by the intracellular scavenger, tiron. 
These findings suggested that Ang II activates p38MAP kinase and ERK5 via redox-de-
pendent cascades that are regulated by IGF-1R and EGFR transactivation. In a subsequent 
study conducted using primary human VSMCs, the same authors reported that Ang II 
and ET-1 stimulate the phosphorylation of p38MAPK, JNK and ERK5, but not ERK1/2, 
via redox-sensitive processes. Ang II activated p38, JNK and ERK5 primarily through 
NAD(P)H oxidase-generated O2•−, while ET-1 stimulated these kinases via redox-sensitive 
processes that involve mtROS [124]. Besides VSMCs, the involvement of a p38/ERK5 axis 
in the oxidative stress response has been reported by Morimoto and colleagues, who 
demonstrated that a p38/ERK5/BCL6B pathway creates a positive feedback loop that 
drives self-renewal of spermatogonial stem cells via ROS amplification [125]. 

Collectively, the above studies suggest that ERK5-mediated signals may contribute 
to the pathogenesis of hypertension. 

5.2. Pathophysiology of the Heart 
In the heart, redox signalling is involved in physiological processes, including exci-

tation–contraction coupling and cell differentiation, as well as, when unbalanced, patho-
logical occurrences such as adverse cardiac remodelling, fibrosis and heart failure. 
NADPH oxidases, NO synthase and mitochondria are sources of ROS relevant to heart 
diseases, concurring during both myocardial and vascular dysfunction [126]. 

5.2.1. Ischemic Heart Disease 
Ischemia-reperfusion (I/R) injury, an event occurring invariably in tissues when 

blood flow deprivation is followed by its restoration, is caused by excessive ROS, which 
are produced both during ischemia and upon reperfusion. Based on this, remarkable ef-
forts have been directed to clarify the mechanisms that induce excess ROS production 
during I/R [127,128]. Using freshly explanted guinea pig hearts, it has been shown that 
ischemia stimulates the activation of p90RSK, src and ERK5, while reperfusion stimulates 
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activation of p90RSK and ERK1/2. Ex vivo pre-treatment of the hearts with SFKi PP2 
showed that SFKs are upstream activators of ERK5 in the context of ischemia. On the con-
trary, pre-treatment of the hearts with the antioxidant N-2-mercaptopropionyl glycine 
identified a major role for H2O2 in the stimulation of ERK1/2 and p90RSK after I/R, but 
only a partial role for H2O2 in ischemia-induced src and ERK5 activation [129]. 

5.2.2. Myocardial Disease 
Mitochondrial dysfunction and metabolic cardiomyopathy are critical factors that 

lead to myocardial diseases. In the latter, unremitting metabolic stress leads to cardiac 
lipid overload, insulin resistance, energy deficiency, increased ROS production and apop-
tosis over time, finally leading to deterioration in contractility and heart failure [130]. Ad-
ditionally, diabetic patients have a nearly threefold increased risk of developing heart fail-
ure compared with age-matched non-diabetics [131].  

The first report to determine the role of ERK5 in cardiac dysfunction was by Yan and 
colleagues, who showed that ERK5 activation inhibits cardiac apoptosis and the subse-
quent dysfunction via inhibition of the feedback loop between phosphodiesterase 3A and 
inducible cAMP early repressor [132]. A later study using a cardiomyocyte-specific Erk5 
knockout mouse model demonstrated, for the first time, the in vivo role of ERK5 in regu-
lating hypertrophic growth and preventing heart failure. In the same paper, the authors 
identified the transcription factor MEF2 as a downstream effector of ERK5 in regulating 
the hypertrophic response [133].  

A link between ERK5, ROS and cardiomyocyte health was first identified in a study 
showing that genetic inhibition of ERK5 using specific siRNA boosted hypothermia-in-
duced apoptosis by increasing the levels of a series of ROS (O2•−, H2O2, •OH), the pro-
apoptotic protein Bim and intracellular calcium in these cells [134]. A later study investi-
gating the possible role of ERK5 in myocardial disease secondary to metabolic disorders 
found that expression of ERK5, MEF2A and MEF2D decreased in the hearts of obese 
(ob/ob) and diabetic (db/db) mice following a high-fat diet (HFD), eventually leading to 
cardiomyopathy. To identify the mechanisms linking ERK5 deficiency to cardiomyopa-
thy, the authors used Erk5-CKO (cardiac knockout) and control (Erk5-Flox) mice and 
found that O2•− production was increased in HFD-Erk5-CKO hearts with respect to the 
controls. Interestingly, in the cardiac fibres of Erk5-CKO mice on HFD, OXPHOS capacity 
and mitochondria organization were reduced, while the density of lipid droplets was in-
creased compared with HFD-treated Erk5-Flox mice. Finally, analysis of murine primary 
cardiomyocytes found that free fatty acid stimulation induced ERK5 degradation through 
calpain-1, a cysteine protease whose activation is dependent on Gp91phox—a component 
of the NADPH oxidase complex—and triggered by O2•− [135]. These results seem to indi-
cate that the reduction in ERK5 levels that accompanies the onset of myocardial disease 
may be a consequence of ROS-induced calpain-1 activation following a HFD. In another 
study, Yu and colleagues studied myocardial hypertrophy induced by transverse aortic 
constriction in vivo, and H2O2 administration to H9C2 cells (derived from rat heart tissue) 
in vitro. These treatments induced oxidative stress and inflammation, which were associ-
ated with increased expression of miRNA (miR)-143-3p, a non-coding RNA that has been 
reported to regulate ERK5 expression [136]. However, whether or not ERK5 is involved 
in myocardial hypertrophy has not been determined [137]. 

Cameron and colleagues reported, for the first time, that ERK5 is expressed in plate-
lets and functions as a redox switch to promote maladaptive platelet signalling during 
myocardial infarction (MI), a condition with greatly elevated ROS [138]. Indeed, they 
found that H2O2 activated ERK5 in isolated human platelets and that ERK5 is activated in 
platelets isolated from mice following MI induced by permanent ligation of the left ante-
rior descending coronary artery. More importantly, platelet-specific ERK5−/− mice 
showed less platelet activation, reduced MI size and improved post-MI heart function. A 
later study provided evidence that the platelet scavenger receptor CD36 promotes throm-
bosis under atherogenic conditions by generating a redox-regulated signalling pathway 
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requiring ERK5. Moreover, genetic deletion of ERK5 in megakaryocytes and platelets de-
creased platelet adhesion, activation and accumulation in vitro. Finally, in two different 
models of in vivo arterial thrombosis, ERK5 deficiency in platelets abrogated the en-
hanced thrombosis seen under hyperlipidaemic conditions [139]. 

The incidence of cardiovascular diseases (CVD) is higher in HIV+ patients subjected 
to chimeric antigen receptor T-cell (cART) therapy. Experiments carried out using primary 
macrophages, which are involved in the proinflammatory conditions that support CVD, 
showed that cART treatment increases mtROS, which, in turn, activate p90RSK, which is 
responsible for the subsequent phosphorylation of ERK5 at S496. This event reduced 
ERK5 transcriptional transactivation activity, resulting in reduced NRF2 activity on ARE, 
as measured by evaluating the expression of the NRF2-dependent antioxidant genes thi-
oredoxin-1, HO-1 and GPx-1. Therefore, treatments directed at increasing ERK5–NRF2–
ARE activity may offer promising approaches for overcoming the higher CVD incidence 
in cART patients [140]. In a more recent study, the same authors identified the possible 
mechanisms responsible for the increased incidence of CVD in cancer survivors with re-
spect to the rest of the population. Using murine primary monocytes/macrophages, they 
found that doxorubicin and ionizing radiation, which is frequently used in the treatment 
of cancer, upregulates p90RSK phosphorylation, which, in turn, supports ERK5 phos-
phorylation at the inhibitory residue S496. In particular, these events increased the activity 
of poly (ADP-ribose) polymerase, a DNA damage response (DDR)-related molecule, and 
led to subsequent NAD+ depletion and an increase in mtROS production, ultimately re-
sulting in mitochondrial dysfunction. These effects, including ERK5 phosphorylation, 
were reversed by the p90RSK inhibitor FMK-MEA [141] and by the overexpression of a 
dominant/negative p90RSK mutant (K94A/K447A) in primary macrophages. Importantly, 
doxorubicin- and ionizing radiation-induced mtROS production were inhibited in pri-
mary macrophages derived from mice in which wt ERK5 had been replaced with the 
ERK5-S496A mutant using CRISPR/Cas9 technique. This study, therefore, established the 
importance of ERK5 inhibitory phosphorylation at S496 and identified possible strategies 
for preventing CVD in cancer survivors [142]. 

Overall, the above studies established that ERK5 plays a protective role against oxi-
dative stress-induced myocardial diseases. 

5.3. Pathophysiology of the Lung 
Accumulating evidence indicates that oxidative stress plays an important role in the 

pathogenesis of various lung disorders, including asthma, acute injury and pulmonary 
fibrosis, as well as cancer onset and progression [143,144]. The large surface area of the 
pulmonary tissue together with continuous exposure to high levels of O2 and endogenous 
and exogenous oxidants contribute to high ROS and RNS production. In fact, oxidants in 
this tissue may be generated endogenously through local metabolic reactions (e.g., from 
mitochondrial electron transport during respiration or the activation of phagocytes) or 
may be derived from exogenous sources such as air pollutants and cigarette smoke [145–
147]. With regard to the former, using C10 murine lung epithelial cells, Scapoli and col-
leagues found that asbestos fibres, the phagocytosis of which is known to determine oxi-
dant production [148], caused sustained ERK5 phosphorylation compared with treatment 
with EGF or H2O2, which were used as positive controls. Inhibition of MEK1/2/5 by UO126 
or SFK by PP2—as well as inhibition by H2O2 or EGF—blocked asbestos-induced ERK5 
activation in C10 cells. The involvement of src was confirmed in experiments showing that 
asbestos-induced ERK5 phosphorylation/activation was prevented by the overexpression 
of a dominant/negative src (K296R/Y528F) mutant. Additionally, pharmacological inhibi-
tion of src (using PP2) or overexpression of a dominant/negative MEK5 mutant (MEK5-
AA, S311A/T315A [38]) significantly inhibited asbestos-induced cell proliferation, thus 
demonstrating that asbestos supports lung cell proliferation via an src/MEK5-dependent 
pathway. These results indicate that ERK5 inhibition may be a useful strategy against 
mineral fibre-induced carcinogenesis [149].  
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A possible protective role for ERK5 activation by oxidative stress in the lungs has 
been identified using A549 lung adenocarcinoma cells. Indeed, Wu and colleagues 
showed that ERK5 mediates antioxidant response to the oxidant-sensitive miR-200c, the 
expression of which is induced by H2O2 [150]. In these cells, overexpression of miR-200c 
reduced the expression of three antioxidant proteins—SOD2, HO-1 and sirtuin 1—with 
respect to control cells, under basal or H2O2-stimulated conditions. ERK5 KD using spe-
cific shRNA reduced the expression of sirtuin 1, in keeping with the notion that ERK5 is 
an upstream regulator of this gene [151]. This study therefore provided evidence that 
ERK5 participates in the modulation of redox homeostasis of normal and neoplastic lung 
cells [152]. Another study showed that upregulation of the MEK5/ERK5/NRF2 antioxidant 
pathway plays an indispensable role in regulating the antioxidant effect of the isoflavone 
biochanin A, alleviating lung injury induced by water-soluble components of urban par-
ticulate matter. [153].  

The above studies seem to indicate that ERK5 plays a protective role against oxida-
tive stress-induced lung injury. 

5.4. Pathophysiology of the Lymphohematopoietic System 
In recent years, ROS have been proven to participate in the regulation of the lympho-

hematopoietic system, which is responsible for the development of immune response and 
the production of blood cells. Indeed, low ROS levels are important for the maintenance 
of quiescence and multipotency of haematopoietic stem cells, whereas a higher level of 
ROS may support haematopoietic differentiation [154,155]. Furthermore, similar to what 
is well established in solid cancers, high ROS levels and oxidative stress play a key role in 
leukaemia onset and progression by stimulating genomic instability, cell survival and pro-
liferation as well as drug resistance [154,156]. 

In Jurkat acute T-lymphoblastic leukaemia cells, ERK5 KD using specific shRNA im-
paired OXPHOS and reduced cell survival [157]. In further support of a pro-survival role 
for ERK5 in the above cellular model, a later study showed that Fas ligand (FasL)-induced 
apoptosis was attenuated by H2O2-induced ERK5 activation. The protective effect of H2O2 
was abolished in Jurkat cells by the overexpression of MEK5-AA. On that basis, the au-
thors proposed that inhibiting ERK5 signalling in conjunction with conventional chemo-
therapy, which is known to induce ROS production, might be more effective at maximiz-
ing leukemic cell death compared with chemotherapy alone [158]. Along this line, a study 
by Khan and colleagues shed light on the mechanisms through which ERK5 modulates 
the antioxidant response in leukemic cells. In human acute leukaemia cell lines (Jurkat, 
OCI-AML3, NB4 and MOLM-13), OXPHOS elicited using either DCA or an " OXPHOS 
medium" (e.g., glucose-free culture medium with glutamine and galactose) induced an 
increase in NQO-1, HO-1 and ERK5 mRNA levels, while decreasing the levels of Keap-1, 
a key sensor of oxidative stress that mediates ubiquitination and degradation of the NRF2 
protein. Similar results were obtained upon DCA treatment of cells derived from AML 
patients, and in NOD/SCID-interleukin-2 receptor γ null (NSG) mice engrafted with pri-
mary human leukemic cells derived from patients with different haematological neo-
plasms (e.g., multiple myeloma, B-cell chronic lymphocytic leukaemia and T-cell lym-
phoma). The authors found that MEF2C, a downstream target of ERK5, binds to the pro-
moter of miR-23a–27a–24-2 cluster and that miR-23a destabilizes the Keap-1 mRNA. 
These results suggest that, in leukemic cells undergoing OXPHOS, ERK5/MEF2/miR-23a 
signalling downregulates Keap-1, leading to activation of the NRF2/ARE pathway, which, 
in turn, generates an antioxidant response [159]. In a later study, the same authors demon-
strated that in addition to increasing ERK5 mRNA, DCA-induced OXPHOS supports 
NRF2 expression in Jurkat, OCI-AML3 and NB4 cells. Similar results were obtained upon 
DCA treatment of cells derived from AML patients and NOD/SCID-NSG mice engrafted 
with AML cells. Indeed, ERK5 KD using ERK5-specific shRNA reduced the levels of DCA-
induced NRF2 mRNA and protein, as well as expression of the NRF2-target genes NQO-
1 and HO-1. Conversely, NRF2 mRNA levels increased following the expression of MEK5-
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DD. ERK5-dependent regulation of NRF2 upon DCA treatment was dependent on MEF2, 
because MEF2-targeting siRNA reduced DCA-induced NRF2 expression. Inhibition of mi-
tochondrial complex I by metformin decreased ERK5, NRF2 and NQO-1 mRNA and pro-
tein levels. Conversely, complex I activity induced ERK5/MEF2-dependent NRF2 expres-
sion through fumarate accumulation, thus supporting the antioxidant response [71].  

Collectively, the above studies indicate that ERK5 may reduce the burden of ROS 
that would result in the death of leukaemia cells, and ERK5-dependent antioxidant re-
sponses may prevent additional ROS-mediated mutagenesis that could support leukae-
mia progression. 

5.5. Pathophysiology of the Kidney 
The kidney is an organ characterized by a high metabolic rate, in particular oxidation 

reactions in the mitochondria, which make it vulnerable to damage caused by further ox-
idative stress. Oxidative stress is increased in patients with renal impairment as a result 
of enhanced oxidant activity and reduced antioxidant capacity, and inflammation further 
amplifies oxidant generation and impairs antioxidant systems, worsening patient condi-
tions [160]. Moreover, consequences of oxidative stress in patients with chronic kidney 
disease include NO production, increased Ang II activity, hypertension, atherosclerosis 
and anaemia [161]. 

Glomerulonephritis (GN) encompasses a subset of renal diseases characterized by 
immuno-mediated damage to glomeruli. Acute GN forms can be either primary renal dis-
eases or secondary to diabetes, hypertension, cardiovascular diseases, anaemia, metabolic 
acidosis and systemic immune-mediated diseases. Most acute GN are considered progres-
sive disorders, which, without timely therapy, progress to chronic GN characterized by 
progressive glomerular damage and tubulo-interstitial fibrosis, leading to reduced glo-
merular filtration rates [162].  

A link between oxidative stress-induced degenerative processes of the kidney and 
ERK5 was provided by a study showing that treatment with eplerenone (a selective min-
eralocorticoid receptor antagonist) or tempol (a cell membrane-permeable radical scaven-
ger, 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine-N-oxyl) prevented glomerular changes 
(i.e., cell proliferation and mesangial matrix expansion) and hypertension following the 
administration of aldosterone/1% NaCl to male Sprague-Dawley rats. Aldosterone/1% 
NaCl-treated animals had enhanced levels of ERK1/2, JNK and ERK5 phosphorylation. 
Both eplerenone and tempol prevented this enhancement, pointing to an ROS-dependent 
mechanism of activation of all the above MAPKs. However, whether ERK5 activation was 
associated with the observed detrimental changes or was an attempt to protect the cells 
from the ROS-induced effects was not addressed [163]. 

As mentioned above, Ang II activity may be increased as a consequence of oxidative 
stress. Using rat mesangial cells, Ishizawa and colleagues found that PDGF, a mitogen 
involved in the pathogenesis of GN, induced H2O2 and src-dependent ERK5 phosphory-
lation. Indeed, SFKi (herbimycin A, PP2) abolished PDGF-induced ERK5 activation. Pre-
treatment with olmesartan, an Ang II type 1 (AT1) receptor blocker that provides reno-
protection and suppresses oxidative stress, prevented PDGF-induced src and ERK5 acti-
vation. However, whether or not ERK5 plays a protective role following H2O2 induction 
was not addressed in the study. In the same study, ERK5 activation was shown to be nec-
essary for PDGF-induced migration in rat mesangial cells, because ERK5 siRNA sup-
pressed PDGF-stimulated cell migration [164]. Interestingly, in human hepatic stellate 
cells, ERK5 inhibition increases, rather than reduces, PDGF-induced migration [31]. In an-
other study, Urushihara and colleagues investigated whether ERK5 is involved in the 
pathogenesis of chronic GN. Starting from the fact that the level of O2•− was significantly 
increased at the glomerular of nephritic rats (uninephrectomized rats treated with the 
nephritogenic anti-Thy-1 mAb) with respect to control rats, H2O2 induced ERK5 phos-
phorylation in rat mesangial cells in vitro in a dose-dependent manner. Genetic inhibition 
of ERK5 using specific siRNA decreased H2O2-induced cell viability and soluble collagen 
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secretion in rat mesangial cells, pointing to the involvement of ERK5 in the pathogenesis 
of chronic GN [165]. 

High glucose is known to generate ROS—H2O2 in particular—in glomerular cells 
[166,167]. Along this line, Suzaki and colleagues found that high glucose levels activated 
ERK5 and ERK1/2, but not p38, in the glomeruli of Otsuka Long Evans Tokushima Fatty 
rats, which display diabetic nephropathy at 52 weeks of age. High glucose-induced ERK5 
activation in cultured rat mesangial cells was reduced by inhibiting SFK (with herbimy-
cin-A or PP2) or depleting PKC (with GF109203X- or prolonged PMA treatment). Taken 
together, these results indicate that high glucose induces SFK- and PKC-dependent ERK5 
activation in mesangial cells, both in vivo and in vitro [168]. Another study showed that 
overexpression of ERK5 in mouse kidneys provides protection against renal I/R injury 
[169]. 

In conclusion, although several lines of evidence seem to indicate that ERK5 can sup-
port GN, further studies are needed to define the role of ERK5 in kidney pathophysiology. 

5.6. Pathophysiology of the Liver 
The role of oxidative stress has been extensively studied in the liver, a tissue at high 

risk of oxidative stress due to its high metabolic activity. Moreover, chronic liver diseases 
are nearly always characterized by increased oxidative stress, regardless of the aetiology 
[170]. 

As has been described for leukaemia cells (see above), activation of OXPHOS by DCA 
has been reported to induce an increase in NRF2 and ERK5, NQO-1 and HO-1 mRNA 
levels in two hepatocellular carcinoma (HCC) cell lines (Huh7 and HepG2) and in primary 
human hepatocytes. ERK5 KD (using siRNA) in primary human hepatocytes and HCC 
cells impaired DCA-induced expression of NRF2 and the NRF2-target genes NQO-1 and 
HO-1. ERK5-dependent regulation of NRF2 following DCA treatment was shown to de-
pend on MEF2, because MEF2-specific siRNA reduced DCA-induced NRF2 expression. 
Finally, inhibition of mitochondrial complex I with metformin decreased the expression 
of ERK5, NRF2 and NQO-1 mRNA and proteins. The study showed that complex I activ-
ity induced ERK5 expression via fumarate accumulation, leading to MEF2/NRF2-medi-
ated antioxidant response [71]. Different conclusions were reached in another study, 
where ERK5 mRNA levels decreased upon treatment with salidroside, a natural com-
pound with ROS-scavenging activity that protects against CCl4-induced liver injury [171]. 

5.7. Pathophysiology of the Central Nervous System 
The central nervous system (CNS) is one of the most metabolically active compart-

ments in the body and, even at rest, consumes 20% of the body’s oxygen supply [172]. The 
presence of high concentrations of polyunsaturated fatty acids and the selectivity of the 
blood–brain barrier, which prevents the uptake of some antioxidants like vitamin E, make 
the CNS highly susceptible to oxidative stress [173]. More importantly, excessive ROS are 
generated after cerebral I/R, leading to severe damage to brain cells, including both neu-
rons and glia [174].  

The brain expresses the highest levels of ERK5 [89]. ERK5 expression is maximal dur-
ing early embryonic development and declines as the brain matures [175]. Of note, ERK5 
and ERK5-regulated MEF2 gene expression contribute to brain-derived neurotrophic fac-
tor-promoted survival of developing—but not mature—cortical and cerebellar neurons 
[175,176]. 
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5.7.1. Degenerative Diseases 
Oxidative stress has been implicated in the progression of neurodegenerative dis-

eases, including Alzheimer’s [177] and Parkinson’s [178,179] diseases, as well as amyo-
trophic lateral sclerosis [180]. The first evidence of a link between ERK5 and oxidative 
stress in the CNS was reported by Suzaki and colleagues, who showed that ERK5 is acti-
vated by H2O2 in a concentration-dependent manner in PC12 cells, an established model 
of neurosecretion and neuronal differentiation. They also found that SFKi (herbimycin A 
and PP2) treatment or overexpression of a kinase-inactive src mutant (K297R) inhibits 
H2O2-induced ERK5 activation in PC12 cells. In addition, H2O2 treatment increased the 
ability of the ERK5-downstream target, MEF2C, to bind DNA. These findings suggest that 
c-src-mediated ERK5 activation by H2O2 may counteract oxidative stress-induced dam-
age, likely through the activation of MEF2C transcription factor [36]. Another study con-
ducted using PC12 cells reported that nerve growth factor (NGF) stimulation or low H2O2 
dose preconditioning (PC) protects PC12 cells and mouse primary hippocampal neurons 
against high H2O2 dose-induced cell death. Both NGF and PC induced ERK5 phosphory-
lation and increased expression of the KLF4 transcription factor. Two MEK5i, BIX02188 
[92] and BIX02189, abolished the neuroprotective effect of NGF and PC. Consistently, ac-
tivation of ERK5 upon overexpression of MEK5-DD led to increased survival of cells ex-
periencing H2O2-induced insult. The induction of KLF4 by NGF or PC was blocked by 
ERK5-targeting siRNA, pointing to the involvement of ERK5 in this induction. Im-
portantly, overexpression of MEK5-DD or KLF4 in H2O2-stressed cells upregulated the 
expression of anti-apoptotic proteins such as Bcl-2 and neuronal apoptosis inhibitory pro-
tein-2, and downregulated the expression of pro-apoptotic proteins such as Bax and 
Caspase 1 [181]. Based on the above findings, it can be concluded that the ERK5/KLF4 
pathway functions as a common mechanism for NGF and PC neuroprotection. 

Another interesting aspect of the neuroprotective role of ERK5 in the CNS is its in-
volvement in the action of melatonin, which is an antioxidant and anti-apoptotic agent 
that plays a neuroprotective role in different CNS injuries [182,183]. Liu and colleagues 
showed that melatonin prevented ROS and malondialdehyde production, induced SOD 
increase and prevented apoptosis in murine neuroblastoma N2a cells under hypoxia (i.e., 
10 ppm O2; 0.001% O2). Furthermore, they found that melatonin induced ERK1/2 and 
ERK5 phosphorylation by upregulating the expression of the zinc uptake transporter 
Zip1, thus exerting a protective effect against hypoxia-induced apoptosis in these cells 
[184]. 

A possible role of ERK5 in the pathogenesis of Parkinson’s disease has also been iden-
tified. Potdar and colleagues showed that piceid, a resveratrol precursor, protects human 
dopaminergic-like SH-SY5Y cells from dopamine-induced cell death via activation of 
ERK1/2 and ERK5, which results in the inhibition of apoptosis, the latter being caused by 
oxidative stress following exposure to high dopamine concentrations. Piceid pre-treat-
ment reduced caspase-3/7 activity and increased the expression of the anti-apoptotic Bcl-
2 protein. Piceid-mediated protection against the dopamine-induced effect was attenu-
ated by inhibition of ERK1/2 and ERK5 pathways using UO126 (MEK1/2/5i) or XMD8-92 
(ERK5i). Thus, the protective effect of piceid seemed to be mediated by ERK1/2/5 activa-
tion [185]. Cavanaugh and colleagues investigated the contributions of ERK5 and ERK1/2 
to the survival of the MN9D murine midbrain dopaminergic neuronal cell line under basal 
conditions and in response to 6-hydroxydopamine (6-OHDA), a neurotoxic synthetic or-
ganic compound used to induce lesions in the nigrostriatal dopaminergic system (a model 
of Parkinson's disease). The authors observed that MEK1/2/5i UO126 decreased the sur-
vival of MN9D cells. Overexpression of a dominant/negative form of either ERK5 (ERK5-
AEF) or MEK1 (K97A), the upstream activator of ERK1/2, mimicked the effect of UO126 
on MN9D cells in reducing cell survival. Overexpression of MEK5-DD and wt ERK5 in-
creased cell survival but did not inhibit 6-OHDA-induced toxicity. In contrast, overex-
pression of a constitutively active MEK1 mutant (S218D/S222D) decreased cell survival 
and inhibited 6-OHDA-induced cell death. Finally, overexpression of a constitutively 
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active MEF2C mutant (S444D) increased cell survival and inhibited 6-OHDA-induced cell 
death, suggesting that MEF2C is important for MN9D cells survival, and is likely the 
downstream target of ERK5 in these events. Taken together, these results suggested that 
activation of both ERK5 and ERK1/2 promote MN9D cell survival, and that ERK1/2 also 
protects MN9D cells against oxidative stress [186]. Overexposure to Mn causes irreversi-
ble movement disorders with signs and symptoms similar, but not identical, to idiopathic 
Parkinson's disease [187,188]. Using MN9D cells, Ding and colleagues found that Mn ex-
posure increased apoptosis, ROS production and MEK5 and ERK5 protein expression. 
The inhibition of MEK5/ERK5 signalling using MEK5i BIX02189 increased Mn-dependent 
cell death and ROS production with respect to Mn treatment alone [173]. Additionally, 
MEK5/ERK5 signalling was proven to regulate cell responses to ROS and to exert a pro-
tective effect against Mn-induced cytotoxicity, likely via upregulation of Bcl-2 and down-
regulation of Bax [189]. 

5.7.2. Cerebrovascular Diseases 
ROS produced upon cerebral I/R can have severe and irreversible detrimental effects 

on both neurons and glia [174]. In this regard, the first in vivo evidence of a link between 
ERK5 and oxidative stress in the CNS was provided using a four-vessel occlusion model 
of Sprague–Dawley rats. A study by Wang and colleagues showed that ERK5 was rapidly 
(from 10 min to 1 day, peaking at 30 min) activated (phosphorylation at TEY) upon reper-
fusion of the hippocampus following 15 min of ischemia. The involvement of ROS in this 
activation was demonstrated by the fact that NAC pre-treatment prevented I/R-induced 
ERK5 activation. Additionally, ERK5 activation upon reperfusion was suppressed by SFKi 
(PP2), nifedipine (an L-Type Voltage-Gated Calcium Channel (LVGCC) blocker) or dex-
tromethorphan, an N-methyl-D-aspartate (NMDA) receptor antagonist. These results 
suggest that I/R-induced activation of ERK5 might be mediated by oxidative stress-acti-
vated SFK through NMDA receptor and LVGCC in the rat hippocampus [190]. 

Based on the above studies, it is clear that the MEK5–ERK5 pathway plays a protec-
tive role against oxidative stress-induced CNS damage. 

6. Conclusions 
Oxidative stress and free radicals are generally known for their detrimental effects 

on human health, as they contribute to the initiation and progression of several patholo-
gies, ranging from inflammatory diseases to cancer. Regarding the role of ERK5 and the 
possible side effects occurring following its inhibition in case it is targeted therapeutically 
[5,41,191], accumulating evidence indicates that, overall, the MEK5/ERK5 cascade exerts 
a suppressive role on oxidative stress under both physiological and pathological processes 
(Table 1). Based on this, in inflammatory diseases, the inhibition of ERK5 or its down-
stream targets is very likely to result in a detrimental effect as a consequence of the im-
pairment of the antioxidant response, with potential worsening of the severity of inflam-
mation. Conversely, impairment of the antioxidant response following MEK5/ERK5 path-
way inhibition may result in a desirable effect following chemotherapeutic treatments to 
boost oxidative stress-dependent cell death. Similarly, inhibition of ERK5 may ameliorate 
hypertension. Nevertheless, the above studies clearly indicate that the role of the MEK5–
ERK5 pathway as a protective factor against oxidative-induced damage may result in 
complex outcomes that should be investigated further in view of MEK5/ERK5-targeted 
exploitation in clinics. 

Table 1. Role of the ERK5 pathway in response to oxidative stress in pathological contexts. 

Tissue/System Pathological 
Condition 

Biological Outcome Role References 

Cardiovascular 
system 

Myocardial disease ERK5 KD boosts hypothermia-induced in-
jury/apoptosis of rat cardiomyocytes in vitro. 

Protective [134] 
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  Cardiomyocyte-specific ERK5 KO in mice 
leads to dampened contractility.  

Protective [135] 

  
Platelet-specific ERK5 KO mice show en-
hanced hyperlipidaemia-induced throm-

bosis.  
Detrimental [139] 

Central nervous 
system 

Degenerative disease 
H2O2-induced SRC/ERK5 activation counter-

acts oxidative stress-induced damage 
through MEF2C in PC12 cells. 

Protective [36] 

  

ERK5/KLF4 activation mediates PC- and 
NGF-induced neuroprotection against high 
H2O2 dose-induced cell death in PC12 cells 

and mouse primary hippocampal neurons in 
vitro. 

Protective [181] 

  
Piceid protects SH-SY5Y cells from dopa-

mine-induced cell death via ERK5 activation. Protective [185] 

  
Pharmacological inhibition of MEK5 in-

creases Mn-dependent cell death and ROS 
production in MN9D cells. 

Protective [189] 

Urinary system Glomerulonephritis 
ERK5 activation enhances glomerular ECM 

accumulation in rats with GN. Detrimental [165] 

  
ERK5 overexpression in mouse kidneys pro-

tects against renal I/R injury in vivo. Protective [169] 

Blood vessel Endothelial dysfunction ERK5/NRF2 activation protects HUVECs 
from H2O2-induced cell death 

Protective [76] 

  
ERK5 activation suppresses ROS/RNS gener-

ation caused by growth factor deprivation 
and shear stress in HUVECs. 

Protective [95] 

 Atherosclerosis 
H2O2 and AGE inhibits ERK5/MEF2/KLF2 via 

ERK5 SUMOylation in HUVECs. Protective [101] 

  
LSS-induced mtROS promotes anti-inflam-
matory response via MEK5/ERK5/KLF2 in 

mouse ECs in vitro. 
Protective  [72] 

  
Statins inhibit TNF-α-induced ROS in human 

ECs via ERK5 activation in vitro. Protective [104] 

  
Halofuginone promotes anti-inflammatory 

response via ERK5/NRF2 in HUVECs. Protective [108] 

  
Lactate-induced GPR81 activation reduces 

OSS-induced oxidative stress via ERK5/KLF2 
in HUVECs. 

Protective [109] 

KD, knockdown; KO, knockout; cART, chimeric antigen receptor T-cell; mtROS, mitochondrial 
ROS; PC, low H2O2 dose preconditioning; NGF, nerve growth factor; Mn, manganese; ECM, extra-
cellular matrix; GN, glomerulonephritis; I/R, ischemia-reperfusion; AGE, advanced glycation end 
products; LSS, laminar shear stress; OSS, oscillatory shear stress. 
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